A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping Strategy
2.3. Statistical Analysis
2.4. Power Calculation
3. Results
3.1. The Newcastle Patient Cohorts Clinical Information
3.1.1. The NAFLD Control and NAFLD-HCC Patient Characteristics
3.1.2. The Newcastle NAFLD-HCC Cohort, Comparing Those with and without Cirrhosis
3.2. The Newcastle Patients’ Cohort Genotype Data
3.2.1. PNPLA3 rs738409 C > G and TM6SF2 rs58542926 C > T Genotyping Data
3.2.2. The Newcastle Patients’ Cohort Genotype Data—Immunoregulatory Genes
3.2.3. The Newcastle Cohort-Multivariate Analyses Exploring Associations with NAFLD-HCC
3.2.4. The Newcastle Cohort—Genotype Associations within the Cirrhotic Versus Non-Cirrhotic NAFLD-HCC Cases
3.3. Berne and Milan NAFLD and NAFLD-HCC Cohorts
3.4. Newcastle, Berne and Milan NAFLD and NAFLD-HCC Cohorts Combined
3.5. Exploration of Functional Roles for PDCD1 rs7421861 and PDCD1 rs10204525
3.5.1. Elevated PD-1 Expression in the Presence of the PDCD1 rs7421861 “A” Major Allele
3.5.2. Elevated PD-1 Expression in the Presence of the PDCD1 rs10204525 Minor Allele
3.5.3. sQTLs Associated with PDCD1 rs7421861 and PDCD1 rs10204525
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Association for the Study of the Liver. Easl clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.C.; Jan, C.F.; Kuo, H.S.; Chen, C.J. Nationwide hepatitis b vaccination program in taiwan: Effectiveness in the 20 years after it was launched. Epidemiol. Rev. 2006, 28, 126–135. [Google Scholar] [CrossRef]
- Kudo, M.; Izumi, N.; Kubo, S.; Kokudo, N.; Sakamoto, M.; Shiina, S.; Tateishi, R.; Nakashima, O.; Murakami, T.; Matsuyama, Y.; et al. Report of the 20th nationwide follow-up survey of primary liver cancer in japan. Hepatol. Res. 2019, 50, 15–46. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. Easl 2017 clinical practice guidelines on the management of hepatitis b virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; European Association for the Study of the Liver. Easl recommendations on treatment of hepatitis c: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. Cancer Mortality Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality (accessed on 28 August 2020).
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From nash to hcc: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Imperatore, G.; Geiss, L.S.; Saydah, S.H.; Albright, A.L.; Ali, M.K.; Gregg, E.W. Trends and disparities in cardiovascular mortality among US adults with and without self-reported diabetes, 1988–2015. Diabetes Care 2018, 41, 2306–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazer, K.; Callinan, J.E.; McHugh, J.; van Baarsel, S.; Clarke, A.; Doherty, K.; Kelleher, C. Legislative smoking bans for reducing harms from secondhand smoke exposure, smoking prevalence and tobacco consumption. Cochrane Database Syst. Rev. 2016, 2, CD005992. [Google Scholar] [CrossRef]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of nafld and nash: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Geh, D.; Manas, D.M.; Reeves, H.L. Hepatocellular carcinoma in non-alcoholic fatty liver disease—A review of an emerging challenge facing clinicians. Hepatobiliary Surg. Nutr. 2021, 10, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology 2010, 51, 1820–1832. [Google Scholar] [CrossRef]
- Liu, Y.L.; Patman, G.L.; Leathart, J.B.; Piguet, A.C.; Burt, A.D.; Dufour, J.F.; Day, C.P.; Daly, A.K.; Reeves, H.L.; Anstee, Q.M. Carriage of the pnpla3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 2014, 61, 75–81. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of nafld to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Reeves, H.L.; Burt, A.D.; Tiniakos, D.; McPherson, S.; Leathart, J.B.S.; Allison, M.E.D.; Alexander, G.J.; Piguet, A.-C.; Anty, R.; et al. Tm6sf2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 2014, 5, 4309. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zhang, J.; Mei, T.-T.; Guo, H.-Q.; Wei, X.-H.; Zhang, W.-Y.; Liu, Y.-L.; Liang, S.; Fan, Z.-P.; Ma, L.-X.; et al. Association of tm6sf2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: A meta-analysis. BMC Cancer 2019, 19, 1128. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. The genetics of clinical liver diseases: Insight into the tm6sf2 e167k variant. J. Clin. Transl. Hepatol. 2018, 6, 326–331. [Google Scholar] [CrossRef]
- Bianco, C.; Jamialahmadi, O.; Pelusi, S.; Baselli, G.; Dongiovanni, P.; Zanoni, I.; Santoro, L.; Maier, S.; Liguori, A.; Meroni, M.; et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol. 2020. [Google Scholar] [CrossRef]
- Kumar, V.; Kato, N.; Urabe, Y.; Takahashi, A.; Muroyama, R.; Hosono, N.; Otsuka, M.; Tateishi, R.; Omata, M.; Nakagawa, H.; et al. Genome-wide association study identifies a susceptibility locus for hcv-induced hepatocellular carcinoma. Nat. Genet. 2011, 43, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of cd44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.-E.; Hsieh, M.-J.; Chiou, H.-L.; Lee, H.-L.; Yang, S.-F.; Chen, T.-Y. Cd44 gene polymorphisms on hepatocellular carcinoma susceptibility and clinicopathologic features. Biomed. Res. Int. 2014, 2014, 231474. [Google Scholar] [CrossRef]
- Endo, K.; Terada, T. Protein expression of cd44 (standard and variant isoforms) in hepatocellular carcinoma: Relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J. Hepatol. 2000, 32, 78–84. [Google Scholar] [CrossRef]
- Bally, A.P.R.; Austin, J.W.; Boss, J.M. Genetic and epigenetic regulation of pd-1 expression. J. Immunol. 2016, 196, 2431–2437. [Google Scholar] [CrossRef] [Green Version]
- Salmaninejad, A.; Khoramshahi, V.; Azani, A.; Soltaninejad, E.; Aslani, S.; Zamani, M.R.; Zal, M.; Nesaei, A.; Hosseini, S.M. Pd-1 and cancer: Molecular mechanisms and polymorphisms. Immunogenetics 2018, 70, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.W.; Chacko, A.-M.; Chew, V. PD-1 expression and its significance in tumour microenvironment of hepatocellular carcinoma. Transl. Gastroenterol. Hepatol. 2019, 4, 51. [Google Scholar] [CrossRef]
- Ghorbani, P.; Mollaei, H.; Arabzedeh, S.; Zahedi, M. Upregulation of single nucleotide polymorphism of PD-1 gene (rs10204525) in chronic hepatitis B patients. Int. Arch. Med. Microbiol. 2019, 2. [Google Scholar] [CrossRef]
- Chihab, H.; Jadid, F.Z.; Foka, P.; Zaidane, I.; El Fihry, R.; Georgopoulou, U.; Marchio, A.; Elhabazi, A.; Chair, M.; Pineau, P.; et al. Programmed cell death-1 3’-untranslated region polymorphism is associated with spontaneous clearance of hepatitis B virus infection. J. Med. Virol. 2018, 90, 1730–1738. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ge, T.; Xia, C.; Zhu, W.; Xu, L.; Wang, Y.; Wu, F.; Liu, F.; Zheng, M.; Chen, Z. Association of rs10204525 genotype gg and rs2227982 CC combination in programmed cell death 1 with hepatitis B virus infection risk. Medicine 2019, 98, e16972. [Google Scholar] [CrossRef]
- Zhang, G.; Li, N.; Zhang, P.; Li, F.; Yang, C.; Zhu, Q.; Han, Q.; Lv, Y.; Zhou, Z.; Liu, Z. PD-1 mrna expression is associated with clinical and viral profile and PD1 3’-untranslated region polymorphism in patients with chronic hbv infection. Immunol. Lett. 2014, 162, 212–216. [Google Scholar] [CrossRef]
- Zang, B.; Chen, C.; Zhao, J.-Q. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a chinese han population. Aging 2020, 12, 3771–3790. [Google Scholar] [CrossRef]
- Dong, W.; Gong, M.; Shi, Z.; Xiao, J.; Zhang, J.; Peng, J. Programmed cell death-1 polymorphisms decrease the cancer risk: A meta-analysis involving twelve case-control studies. PLoS ONE 2016, 11, e0152448. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Hu, E.; Li, W.; Lv, J.; He, Y.; Deng, G.; Xiao, J.; Yang, C.; Zhao, X.; Chen, L.; et al. Association of PD-1 polymorphisms with the risk and prognosis of lung adenocarcinoma in the northeastern chinese han population. BMC Med. Genet. 2019, 20, 177. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Karami, S.; Sarabandi, S.; Moazeni-Roodi, A.; Małecki, A.; Ghavami, S.; Wiechec, E. Association between PD-1 and PD-l1 polymorphisms and the risk of cancer: A meta-analysis of case-control studies. Cancers 2019, 11, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, T.; Wonders, K.; Younes, R.; Aithal, G.P.; Aller, R.; Allison, M.; Bedossa, P.; Betsou, F.; Boursier, J.; Brosnan, M.J.; et al. The european nafld registry: A real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp. Clin. Trials 2020, 98, 106175. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Darlay, R.; Cockell, S.; Meroni, M.; Govaere, O.; Tiniakos, D.; Burt, A.D.; Bedossa, P.; Palmer, J.; Liu, Y.L.; et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol. 2020, 73, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Z.; Tozzi, F.; Waterworth, D.M.; Pillai, S.G.; Muglia, P.; Middleton, L.; Berrettini, W.; Knouff, C.W.; Yuan, X.; Waeber, G.; et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010, 42, 436–440. [Google Scholar] [CrossRef]
- Dudbridge, F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum. Hered. 2008, 66, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.Y.; Zhang, L.; Fan, J.G.; Qiao, L. Nafld leads to liver cancer: Do we have sufficient evidence? Cancer Lett. 2014, 345, 230–234. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Harrison, S.A.; Ratziu, V.; Abdelmalek, M.F.; Diehl, A.M.; Caldwell, S.; Shiffman, M.L.; Aguilar Schall, R.; Jia, C.; McColgan, B.; et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: Data from the simtuzumab trials. Hepatology 2019, 70, 1913–1927. [Google Scholar] [CrossRef]
- Harrison, S.A.; Wong, V.W.; Okanoue, T.; Bzowej, N.; Vuppalanchi, R.; Younes, Z.; Kohli, A.; Sarin, S.; Caldwell, S.H.; Alkhouri, N.; et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to nash: Results from randomized phase iii stellar trials. J. Hepatol. 2020, 73, 26–39. [Google Scholar] [CrossRef]
- Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M.; et al. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 2014, 60, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Pelusi, S.; Baselli, G.; Pietrelli, A.; Dongiovanni, P.; Donati, B.; McCain, M.V.; Meroni, M.; Fracanzani, A.L.; Romagnoli, R.; Petta, S.; et al. Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci. Rep. 2019, 9, 3682. [Google Scholar] [CrossRef] [PubMed]
- Board WCoTE. Tumour of the liver and intrahepatic bile ducts. In Digestive System Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019; pp. 215–263. [Google Scholar]
- Falleti, E.; Cussigh, A.; Cmet, S.; Fabris, C.; Toniutto, P. Pnpla3 rs738409 and tm6sf2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig. Liver Dis. 2016, 48, 69–75. [Google Scholar] [CrossRef]
- Schadt, E.E.; Monks, S.A.; Friend, S.H. A new paradigm for drug discovery: Integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans. 2003, 31, 437–443. [Google Scholar] [CrossRef]
- Lappalainen, T.; Sammeth, M.; Friedlander, M.R.; Ac’t Hoen, P.A.; Monlong, J.; Rivas, M.A.; Gonzalez-Porta, M.; Kurbatova, N.; Griebel, T.; Ferreira, P.G.; et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Carithers, L.J.; Moore, H.M. The genotype-tissue expression (gtex) project. Biopreserv. Biobank. 2015, 13, 307–308. [Google Scholar] [CrossRef]
- Bahcall, O.G. Human genetics: Gtex pilot quantifies eqtl variation across tissues and individuals. Nat. Rev. Genet. 2015, 16, 375. [Google Scholar] [CrossRef]
- Li, Y.I.; Knowles, D.A.; Humphrey, J.; Barbeira, A.N.; Dickinson, S.P.; Im, H.K.; Pritchard, J.K. Annotation-free quantification of rna splicing using leafcutter. Nat. Genet. 2018, 50, 151–158. [Google Scholar] [CrossRef]
- Mohammadi, P.; Castel, S.E.; Brown, A.A.; Lappalainen, T. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome. Res. 2017, 27, 1872–1884. [Google Scholar] [CrossRef] [Green Version]
- Romeo, S.; Sanyal, A.; Valenti, L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab. 2020, 31, 35–45. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Elsaid, O.M.; Amer, E.A.; Elosaily, H.H.; Sleem, M.I.; Gerges, S.S.; Saleh, M.A.; El Shimy, A.; El Abd, Y.S. Clinical significance of snp (rs2596542) in histocompatibility complex class i-related gene a promoter region among hepatitis c virus related hepatocellular carcinoma cases. J. Adv. Res. 2017, 8, 343–349. [Google Scholar] [CrossRef]
- Sharkawy, R.E.; Bayoumi, A.; Metwally, M.; Mangia, A.; Berg, T.; Romero-Gomez, M.; Abate, M.L.; Irving, W.L.; Sheridan, D.; Dore, G.J.; et al. A variant in the mica gene is associated with liver fibrosis progression in chronic hepatitis c through tgf-beta1 dependent mechanisms. Sci. Rep. 2019, 9, 1439. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, M.; Huang, L.; Mo, D.; Liang, Y.; Huang, Z.; Zhu, B.; Fang, M. Cd44, il-33, and st2 gene polymorphisms on hepatocellular carcinoma susceptibility in the chinese population. Biomed. Res. Int. 2020, 2020, 2918517. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.Y.W.; McCain, M.; Mhadi, A.K.; Mauricio, J.; Wilson, C.; Patman, G.L.; Whitehead, A.; Lunec, J.; Shukla, R.; Anstee, Q.M.; et al. OP-01: Genome Wide RNA Expression Analysis Identifies cd44 Positive Macrophages as Promoters of Hepatocyte Proliferation and the Development of Nafld-HCC. In Proceedings of the EASL HCC Summit, Portugal, Lisbon, 14–16 February 2019; Abstract Book; EASL: Portugal, Lisbon, 2019; p. 29. [Google Scholar]
- Gao, Q.; Wang, X.-Y.; Qiu, S.-J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.-Z.; Shi, Y.-H.; Xiao, Y.-S.; et al. Overexpression of pd-l1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 2009, 15, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staron, M.M.; Gray, S.M.; Marshall, H.D.; Parish, I.A.; Chen, J.H.; Perry, C.J.; Cui, G.; Li, M.O.; Kaech, S.M. The transcription factor foxo1 sustains expression of the inhibitory receptor pd-1 and survival of antiviral CD8(+) t cells during chronic infection. Immunity 2014, 41, 802–814. [Google Scholar] [CrossRef] [Green Version]
- Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 2016, 375, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, N.; Zhu, Q.; Zhang, G.; Han, Q.; Zhang, P.; Xun, M.; Wang, Y.; Zeng, X.; Yang, C.; et al. Genetic variations of PD1 and tim3 are differentially and interactively associated with the development of cirrhosis and hcc in patients with chronic hbv infection. Infect. Genet. Evol. 2013, 14, 240–246. [Google Scholar] [CrossRef]
- Pinter, M.; Scheiner, B.; Peck-Radosavljevic, M. Immunotherapy for advanced hepatocellular carcinoma: A focus on special subgroups. Gut 2021, 70, 204–214. [Google Scholar] [CrossRef]
- Suppiah, V.; Moldovan, M.; Ahlenstiel, G.; Berg, T.; Weltman, M.; Abate, M.L.; Bassendine, M.; Spengler, U.; Dore, G.J.; Powell, E.; et al. Il28b is associated with response to chronic hepatitis c interferon-alpha and ribavirin therapy. Nat. Genet. 2009, 41, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
Phenotype | Group | NAFLD (n = 416) | NAFLD/HCC (n = 198) | p-Value 1 |
---|---|---|---|---|
Age (Mean ± SD) | 52.97 ± 0.58 | 72.21 ± 0.65 | <0.0001 | |
Gender | male (%) female (%) | 232 (55.8) 184 (42.8) | 157 (79.3) 41 (20.7) | <0.0001 |
BMI (Mean ± SD) | 35.03 ± 0.28 | 31.96 ± 0.44 | <0.0001 | |
Diabetes | no (%) yes (%) | 198 (48.1) 214 (51.9) | 60 (30.3) 138 (69.7) | <0.0001 |
Cirrhosis | no (%) yes (%) | 353 (84.9) 63 (15.1) | 77 (38.9) 121 (61.1) | <0.0001 |
Gene | Identity | p Value | OR | Conditioned on PNPLA3 + TM6SF2 | ||
---|---|---|---|---|---|---|
p Value | OR | |||||
PNPLA3 | C > G | rs738409 | 0.01750 * | 1.33 (1.05–1.68) | NA | NA |
TM6SF2 | C > T | rs58542926 | 0.00531 ** | 1.60 (1.15–2.22) | NA | NA |
MICA | T > C | rs2596542 | 0.37940 | 0.89 (0.68–1.16) | 0.3741 | 0.89 (0.68–1.16) |
CD44 | C > T | rs187115 | 0.42710 | 1.11 (0.86–1.44) | 0.4155 | 1.11 (0.86–1.45) |
PDCD1 | A > G | rs7421861 | 0.00014 *** | 0.59 (0.45–0.78) | 0.000465 *** | 0.61 (0.47–0.81) |
PDCD1 | C > T | rs10204525 | 0.16470 | 1.31 (0.90–1.91) | 0.1838 | 1.29 (0.88–1.91) |
Age, Sex, Cirrhosis, T2DM | ||||||
PNPLA3 | C > G | rs738409 | 0.06432 | 1.49 (0.98–2.26) | NA | NA |
TM6SF2 | C > T | rs58542926 | 0.48770 | 0.82 (0.47–1.44) | NA | NA |
MICA | T > C | rs2596542 | 0.84010 | 0.95 (0.60–1.52) | 0.9079 | 0.97 (0.61–1.56) |
CD44 | C > T | rs187115 | 0.37700 | 1.23 (0.77–1.96) | 0.3132 | 1.27 (0.80–2.04) |
PDCD1 | A > G | rs7421861 | 0.00152 * | 0.49 (0.31–0.76) | 0.001514 ** | 0.49 (0.31–0.76) |
PDCD1 | C > T | rs10204525 | 0.02212 * | 2.11 (1.11–3.99) | 0.007101 ** | 2.49 (1.28–4.86) |
NAFLD Control | NAFLD-HCC | ||||||
---|---|---|---|---|---|---|---|
Total (%) | NC (%) | Cirrhotic (%) | Total (%) | NC (%) | Cirrhotic (%) | ||
PNPLA3 rs738409 | CC | 170 (40.9) | 156 (44.2) | 14 (22.2) | 67 (33.84) | 35 (46.1) | 32 (26.2) |
CG | 184 (44.2) | 150 (42.5) | 34 (54.0) | 85 (42.93) | 29 (38.2) | 56 (45.9) | |
GG | 62 (14.9) | 47 (13.3) | 15 (23.8) | 46 (23.23) | 12 (15.8) | 34 (27.9) | |
TM6SF2 rs58542926 | CC | 323 (77.6) | 281 (79.6) | 42 (66.7) | 132 (66.7) | 57 (74) | 75 (62.0) |
CT | 85 (20.4) | 67 (19) | 18 (28.6) | 60 (30.3) | 19 (24.7) | 41 (33.9) | |
TT | 8 (2) | 5 (1.4) | 3 (4.8) | 6 (3) | 1 (1.3) | 5 (4.1) | |
CD44 rs187115 | TT | 175 (42.1) | 150 (42.5) | 25 (39.7) | 79 (39.9) | 27 (35.1) | 52 (43) |
CT | 197 (47.3) | 165 (46.7) | 32 (50.8) | 96 (48.5) | 40 (51.9) | 56 (46.3) | |
CC | 44 (10.6) | 38 (10.8) | 6 (9.5) | 23 (11.6) | 10 (13) | 13 (10.7) | |
MICA rs2596542 | CC | 183 (44) | 159 (45) | 24 (38.1) | 92 (46.9) | 31 (41.3) | 61 (50.4) |
CT | 190 (45.7) | 158 (44.8) | 32 (50.8) | 89 (45.4) | 37 (49.3) | 52 (43) | |
TT | 43 (10.3) | 36 (10.2) | 7 (11.1) | 15 (7.7) | 7 (9.3) | 8 (6.6) | |
PDCD1 rs7421861 | AA | 180 (43.3) | 155 (43.9) | 25 (39.7) | 126 (63.6) | 50 (64.9) | 76 (62.8) |
AG | 189 (45.4) | 159 (45) | 30 (47.6) | 53 (26.8) | 22 (28.6) | 31 (25.6) | |
GG | 47 (11.3) | 39 (11) | 8 (12.7) | 19 (9.6) | 5 (6.5) | 14 (11.6) | |
PDCD1 rs10204525 | CC | 345 (82.9) | 289 (81.9) | 56 (88.9) | 154 (78.6) | 56 (73.7) | 98 (81.7) |
CT | 66 (15.9) | 59 (16.7) | 7 (11.1) | 38 (19.4) | 18 (23.7) | 20 (16.7) | |
TT | 5 (1.2) | 5 (1.4) | 0 (0) | 4 (2) | 2 (2.6) | 2 (1.7) |
Newcastle Cohort | Berne Cohort | Milan Cohort * | |||||||
---|---|---|---|---|---|---|---|---|---|
Phenotype | NAFLD (n = 416) | NAFLD-HCC (n = 198) | NAFLD (n = 76) | NAFLD-HCC (n = 84) | p Value | NAFLD (n = 102) | NAFLD-HCC (n = 109) | p Value | |
Age (Mean ± SD) | 53.0 ± 0.6 | 72.2 ± 0.7 | 53.7 ± 1.3 | 66.7 ± 0.9 | <0.0001 | 63.7 ± 1.1 | 66.9 ± 0.8 | 0.074 | |
Gender (%) | male female | 232 (55.8) 184 (42.8) | 157 (79.3) 41 (20.7) | 46 (60.5) 30 (39.5) | 80 (95.2) 4 (4.8) | <0.0001 | 47 (52.2) 43 (47.8) | 88 (81.5) 20 (18.5) | <0.0001 |
BMI (Mean ± SD) | 35.0 ± 0.3 | 32.0 ± 0.4 | 32.7 ± 0.6 | 29.6 ± 0.6 | <0.0001 | 30.0 ± 0.5 | 29.4 ± 0.5 | 0.445 | |
Diabetes (%) | no yes | 198 (48.1) 214 (51.9) | 60 (30.3) 138 (69.7) | 35 (46.1) 41 (53.9) | 47 (56.0) 37 (44.0) | 0.211 | 34 (40.5) 50 (59.5) | 45 (44.6) 56 (55.4) | 0.577 |
Cirrhosis (%) | no yes | 353 (84.9) 63 (15.1) | 77 (38.9) 121 (61.1) | 55 (72.4) 21 (27.6) | 15 (17.9) 69 (82.1) | <0.0001 | 6 (7.0) 80 (93.0) | 16 (15.5) 87 (84.5) | 0.068 |
Combined Cohorts | Group | NAFLD (n = 594) | NAFLD-HCC (n = 391) | p Value |
---|---|---|---|---|
Age (Mean ± SD) | 54.74 ± 0.50 | 69.52 ± 0.47 | <0.0001 | |
Gender | male (%) female (%) | 325 (55.8) 257 (44.2) | 325(83.1) 66 (16.9) | <0.0001 |
BMI (Mean ± SD) | 33.99 ± 0.25 | 30.78 ± 0.30 | <0.0001 | |
Diabetes | no (%) yes (%) | 267 (46.7) 305 (53.3) | 152 (39.6) 232 (60.4) | <0.030 |
Cirrhosis | no (%) yes (%) | 414 (71.6) 164 (28.4) | 108 (28.0) 278 (72.0) | <0.0001 |
Gene | rs Identity | p Value | OR | Condition on PNPLA3+TM6SF2 | |
---|---|---|---|---|---|
PNPLA3 | rs738409 | 0.043946 | 1.20 (1.00–1.43) | NA | NA |
TM6SF2 | rs58542926 | 0.018524 | 1.37 (1.05–1.77) | NA | NA |
PDCD1 | rs7421861 | 0.026279 | 0.79 (0.65–0.97) | 0.044663 | 0.81 |
PDCD1 | rs10204525 | 0.123195 | 1.30 (0.93–1.83) | 0.137854 | 1.30 |
Age, Gender, Cirrhosis, T2DM | |||||
PNPLA3 | rs738409 | 0.231807 | 1.18 (0.90–1.55) | NA | NA |
TM6SF2 | rs58542926 | 0.655423 | 0.91 (0.61–1.36) | NA | NA |
PDCD1 | rs7421861 | 0.181639 | 0.82 (0.61–1.10) | 0.172542 | 0.81 (0.61–1.10) |
PDCD1 | rs10204525 | 0.024180 | 1.90 (1.09–3.30) | 0.009843 | 2.13 (1.20–3.80) |
rs7421861 | ||
---|---|---|
p-Value (-log10) | Effect Size | Tissue/Cell Type |
2.028825 | −0.06357 | Whole_Blood |
2.737219 | −0.10859 | blood |
1.413284 | −0.21721 | macrophage_naive |
1.481194 | −0.22847 | monocyte_IAV |
2.160692 | −0.38254 | monocyte_Pam3CSK4 |
2.072197 | −0.39053 | monocyte_LPS |
2.878066 | −0.45225 | macrophage_Listeria |
4.672717 | −0.52111 | monocyte_R848 |
rs10204525 | ||
---|---|---|
p-Value (-log10) | Effect Size | Tissue/Cell Type |
8.853481 | 0.964331 | monocyte_Pam3CSK4 |
8.408515 | 0.96187 | monocyte_LPS |
9.49804 | 0.944919 | monocyte_naive |
2.34563 | 0.916861 | monocyte_CD16_naive |
5.266115 | 0.738328 | CD4_T-cell_anti-CD3-CD28 |
7.349027 | 0.735695 | monocyte_R848 |
4.761555 | 0.591227 | CD8_T-cell_anti-CD3-CD28 |
6.339877 | 0.581108 | monocyte_IAV |
1.772399 | −0.08286 | Whole_Blood |
5.520671 | −0.25549 | blood |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldafashi, N.; Darlay, R.; Shukla, R.; McCain, M.V.; Watson, R.; Liu, Y.L.; McStraw, N.; Fathy, M.; Fawzy, M.A.; Zaki, M.Y.W.; et al. A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC? Cancers 2021, 13, 1412. https://doi.org/10.3390/cancers13061412
Eldafashi N, Darlay R, Shukla R, McCain MV, Watson R, Liu YL, McStraw N, Fathy M, Fawzy MA, Zaki MYW, et al. A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC? Cancers. 2021; 13(6):1412. https://doi.org/10.3390/cancers13061412
Chicago/Turabian StyleEldafashi, Nardeen, Rebecca Darlay, Ruchi Shukla, Misti Vanette McCain, Robyn Watson, Yang Lin Liu, Nikki McStraw, Moustafa Fathy, Michael Atef Fawzy, Marco Y. W. Zaki, and et al. 2021. "A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC?" Cancers 13, no. 6: 1412. https://doi.org/10.3390/cancers13061412
APA StyleEldafashi, N., Darlay, R., Shukla, R., McCain, M. V., Watson, R., Liu, Y. L., McStraw, N., Fathy, M., Fawzy, M. A., Zaki, M. Y. W., Daly, A. K., Maurício, J. P., Burt, A. D., Haugk, B., Cordell, H. J., Bianco, C., Dufour, J. -F., Valenti, L., Anstee, Q. M., & Reeves, H. L. (2021). A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC? Cancers, 13(6), 1412. https://doi.org/10.3390/cancers13061412