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1. Feature Extraction

Table S1. The description and formula of the extracted FOS features. 

Feature Name Description Formula 

Energy 
It computes the magnitude of pixel values 

in an image. 
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Skewness 
It calculates the asymmetry of the distri-

bution of values about the mean value. 
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Kurtosis 
It calculates the peakedness of the distri-

bution of values in the image ROI.  
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Entropy 
It measures the randomness in the image 

values. 
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Variance (𝜎2) 
It measures the spread of distribution 

about the mean.  
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Uniformity 

It measures the sum of squares of each in-

tensity value and computes the homoge-

neity of the image intensity values. 
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X: A set of ROI pixels (𝑁𝑝) 

�̅�: Mean of the distribution 

P(i): The first order histogram with the discrete intensity level 𝑁𝑔 

𝑁𝑔: The number of non-zero bins of a histogram 

p(i): First-order normalized histogram, which is equal to 
𝐏(𝐢)

𝑁𝑝

𝜖: An arbitrarily small positive number 

𝜇3 & 𝜇4: The 3rd and 4th central moment 

𝜎: Standard deviation 



  

2. Classification Algorithms

2.1. Support Vector Machine 

The three important elements of an SVM are the margin, support vector, and kernel. 

The margin is the distance between the support vector and a hyperplane; when there are 

multiple hyperplanes, the margin finds the most reasonable hyperplane in the vector 

space. A support vector is the data vector closest to a hyperplane. The support vector and 

margin depend on the decision boundary (the hyperplane). Using the kernel, SVMs effi-

ciently perform non-linear classifications by mapping inputs into high-dimensional fea-

ture spaces [35,36]. It is important to understand how decision boundaries are defined and 

calculated. We used a non-linear Gaussian kernel to find the points closest to the decision 

boundaries for both benign and malignant tumors. We used five-fold cross-validation to 

train our model; the training data were divided into five trials, and the validation accuracy 

was the average of the accuracies of the five trials. Cross-validation reduces over-fitting. 

Parameter tuning is critical; the 𝐶 and 𝛾 parameter control SVM performance by setting 

the trade-off between the decision boundary and correct classification of the training data. 

A well-tuned 𝐶 and 𝛾 are vital. The kernel function, used for binary classification can be 

expressed by: 

D = √(∑(𝑥𝑖 − 𝑦𝑖)
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where 𝑥𝑖 , 𝑦𝑖  is the feature vector in dimension 𝑛, 𝐷 is the Euclidean distance be-

tween two feature vectors, 𝛾 is a hyper-parameter, which changes the smoothness of the 

kernel function, and 𝜎 is a free parameter. 

2.2. Logistic Regression 

LR is a linear algorithm that predicts the probability of the data that falls into a cate-

gory between 0 and 1, and categorizes it as belonging to a higher probability category. In 

general, LR is applied for binary classification when the data samples are divided into two 

groups (e.g., positive and negative). We used this method in our paper to classify benign 

and malignant samples separately and independently. A linear return can easily predict 

unforeseen problems with logit transformation, 

f(r) = 
1

1 + e−∑ wixi
n
i=0

(2) 

The classification is usually based on 0.5, a critical value. It can be changed to allow 

better classification. Here, e is the Eular’ number, w is coefficient of regression, x is the 

constant variable, and n is the number of features [37]. 

2.3. Bagging Tree 

It is an abbreviation of Bootstrap Aggregation and is a classification method that 

makes the predictions by learning each model and aggregating the results. One of the 

biggest advantages of Bagging is that it can perform the parallel computation of the pre-

dictions. Generally, it occurs underfitting due to high bias and overfitting problems due 

to high dispersion, therefore ensemble voting technique can minimize these errors. In gen-

eral, Bagging can solve these problems because it predicts the outcome by voting/averag-

ing the results from each learning algorithm [38,39]. Figure S1 shows the process and tech-

nique of the Bagging Tree classifier. The principle of the bagging tree can be expressed by 

the following equation: 



  

f(x) =
1

T
∑fb(x)

T

t=1

 (3) 

where T is the number of classifier and fb is the weak learner on the boostraped 

dataset. 

Figure S1. An example of Bagging Tree classifier. Here, the classification is carried out in a parallel direction. 

2.4. Boosting Tree (AdaBoost) 

Boosting Tree is commonly used in regression and classification as a general tech-

nique. It is one of the machine learning ensemble techniques that improve classification 

performance by making weak leaders into strong leaders. On the other hand, the Bagging 

tree is learned in a parallel track, while Boosting tree classification is performed sequen-

tially. Once the learning is completed, the weights of the network are measured according 

to the results where the weights assigned affect the prediction outcome of the next predic-

tive model [40]. Figure S2 shows the process and technique of the Boosting Tree classifier. 

The principle of the boosting tree can be expressed by the following equation: 

f(x) = ∑αt

T

t=1

ht(x) (4) 

where T is the number of classifiers, αt is the calculated weight, and ht(x) is the output 

of the weak classifier t. 

Figure S2. An example of Boosting Tree classifier. Here, the classification is performed in a sequential direction. 



  

2.5. Dual-Channel BiLSTM 

Long Short-Term Memory Network (LSTM) [41,42] is known as a groundbreaking 

model for the artificial recurrent neural network (RNN). It is used in the field of DL. RNN 

is an optimized model for dealing with sequential, listed data, and is used in various fields 

such as speech recognition, language modeling, etc [43, 44]. There are long-term depend-

ency problems with RNN and therefore LSTM is proposed as a way to address these prob-

lems. LSTM consists of a memory cell, input gate, output gate, and forget gate, and the 

key idea is to open and close the gate for a long or short period. Figure S3 shows the 

structure of the LSTM cell and illustrates the basic operations of the gates [45]. 

Figure S3. The operation and structure of LSTM cell. Reproduced from Olah [45]. 

The LSTM network has different steps to identify information during the learning 

process. The sigmoid function is used in the network as the gating function. In the first 

step, the sigmoid function is used in the forget gate layer to decide what information 

should be ignored from the cell state 𝐶𝑡−1. It takes the information from 𝑥𝑡 at time 𝑡 and 

ℎ𝑡−1 at time 𝑡 − 1 and outputs a value between 0 (i.e., remove information) and 1 (i.e., 

keep information). The equation for the forget gate can be expressed by: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5) 

where 𝑥𝑡 is the current input series or features, ℎ𝑡−1 is the last LSTM unit, 𝑓𝑡, is the for-

get gate, 𝜎 is the sigmoid function of the forget gate and 𝑊𝑓 and 𝑏𝑓 are the weight ma-

trices and bias, respectively, of the forget gate. 

In the second step, the sigmoid function is used in the input layer to decide what new 

information should be stored in the cell state and to update the cell state. Here, a tanh 

function is also used to create a vector of new candidate values, �̃�𝑡, from the old cell state. 

Next, to update the new cell state, the values of sigmoid and tanh layers are combined. 

The equation for the input and tanh layers can be expressed by:   

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (6) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (7) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (8) 

where 𝑖𝑡 is the input gate, 𝜎 is the sigmoid function of the input gate, 𝑊 and 𝑏 are the 

weight matrices and bias, respectively, of the cell state, and 𝐶𝑡 is the new cell state. 



  

Finally, the sigmoid layer decides what should be the output and which parts of the 

cell state are going to be output values. Then, cell state is added through tanh to get the 

values between -1 and 1 and multiply it by the output of the sigmoid gate. Here, the equa-

tion for the output gate and values can be expressed by: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (9) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑖) (10) 

where 𝑜𝑡 is the output gate, 𝑊𝑜 and 𝑏𝑜 are the weight matrices and bias, respectively, 

of the output gate, 𝜎 is the sigmoid function of the output gate, and ℎ𝑡 is the output 

values. 

3. Figures



  

Figure S4. Comparative analysis graphs of four different evaluation metrics that show the results of binary classification 

obtained using different AI models. (a) The performance of internal test set (benign vs. malignant). (b) The performance 

of the internal test set (grade 3 vs. grade 5). (c) The performance of the external test set (benign vs. malignant). SVM: 

support vector machine, LR: logistic regression, and DC-BiLSTM: dual-channel bidirectional long short term memory. 


