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Simple Summary: Neuroendocrine neoplasms are highly heterogeneous tumors in terms of primary
origin, molecular landscape, clinical presentation and behavior. To date, several drugs have been
approved and many ongoing trials are testing new agents or new combinations. In this work we
aim to provide a comprehensive review of approved agents and promising novel drugs in clinical
development for the treatment of neuroendocrine neoplasms. Our manuscript could be a useful
review and guidance for neuroendocrine neoplasms-dedicated clinicians.

Abstract: Neuroendocrine tumors (NETs) are a heterogeneous family of neoplasms of increasing
incidence and high prevalence due to their relatively indolent nature. Their wide anatomic distribu-
tion and their characteristic ability to secrete hormonally active substances pose unique challenges
for clinical management. They are also characterized by the common expression of somatostatin
receptors, a target that has been extremely useful for diagnosis and treatment (i.e., somatostatin
analogues (SSAs) and peptide-receptor radionuclide therapy (PRRT)). Chemotherapy is of limited use
for NETs of non-pancreatic origin, and the only approved targeted agents for advanced progressive
NETs are sunitinib for those of pancreatic origin, and everolimus for lung, gastrointestinal and
pancreatic primaries. Despite recent therapeutic achievements, thus, systemic treatment options
remain limited. In this review we will discuss the state-of-the-art targeted therapies in the field of
NETs, and also future perspectives of novel therapeutic drugs or strategies in clinical development,
including recently presented results from randomized trials of yet unapproved antiangiogenic agents
(i.e., pazopanib, surufatinib and axitinib), PRRT including both approved radiopharmaceuticals
(177Lu-Oxodotreotide) and others in development (177Lu-Edotreotide, 177Lu-Satoreotide Tetraxe-
tan), immunotherapy and other innovative targeted strategies (antibody-drug conjugates, bites, . . . )
that shall soon improve the landscape of personalized treatment options in NET patients.

Keywords: neuroendocrine tumors; targeted therapy; personalized treatment; novel agents

1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous family of tumors that orig-
inate from the diffuse neuroendocrine system. Although traditionally considered rare
tumors, their incidence has substantially increased over the last decades, reaching 6.98
new cases/100,000 inhabitants/year [1–3], and their prevalence is high due to their rela-
tively indolent nature [1]. NENs are classified according to the World Health Organization
(WHO) classification, based on tumor differentiation and proliferation rate. Approximately
80% of all NENs are well-differentiated tumors (NETs), the majority of which present
a low proliferation rate (mitotic count < 20 HPFs and/or Ki-67 index < 20%) and are
classified as G1 or G2 NETs. A small subset of NETs may however have a proliferation
index greater than 20% (G3 NETs), and this entity has been recently recognized in the 5th
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edition of the WHO Classification of Tumors of the Digestive System published in August
2019 [4]. This group biologically resembles low grade tumors, although it is associated
with a more aggressive clinical behavior. NETs can be classified as functioning (~20%) or
non-functioning depending on their capacity to produce hormones (i.e., insulin, glucagon,
gastrin, vasoactive intestinal peptide or somatostatin), peptides and neurotransmitters
(i.e., serotonin). Excessive production of these hormones or peptides may be associated
with specific clinical syndromes and is a distinctive feature of NETs. Poorly differentiated
neuroendocrine carcinomas (NECs) substantially differ from NETs in terms of biologic
aggressiveness, response to treatments and prognosis [5,6]. NECs have always a high
proliferative index (Ki-67 > 20% or G3), less frequently express somatostatin receptors,
rarely produce a hormonal syndrome and have a very poor overall survival. The ma-
jority of NENs are originated in the gastroenteropancreatic (GEP) or bronchopulmonary
tracts, although they may develop in any organ. This high complexity and clinical het-
erogeneity, including their wide anatomic distribution and their characteristic ability to
secrete hormonally active substances, pose unique challenges for clinical management.
The treatment strategy widely varies according to a number of factors, such as primary
tumor site, histological features (tumor differentiation, proliferation rate, expression of
somatostatin receptors (SSTR), clinical presentation (tumor- or hormone-related symptoms,
performance status, comorbidities) and disease stage. A multidisciplinary tumor board
evaluation in NET-specialized centers is thus highly encouraged in order to define an
optimal personalized strategy.

Surgery is the only curative approach for NENs. However, surgical excision is not
always possible as 50–60% of patients present metastatic disease at diagnosis [7,8]. In
patients with locally advanced inoperable or metastatic NENs, treatment goals include
tumor growth control and symptom relief. In this context, systemic therapy is the standard
of care, although cytoreductive surgery and regional approaches may also be considered.
Local cytoreductive/ablative therapies are most commonly used in patients with liver-
dominant disease, and include radiofrequency ablation, bland embolization or chemo- or
radio-embolization with Yttrium-90-labeled microspheres. Systemic treatment options
have progressively increased over the last decades, and comprise biotherapy, targeted
agents, chemotherapy regimens and radiopharmaceuticals. The characteristic and common
expression of SSTR on NET cells surface has been extremely useful for diagnostic imaging
with111In-Octreotide scintigraphy, or with the more sensitive 68Ga-based PET/CT and
also for treatment (i.e., somatostatin analogues (SSAs) and peptide-receptor radionuclide
therapy (PRRT)). Biotherapy with SSAs has traditionally been considered the mainstay of
systemic therapy for low grade NETs, given their efficacy to control hormonal production
excess and because of their proven antiproliferative activity [9,10]. An increasing body of
evidence has also demonstrated the effectiveness and safety of PRRT for SSTR-positive
NETs [11–13]. Beyond SSTR-targeted therapy, only two other targeted agents have been
approved to date for NETs: the antiangiogenic sunitinib for those of pancreatic origin [14],
and everolimus for lung, gastroenteropancreatic (GEP) NETs or NETs of unknown ori-
gin [15,16]. Chemotherapy is the standard of care for aggressive, poorly differentiated
NECs, but its use in NETs is limited to those of pancreatic origin or rapidly progressive
extra-pancreatic NETs who have failed other more effective therapeutic options [17,18].

In summary, despite recent therapeutic achievements, systemic treatment options re-
main limited and a consensus on the optimal treatment sequence in patients with advanced
disease is still lacking.

In this manuscript we will review the state-of-the-art targeted therapies in the field of
NENs and discuss future perspectives of novel therapeutic drugs or strategies in clinical
development, including recently presented results from randomized trials of yet unap-
proved antiangiogenic agents (i.e., pazopanib, surufatinib and axitinib), PRRT including
both approved radiopharmaceuticals (177Lu-Oxodotreotide) and others in development
(177Lu-Edotreotide, Satoreotide Tetraxetan), immunotherapy and other innovative targeted
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strategies (antibody-drug conjugates) that shall soon improve the landscape of personalized
treatment options in NET patients.

2. mTOR Pathway: Relevance in NETs
2.1. Rationale for Targeting the mTOR Pathway

The mammalian target of rapamycin (mTOR) is an intracellular highly conserved ser-
ine/threonine kinase that acts as the catalytic subunit of two structurally and functionally
distinct multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2, that play key
roles in regulating physiological anabolic and catabolic processes in response to external
cues. mTOR is the most important downstream component of the phosphatidylinositol-3-
kinase (PI3K)/AKT signaling pathway. This network regulates essential cellular functions
such as cellular proliferation, metabolism and apoptosis [19–22]. The PI3K/AKT/mTOR
signaling pathway plays a crucial role in controlling cancer cell-cycle and growth [23].
Mutations of mTOR signaling components provide cancer cells with a selective growth
advantage with respect to normal cells [24–26]. This pathway is dysregulated in a broad
variety of human tumors, including NETs [27–42]. Sequencing studies of pancreatic (P-
NET) and small intestinal (SI-NET) NETs showed that 14 and 33% of cases, respectively,
harbored mutations in at least one gene encoding for mTOR pathway components [43–48].
High expression of mTOR or its activated downstream targets p-RPS6KB1, p-RPS6 or
p-EIF4EBP1 was associated with higher tumor proliferative capacity, a more aggressive
clinical behavior and a shorter survival [49–51]. Based on this biological rationale, the anti-
proliferative effect of mTOR pathway inhibition was identified as a promising therapeutic
strategy in cancer and in NETs [52,53]. Rapamycin was discovered as a potent antifungal
agent, but it also exhibited immunosuppressive properties, which subsequently led to
its clinical development to prevent rejection of solid-organ transplantation. Rapamycin
binds to the intracellular receptor, FKBP12, thus interacting with mTORC1 and preventing
the downstream pathway’s activation [54]. However, rapamycin is an oral drug with
low bioavailability. In addition to rapamycin, several rapamycin analogs (“rapalogues”)
have been developed such as CCI779 (temsirolimus) and RAD001 (everolimus), among
others. Rapalogs have a similar mechanism of action, but improved pharmacodynamic and
pharmacokinetic characteristics. These compounds have demonstrated antiproliferative
activity in vitro and in vivo, both in NET cell lines (BON-1) and preclinical models [55,56].

2.2. mTOR Inhibitors: Everolimus and Beyond

The efficacy and safety of mTOR inhibitors has been demonstrated in different tumors,
including lymphomas, breast and renal cell carcinomas (RCC) [57,58]. A robust antitumor
activity of everolimus has also been consistently demonstrated in the phase II/III RADIANT
trials across a broad spectrum of NETs including those arising from the pancreas, lung
and gastrointestinaltract [15,16,59–61]. The study designs and results of these trials are
summarized in Table 1. The most frequent adverse events (AEs) observed with everolimus
were generally of grade 1 or 2, and included stomatitis, diarrhea, fatigue, infections, rash
and peripheral oedema. Most everolimus-related AEs were manageable through dose
interruption and/or modification without altering the duration of treatment. Based on
these results, the Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) approved everolimus for the treatment of unresectable or metastatic, non-
functional G1-G2 NETs of GI or lung origin or NETs of pancreatic origin in adults with
progressive disease. Notably, clinical trials specifically exploring everolimus in G3 NETs
are currently ongoing (ClinicalTrials.gov Identifier: NCT02113800, NCT02248012).
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Table 1. Randomized phase II/III trials of mTOR inhibitors in neuroendocrine tumors (NETs).

Study Design Population n Drugs ORR p
Value PFS HR p Value OS HR p

Value

Pavel et al.,
2011

RADIANT-2
[60]

Phase 3
random-

ized
Functioning

NETs 420
Everolimus–
Octreotide
Placebo–

Octreotide

3%
2% NS 16.4 m

11.3 m 0.77 0.026 71% (18 m)
74% (18 m) 1.22 NS

Yao et al., 2011
RADIANT-3

[15]

Phase 3
random-

ized
Pancreatic

NETs 410 Everolimus
Placebo

5%
2% NS 11.0 m

4.6 m 0.34 <0.001 NR 1.05 NS

Yao et al., 2016
RADIANT-4

[16]

Phase 3
random-

ized

Lung/Intestinal
NETs (non-

functioning)
302 Everolimus

Placebo
2%
1% NS 11.0 m

3.9 m 0.48 <0.001 NR
NR 0.64 0.037

Kulke et al.,
2019

COOPERATE-2
[62]

Phase 2
random-

ized
Pancreatic

NETs 160
Everolimus–
Pasireotide
Everolimus

20%
6% NA 16.8 m

16.6 m 0.99 NS NR
NR 0.93 NS

Ferolla et al.,
2017 LUNA

trial [63]

Phase 2
random-

ized

Lung or
thymic NETs 124

Everolimus–
Pasireotide
Everolimus
Pasireotide

2.4%
2.4%
2.4%

NA
11.8 m
12.5 m
8.5 m

NA NA NA NA NA

Salazar et al.,
2018

NCT01628913
[64]

Phase 2
random-

ized
Pancreatic

NETs 62
Dactolisib
(BEZ235)

Everolimus
9.7%
9.7% NS 8.2 m

10.8 m 1.53 NA 96.6% (6 m)
90.3% (6 m) NA NS

Kulke et al.,
2010 CALGB

80701 [65]

Phase 2
random-

ized
Pancreatic

NETs 150
Everolimus–
Bevacizumab
Everolimus

31%
12% 0.005 16.7 m

14.0 m 0.80 0.12 36.7 m
35.0 m 0.72 NS

Abbreviations: PFS: progression free survival, OS: overall survival, ORR: overall response rate, CR: complete response, PR: partial response,
SD: stable disease, LAR: long-acting repeatable, NS: not significant, NR: not reached, NA: not available.

2.3. Everolimus-Based Combinations

Mechanisms of innate and acquired resistance to mTOR inhibition include the acti-
vation of several compensatory signaling pathways, upstream activation of PI3K/AKT
signaling, the occurrence of FKBP12 or mTOR mutations, epigenetic alterations, compen-
satory metabolism rewiring or the stimulation of autophagy [66,67]. To try to overcome
resistance, different everolimus-based combinations have been explored, particularly with
SSAs and antiangiogenic agents [62,63,65,68–73]. Randomized trials do not suggest a clear
benefit in terms of efficacy for these combinations (Table 1), whereas some safety concerns
were raised for some of these combinations.

Currently, several trials are assessing the combination of everolimus with other treat-
ment strategies such as PRRT, chemotherapy or other targeted agents, such as the phase I-II
study testing the combination with Lu-177-DOTATATE therapy in GEP or lung NETs (Clin-
icalTrials.gov Identifier: NCT03629847), the phase II trial evaluating the association with
LEE011 (Ribociclib) in advanced foregut NETs (ClinicalTrials.gov Identifier: NCT03070301)
and the phase I-II study testing the combination with temozolomide in advanced P-NETs
(ClinicalTrials.gov Identifier: NCT00576680).

2.4. Other mTOR inhibitors: Temsirolimus and Sapanisertib

Temsirolimus is an intravenous mTOR inhibitor that has been investigated in few
phase II clinical trials enrolling NET patients. As a single agent it showed limited activity
(objective response rate (ORR) of 5.6%) [74], but results in combination with bevacizumab
were encouraging [75], with an ORR of 41%, a median progression-free survival (PFS) of
13.2 and a median overall survival (OS) of 34 months. The safety profile was manageable.
Randomized trials assessing the addition of bevacizumab to everolimus or to octreotide de-
pot, however, failed to demonstrate a clear benefit [65], and the temsirolimus–bevacizumab
combination was not further developed in this setting.

Dactolisib (BEZ235) is an oral dual PI3K/mTOR inhibitor that selectively inhibits
class I PI3K (p110α, -β, -δ and -γ), mTORC1 and mTORC2 by reversibly binding to the
ATP-binding sites of kinases and inhibiting their catalytic activity. Notwithstanding, it did
not demonstrate greater efficacy as compared to mTORC1 inhibition alone by everolimus
in patients with P-NETs and was significantly more toxic [64]. Clinical development of this
agent was halted.

Sapanisertib (INK128) is a second-generation ATP-competitive mTOR kinase inhibitor
that potently suppresses both mTORC1 and mTORC2 [76], overcoming resistance to
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everolimus induced by phosphorylation of 4EBP1 and AKT [77]. Preclinical studies have
shown sapasertib has antitumor activity in everolimus-resistant P-NET patient-derived
xenograft models [78]. Clinical trials are currently evaluating Sapanisertib efficacy and
safety in different clinical settings, including rapalog-resistant advanced P-NETs (Clinical-
Trials.gov Identifier: NCT02893930).

3. Role of Angiogenesis in NETs
3.1. Rationale for Targeting Angiogenesis

Angiogenesis is one of the hallmarks of cancer as it plays a key role in providing
oxygen and nutrients for tumor cell growth and progression [79]. Targeting angiogenesis
has been successfully explored as a therapeutic strategy in a wide spectrum of solid
tumors, including NETs. Angiogenesis is a highly controlled process tightly regulated by a
complex equilibrium of pro- and anti-angiogenic factors secreted by tumor cells and by cells
of the tumor microenvironment (pericytes, mesenchymal, endothelial or immune cells).
Among these, the vascular endothelial growth factor (VEGF) is particularly relevant. VEGF
stimulates both the proliferation and migration of endothelial cells, enhances vascular
permeability, vasodilatation and the recruitment of inflammatory cells and is essential for
revascularization during tumor formation [80]. In mammals, five members of the VEGF
family have been identified, VEGF-A being the most potent stimulator of angiogenesis [81].
Downstream signaling of VEGF in tumor cells is mediated by a family of receptor tyrosine
kinases, including VEGFR-1,2,3 [82]. The production of VEGF is regulated by local oxygen
availability through the hypoxia-inducible factor-1 (HIF-1) in a dynamic process that
results in the transcription of several genes involved in proliferation, angiogenesis, survival
and apoptosis [83,84].

Multiple approaches have been developed to target angiogenesis over the last decades
and several antiangiogenic drugs have been approved as oncological therapies [85,86].
Notably, the rich vascularization is a typical feature of well-differentiated NETs. This
characteristic is associated with the overexpression of both VEGF ligands and their recep-
tors [87] in 60–84% of cases [88]. NETs also show a high expression of platelet-derived
growth factor receptors (PDGFRs) α and β, as well as stem-cell factor receptors (c-kit).
These factors have also been involved in NET development and progression. Several lines
of evidence show that the dense vascular network associated with low-grade NETs are
more likely to be a marker of differentiation than a marker of aggressiveness, as opposed
to what is observed in other epithelial tumors. This phenomenon represents the so-called
’neuroendocrine paradox’, meaning that vascularization is inversely related to the aggres-
siveness of the disease. However, other studies observed that VEGF over-expression was
correlated with a worse clinical outcome in patients with well-differentiated NETs [89].

Based on this strong rationale, an increasing number of clinical trials evaluating the
activity of different agents with antiangiogenic properties have been conducted in advanced
NETs. The results of the most relevant phase II-III trials are summarized in Table 2.
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Table 2. Randomized phase II-III trials of antiangiogenic agents in NETs.

Study Design Population n Drugs ORR p PFS HR p OS HR p

Raymond et al.,
2011

SUN1111 [14]
Phase 3

randomized
Pancreatic

NETs 171 Sunitinib
Placebo

9.3%
0% <0.007 11.4 m

5.5 m 0.42 <0.001 30.5 m
25.4 m 0.74 NS

Xu et al., 2020
SANET-P [90]

Phase 3
randomized

Pancreatic
NETs 195 Surufatinib

Placebo NA NA NA NA NA NA NA NA

Xu et al., 2020
SANET-EP [91]

Phase 3
randomized

Extra-
pancreatic

NET
198 Surufatinib

Placebo
10.3%

0% NA 9.2 m
3.8 m 0.33 <0.0001 NA NA NA

Garcia-Carbonero
et al., 2020

AXINET [92]
Phase 2–3

randomized
Extra-

pancreatic
NET

256
Axitinib–

Octreotide
Placebo–

Octreotide

17.5%
3.8% 0.0004 17.2 m

12.3 m 0.82 NS NA NA NA

Bergsland et al.,
2019 A021202 [93]

Phase 2
randomized

Extra-
pancreatic

NET
171 Pazopanib

Placebo
2.1%
0% NA 11.6 m

8.5 m 0.53 0.0005 41.3 m
42.4 m 1.13 NS

Yao et al., 2017
SWOG S0518 [94]

Phase 3
randomized

NETs
(all sites) 427

Bevacizumab–
Octreotide

Interferon-α-
2b–

Octreotide

13%
4% 0.008 16.6 m

15.4 m 0.93 NS 35.2 m
NR 1.16 NS

Kulke et al., 2015
CALGB 80701 [95]

Phase 2
randomized

Pancreatic
NETs 150

Everolimus–
Bevacizumab
Everolimus

31%
12% 0.005 16.7 m

14.0 m 0.80 0.12 36.7 m
35.0 m 0.72 NS

Abbreviations: CR: complete response, LAR: long-acting repeatable, NA: not available, NR: not reached, NS: not significant, PFS:
progression-free survival, ORR: overall response rate, OS: overall survival, PR: partial response, SD: stable disease.

3.2. Angiogenesis Inhibitors Assessed in Phase III Randomized Trials
3.2.1. Sunitinib

Sunitinib is a multi-tyrosine kinase inhibitor (TKI) that targets VEGFR, PDGFR, stem-
cell factor receptor, glial cell line-derived neurotrophic factor receptor (GDNF) and FMS-like
tyrosine kinase-3 [96]. To date, this compound has been approved for the treatment of
patients with advanced gastrointestinal stromal tumors (GIST), RCC and P-NETs [14,97,98].

The EMA in 2010 and the FDA in 2011 approved sunitinib for advanced progressive
P-NETs based on the results of an international investigator-initiated randomized doble-
blind placebo-controlled phase III study that demonstrated a significant improvement in
PFS (11.4 vs. 5.5 months, HR 0.42, p < 0.001) and OS (HR 0.41, p = 0.02) for sunitinib-treated
patients as compared to those treated with placebo [14]. Upon study closure, 69% of
placebo-treated patients crossed over to sunitinib, which likely diluted the early impact
observed on OS. With five additional years of follow-up, median OS was 38.6 months for
sunitinib and 29.1 months for placebo (HR: 0.73; p = 0.094) [99]. The most frequent adverse
events in the sunitinib group were diarrhea, nausea, vomiting, asthenia and fatigue. An
updated safety analysis of sunitinib- and placebo-treated patients from this study that
continued to receive sunitinib in two open-label extension studies confirmed sunitinib was
well-tolerated in the long term and the safety profile was consistent with that reported in
the original pivotal Phase III study [100].

3.2.2. Surufatinib

Surufatinib is an orally bioavailable, small molecule inhibitor that targets VEGFR-1,2,3,
fibroblast growth factor receptor type 1 (FGFR1) and colony-stimulating factor-1 receptor
(CSF-1R) [101]. Activation of the FGFR pathway contributes to both intrinsic and acquired
resistance to the VEGF blockade. Both FGF and CSF-1 signaling are involved in immune
evasion through the recruitment and maintenance of myeloid-derived suppressor cells and
tumor-associated macrophages to the tumor microenvironment. The inhibition of VEGFRs
and FGFR1 may lead to a more potent angiogenesis blockade, that, together with the
simultaneous depletion of peritumoral immunosuppressive cells, might enhance antitumor
activity. A multicenter, single-arm, open-label phase Ib/II trial, including 42 P-NETs
and 39 extra-pancreatic NETs, showed encouraging antitumor activity and manageable
toxicity [102]. Based on these results, two phase III studies were undertaken. First, the
SANET-ep study (NCT02588170) included 198 patients with extra-pancreatic NETs that
were randomized 2:1 to receive surufatinib 300 mg daily (n = 129) or placebo (n = 69) [91].
The most common primary tumor site was the rectum (27% of patients), followed by
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the lung, thymus, stomach and small bowel (8%). The median PFS per investigator
assessment was 9.2 months for patients treated with surufatinib, as compared to 3.8 months
for patients in the placebo group (HR 0.33; p < 0.0001). The study was terminated early
as it met the predefined criteria for early discontinuation at the interim analysis. The
efficacy of surufatinib was seen across all subgroups and further supported by significant
improvements in secondary efficacy endpoints including ORR (10% vs. 0%, p = 0.0051),
DCR and duration of response. Efficacy was confirmed by the Blinded Independent Image
Review Committee (“BIIRC”) assessment, although the magnitude of the effect on PFS
seemed somewhat lower (HR 0.66, p = 0.037). OS data was not mature, as only 21% of
patients treated with surufatinib and 14% of those treated with placebo had died at the
time of interim analysis. Surufatinib was generally well-tolerated. The most common
treatment-related grade >3 AEs were hypertension (36 vs. 13%) and proteinuria (19 vs. 0%).
The second pivotal phase III clinical trial was the SANET-p study, that randomized (2:1)
264 patients with advanced P-NETs to receive surufatinib or placebo [90].

As the SANET-ep trial, this study was terminated early as it met the pre-specified early
stopping criteria at interim analysis. The median investigator-assessed PFS was 10.9 versus
3.7 months for surufatinib- and placebo-treated patients, respectively (HR 0.49, p = 0.0011).
ORR was also significantly greater in patients treated with surufatinib (19%) compared
to patients treated with placebo (2%) (p = 0.002). Overall responses and PFS by BIIRC
assessment were similar to those reported by the investigators. The most common grade
3 or worse treatment-related AEs were hypertension (38 vs. 7%), proteinuria (10 vs. 2%)
and hypertriglyceridaemia (7% vs. none). Treatment-related serious AEs were reported
in 22 (surufatinib) vs. 7% (placebo) of patients. QoL assessments were similar in both
study arms except for diarrhoea domain scores, that were worse for surufatinib-treated
patients. Based on these pivotal studies, that were fully conducted in Chinese populations,
the National Medical Products Administration (NMPA) very recently approved surufatinib
for the treatment of advanced non-pancreatic NETs and it will likely be approved soon for
pancreatic primaries. A phase I US trial showed similar surufatinib pharmacokinetics in
Caucasian patients, and further supportive studies are planned to be conducted in western
countries to pursue FDA and EMA approval.

3.2.3. Axitinib

Axitinib is a potent second-generation TKI that selectively inhibits VEGFR-1,2,3
and has demonstrated activity against other vascular-dependent solid tumors such as
RCC [103,104]. An open-label, phase II trial that assessed axitinib in 30 patients with extra-
pancreatic NETs reported a median PFS of 26.7 months and a median OS of 45.3 months.
The best objective response in this trial was partial response (PR) in 1/30 (3%) and stable
disease (SD) in 21/30 patients (70%). Hypertension was developed in a high proportion of
patients (90%), being of grade 3/4 in 19 patients (63%) and leading to treatment discon-
tinuation in six (20%) [105]. A phase II/III randomized double-blind study, the AXINET
trial, was conducted by the Spanish Cooperative Group of Neuroendocrine and Endocrine
Tumors (GETNE) to evaluate the efficacy of axitinib in combination with octreotide long-
acting repeatable (LAR) versus placebo and octreotide LAR, in 256 patients with advanced
G1-G2 NETs of non-pancreatic origin (NCT01744249) [92].

The ORR was significantly greater in the axitinib arm (17.5 vs. 3.8% for axitinib-
and placebo -treated patients, respectively, p = 0.0004). The median PFS per investigator
assessment was 17.2 months for the axitinib–octreotide arm versus 12.3 months for the
placebo–octreotide arm, but this difference did not reach statistical significance (HR 0.816,
p = 0.169). Hypertension was reported in 50% of patients (21% of grade 3–4), Other grade
3–4 AEs more commonly observed in axitinib-treated patients were diarrhea (14 vs. 2%)
and fatigue (9 vs. 3%). Independent blinded radiological assessment of PFS is currently
ongoing and expected to be reported in the very near future.
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3.2.4. Cabozantinib

Cabozantinib is an oral small molecule multikinase inhibitor that targets, among
others, VEGFR, MET and RET. This drug was assessed in a two-cohort phase II trial that
included 20 P-NETs and 41 extra-pancreatic NETs (NCT03375320) [106]. Treatment with
cabozantinib was associated with objective tumor responses (ORR of 15% in both cohorts)
and encouraging PFS (22 and 31 months in patients with advanced NETs of pancreatic
and extra-pancreatic origin). Grade 3–4 toxicity included hypertension (13%), hypophos-
phatemia (11%), diarrhea (10%), lymphopenia (7%), thrombocytopenia (5%), fatigue (5%)
and increased lipase or amylase (8%). A phase III double-blind randomized trial (CABI-
NET) is currently testing cabozantinib versus placebo in advanced NETs pretreated with at
least one FDA-approved drug (except somatostatin analogues) (NCT03375320). Results
shall be available in the upcoming years and are awaited with great interest.

3.2.5. Bevacizumab

Bevacizumab is a humanized anti-VEGF monoclonal antibody that has shown relevant
anti-tumor activity in a variety of solid neoplasms. A small randomized phase II trial
suggested this drug was also active in GEP-NETs [107]. In this study, 44 patients on
stable doses of somatostatin analogues were randomly assigned to receive single-agent
bevacizumab or PEG interferon alfa-2b (IFN- α-2b) for up to 18 weeks. Thereafter, or
at disease progression, whichever occurred first, patients were allowed to receive both
drugs in combination. Patients treated with bevacizumab achieved a higher response rate
(18 vs. 0%) and PFS rate at 18 weeks (95 vs. 68%), and a significant decrease in tumor
blood flow assessed by functional CT scans that was not observed in INF-treated patients.
Based on these encouraging results, a large phase III trial (SWOG S0518) was designed
to compare octreotide LAR and bevacizumab or IFN-α-2b in 427 patients with advanced
G1-2 carcinoids [94]. ORR were significantly greater for bevacizumab-treated patients,
although modest in both study arms (12 vs. 4%, p = 0.008). The median PFS by central
review was not significantly different among study arms (16.6 vs. 15.4 months in the
bevacizumab and IFN arms, respectively, HR 0.93; p = 0.55). The time to treatment failure
was longer with bevacizumab (HR 0.72; p = 0.003). This may have been due to differences
in the toxicity profiles of study drugs. Bevacizumab’s most common side effects were
hypertension and proteinuria, easily manageable, whereas over 25% of interferon-treated
patients experienced grade 3–4 fatigue, which likely justified the higher proportion of
patients that withdrew consent in this study arm. The authors concluded that both agents
had similar antitumor activity in patients with advanced NETs, although it is unlikely that
any of these agents will ever be approved in this context by regulatory agencies.

The results of single-arm studies exploring the combination of bevacizumab with
mTOR inhibitors suggested a synergistic effect (ORRs of 21% for bevacizumab and everolim-
us, and of 41% for bevacizumab and temsirolimus) [72,108]. The randomized phase
2 CALGB 80701 trial confirmed the ORR was significantly greater for the everolimus–
bevacizumab combination versus single-agent everolimus (31 vs. 12%, p = 0.005), although
this only translated into a modest increase in PFS (16.7 vs. 14.0 months, p = 0.12) [109].

3.3. Angiogenesis Inhibitors in Earlier Stages of Clinical Development
3.3.1. Sorafenib

Sorafenib is an orally administered TKI that targets the RAF/MEK signaling pathway
as well as VEGFR, PDGFRs, FLT3 and c-KIT. It was approved for the treatment of advanced
hepatocellular carcinoma and RCC [110,111]. Sorafenib was also tested in NETs. A Phase II
trial assessed sorafenib in 93 patients with advanced P-NETs and carcinoid tumors [112].
An ORR of 10% was observed in both groups. PFS rates at 6 months were 40% for carcinoid
tumors and 61% for P-NETs. Grade 3–4 toxicity occurred in 43% of patients, with skin
toxicity (20%), diarrhea (7%) and fatigue (9%) being the most commonly encountered.
Further clinical development in prospective randomized trials was not pursued for this
drug in NETs, although the antitumor activity of this agent did not seem to be substantially
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different from that reported with other targeted agents in this context. Sorafenib was also
explored in combination with other drugs such as everolimus [73] or bevacizumab [113],
with no clear benefit in terms of efficacy and significantly increased toxicity.

3.3.2. Pazopanib

Pazopanib is another TKI inhibiting VEGFRs, PDGFRs and c-Kit [114] that is approved
for the treatment of RCC and soft tissue sarcoma [115,116]. Single-arm phase II studies
have explored pazopanib in NETs of different primary sites, with ORRs of 10–22% and
a median PFS of 9–14 months [117,118]. Interestingly, pazopanib also showed activity in
patients pre-treated with other targeted therapies and in G3 NETs (ORR 23%) [119]. The
results of a multicenter, randomized, double-blind phase II trial (A021202) comparing
pazopanib to placebo in advanced extra-pancreatic NETs were presented at the ASCO
Annual Meeting in 2019 [93]. This study enrolled 171 patients, 66% of them with small
bowel primary tumors and 87% receiving concurrent SSA. The median PFS was 11.6 vs.
8.5 months in the pazopanib and placebo arms, respectively (HR = 0.53, p = 0.0005), which
crossed the pre-specified protocol efficacy boundary. Some degree of tumor shrinkage was
achieved in 55 and 31% of pazopanib- and placebo-treated patients, respectively, although
objective responses were only documented in two patients (2%) of the pazopanib arm.
The OS was not significantly different among study arms (median of 41 and 42 months,
HR = 1.13, p = 0.70). Treatment-related grade 3–4 AEs occurred in 61% of patients treated
with pazopanib vs. 21% of patients in the placebo arm. The most common severe side
effects of pazopanib were hypertension (27%) and hypertransaminasemia (9%). QoL
analysis documented that patients treated with pazopanib experienced more symptoms
(diarrhea, appetite loss, dyspnea, fatigue, nausea and vomiting), but the overall QoL was
similar among study arms.

3.3.3. Lenvatinib

Lenvatinib is another TKI that targets VEGFR1-3, FGFR1-4, PDGFRα, c-Kit and
RET [120]. This compound was recently approved for the treatment of radioiodine-
refractory differentiated thyroid cancer and has been also tested in NETs. In the phase
II TALENT clinical trial (GETNE1509), lenvatinib was assessed in two cohorts; the first
included 55 P-NETs, and the second, 56 gastrointestinal NETs (GI-NETs) [121]. For P-NETs,
the ORR by central radiology assessment was 40.4%, the highest ever reported for a TKI
in this setting, with a median PFS of 15.5 months. For GI-NETs, the ORR was 16.3% and
the median PFS 15.4 months. Lenvatinib was administered at a dose of 24 mg qd but
dose reductions/interruptions were required in 88% of patients. The most frequent grade
3–4 AEs were hypertension (22%), fatigue (11%) and diarrhea (11%).

3.3.4. Nintedanib

Nintedanib is a potent oral inhibitor of VEGFR, PDGFR and FGFR that is approved
for the treatment of idiopathic pulmonary fibrosis. An open label phase 2 study was
conducted in 32 patients with extra-pancreatic NETs that were treated with nintedanib and
octreotide LAR [122]. The best response was stable disease in 26 patients (81%) and one
patient achieved a partial response. The median PFS and OS was 11.0 and 32.7 months,
respectively. Nintedanib was well-tolerated and delayed deterioration in quality of life.
Increased serotonin levels were correlated with markers of impaired antitumor immunity.

3.3.5. Aflibercept

Aflibercept is a recombinant fusion protein that consists of portions of the extracellular
VEGFR-1 and -2 domains fused to the Fc portion of human immunoglobulin G1 [123].
It binds to both sides of the VEGF dimer, forming a so-called VEGF-trap, and exhibits
higher affinity for VEGF-A/B but binds to all VEGF isoforms (VEGF-A, B, C and placental
growth factor). Preclinical studies suggested activity of this compound in NENs [124,125].
Recently, a phase II open-label study, enrolling 21 patients with advanced P-NETs, reported



Cancers 2021, 13, 1701 10 of 26

an ORR of 9.5%, a median PFS of 15 months and a median OS of 34 months [126]. The
most frequent treatment-related AEs were hypertension (77% of patients), headache (68%),
mucositis (45%), hoarseness (41%) and proteinuria (32%). Proteinuria led to treatment
discontinuation in five patients and one patient died due to a GI hemorrhage.

4. Somatostatin Receptors and Other Unique Targets in NETs
4.1. Rationale for Targeting SST

The majority of NETs are characterized by the expression of somatostatin receptors
(SSTRs) on the cell membrane, a unique feature of NETs that has been very useful for
diagnosis and therapy. Five different, G-protein-coupled SSTR subtypes (SSTR 1–5) have
been identified. Their natural ligand, somatostatin (SST), is a neuropeptide secreted
in the GI tract and the brain that regulates multiple physiological functions, such as
neurotransmission, GI motility, hormone secretion, cell proliferation and apoptosis and
immune system modulation [127]. The clinical utility of native human somatostatin was
limited by its short half-life, thus SSAs were developed with a prolonged plasma half-life
that facilitated clinical use [128]. The results of randomized phase III trials with SSTR-
targeted agents in NETs are summarized in Table 3.

Table 3. Randomized phase II-III trials of somatostatin receptors (SSTR)-targeted agents in NETs.

Study Design Population n Drug ORR p PFS HR p OS HR p

Rinke et al.,
2009 PROMID

study [9]
Phase 3

randomized
G1 midgut

NETs 85
Octreotide LAR

(30 mg/4 w)
Placebo

2.4%
2.3% NS 14.3 m

6.0 m 0.34 <0.001 84.7 m
83.0 m 0.81 NS

Caplin et al.,
2014

CLARINET
study [10]

Phase 3
randomized

GEP-NETs
(Ki-67 < 10%) 204

Lanreotide ATG
(120 mg/4 w)

Placebo

1.9%
0% NA NR

18.0 m 0.47 0.001 NA NA NA

Wolin et al.,
2015

NCT00690430
[129]

Phase 3
randomized *

Functioning
NETs

(refractory CS)
88

Pasireotide LAR
(60 mg/4 w)

Octreotide LAR
(40/4 w)

2.0%
3.8% NS 11.8 m

6.8 m 0.46 0.045 NA NA NA

Kulke et al.,
2019

COOPERATE-2
trial [62]

Phase 2
randomized

Pancreatic
NETs 160

Everolimus–
Pasireotide
Everolimus

20%6% NA 16.8 m
16.6 m 0.99 NS NRNR 0.93 NS

Ferolla et al.,
2017 LUNA
study [63]

Phase 2
randomized

Lung/thymic
NETs 124

Everolimus–
Pasireotide
Everolimus
Pasireotide

2.4%
2.4%
2.4%

NA
11.8 m
12.5 m
8.5 m

NA NA NA NA NA

Strosberg et al.,
2017 NETTER-1

trial [13]
Phase 3

randomized Midgut NETs 229
177Lu-

Oxodotreotide
Octreotide LAR

(60/4 w)
18%3% 0.001 28.0 m

8.4 m 0.21 <0.001 NA 0.4 0.004

Pavlakis et al.,
2020

CONTROL
NET trial [130]

Phase 2
randomized

Pancreatic
cohort

Midgut cohort
27
45

PRRT–CAPTEM
CAPTEM

PRRT–CAPTEM
PRRT

67%
33%
31%
15%

NS
NS

76% (1y)
67% (1y)

92% (15 m)
90% (15m)

NANA NS
NS NA NA NA

Abbreviations: CR: complete response, CS: carcinoid syndrome, LAR: long-acting repeatable, m: month, mg: milligrams, NA: not available,
NR: not reached, NS: not significant, ORR: overall response rate, OS: overall survival, PFS: progression free survival, PR: partial response,
SD: stable disease, w: week. * early termination at interim analysis for futility (primary endpoint: symptom control).

4.2. Somatostatin Analogues (Octreotide, Lanreotide, Pasireotide)

SSAs are synthetic octapeptides, with a longer half-life than native somatostatin 14
and 28, that enable clinical use. They have a similar STTR binding profile, with high
SSTR2 and moderate SSTR5 affinity. SSAs are very effective drugs for hormonal syndrome
control in functioning tumors [131], and also exert an antiproliferative effect by inducing
cell cycle arrest and apoptosis, and through immunomodulatory effects and angiogenesis
inhibition. Two randomized phase III trials demonstrated the antiproliferative effect of
SSAs in the clinic. First, the PROMID study randomized 85 G1 advanced midgut NETs to
receive octreotide LAR 30 mg every 4 weeks or placebo. A significant PFS improvement
was reported for octreotide-treated patients (14.3 vs. 6 months, HR 0.34, p = 0.000072) [9].
Second, the CLARINET trial enrolled 204 patients with advanced non-functional GEP-
NETs, with a Ki-67 index < 10% and a positive somatostatin-receptor scintigraphy [10].
PFS was significantly increased in patients treated with lanreotide as compared to placebo
(median not reached vs. 18 months, HR = 0.47, p = 0.0002). Neither the PROMID nor



Cancers 2021, 13, 1701 11 of 26

the CLARINET studies demonstrated a benefit in terms of OS, although this endpoint is
difficult to assess in the context of a very indolent disease, with a low rate of events, a high
rate of crossover from the placebo group to SSA therapy and the potential confounding
effect of subsequent lines of therapy upon disease progression.

Pasireotide is a second-generation SSA with greater binding affinity to SSTR1,2,3,5
currently approved for the treatment of Cushing’s syndrome and acromegaly, refractory to
other somatostatin analogues. Due to its wider binding profile, pasireotide was expected
to have greater antisecretory and antiproliferative activity than first-generation SSAs. Early
studies demonstrated that it improved hormonal syndrome control in functioning NETs re-
sistant to first-generation SSAs at conventional doses and also reported objective responses
in some patients [132,133]. A phase 3 double-blind trial was then conducted in patients
with digestive NETs with refractory carcinoid syndrome that were randomly assigned
(1:1) to receive pasireotide LAR (60 mg) or octreotide LAR (40 mg) every 28 days [129].
The primary endpoint was symptom control based on the frequency of flushing episodes
and bowel movements. The study was terminated early at the interim analysis for futility.
Similar proportions of patients receiving pasireotide LAR (20.9%) or octreotide LAR (26.7%)
achieved symptom control at 6 months (OR, 0.73; p = 0.53). Notably, a post hoc analysis
observed a significantly longer PFS for pasireotide-treated patients than for patients treated
with octreotide (11.8 vs. 6.8 months, HR 0.46, p = 0.045). However, the COOPERATE-2
trial failed to demonstrate any PFS benefit of adding pasireotide to everolimus versus
everolimus alone in patients with pancreatic NETs, whereas the combination was more
toxic (grade 3–4 hyperglycemia occurred in 37 versus 11% of patients) [62].

4.3. Radiopharmaceuticals Targeting SST
4.3.1. Agonists (β and α Particle-Emitting Radionuclides) and Intra-Arterial PRRT

SSTR may also be targeted with radiolabeled SSAs such as 177Lu-DOTA-D-Phe-Tyr3-
octreotate (177Lu-Oxodotreotide or 177Lu-DOTATATE) for peptide receptor radionuclide
therapy (PRRT). Radiolabeled SSAs, upon binding to SSTRs on the NET cell surface, are
internalized via endocytosis thereby causing selective DNA damage [134]. Patients with
adequate kidney and bone marrow functions and a life expectancy greater than 3 months
are suitable candidates for PRRT. In clinical practice, the approved indications are limited
to G1-G2 well-differentiated metastatic NETs. NETs with a high and homogeneous SSTR
expression, a low tumor burden and a slow growth rate are probably the optimal candidates
for PRRT. The objectives of treatment are tumor growth control in patients with progressive
disease, as well as symptomatic control in the context of hormone-secretory syndromes or
tumor-related symptoms. Furthermore, recent and encouraging evidence is arising about
the potential role for PRRT in the neoadjuvant setting. In this context, 177Lu-DOTATATE
was reported to convert 15 out of 57 (26.3%) unresectable primary GEP NETs into resectable
ones in a small non-controlled study [135]. Further prospective and randomized studies
are needed to confirm these promising data.

Some contraindications to PRRT should also be noted. These include tumors with sig-
nificant sites of SSTR-negative active disease, confirmed by 18F-FDG-PET if available, and
patients with a poor general condition (Karnofsky performance status < 50%), insufficient
bone marrow reserve (hemoglobin < 5 mmol/L (8 g/dL); platelet count < 75 × 10 9 /L;
white blood cell count < 2 × 10 9 /L) or severe renal (creatinine clearance < 30 mL/min),
liver (otal bilirubin > 3 × ULN; or both albumin < 25 g/L and prothrombin time increased
> 1.5 × ULN) or cardiac (New York Heart Association grade III or IV; moderate to se-
vere right heart valvular disease) impairment. Pregnancy and ongoing lactation are also
contraindications for PRRT.

177Lu-DOTATATE is a medium-energy β-emitter with a maximum energy of 0.5 MeV,
a maximum tissue penetration of 2 mm and a half-life of 6.7 days. Lutetium-177 also
emits low-energy γ-rays, allowing scintigraphy and subsequent dosimetry with the same
therapeutic compound, if needed. The shorter β-range of 177Lu compared to other ra-
dioisotopes such as yttrium (range of 12 mm) improves safety as it spares surrounding
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healthy tissue from radiation [136]. Its relatively long half-life also provides logistic advan-
tages as it facilitates its supply to locations far from reactors. In 2017/2018, the EMA/FDA
approved 177Lu-DOTATATE for use in SSTR-positive G1-2 GEP-NETs, based on results of
the phase III NETTER-1 trial [13]. This study randomized (1:1) 229 patients with midgut
NET, who presented with progressive disease on standard-dose octreotide LAR (20–30 mg
every 4 weeks), to receive 177Lu-DOTATATE at a dose of 7.4 GBq every 8 weeks (four
intravenous infusions) plus octreotide LAR 30 mg every 4 weeks, or high doses of oc-
treotide LAR alone (60 mg every 4 weeks). Notably, the control arm of this study was an
FDA-approved off-label use of high dose octreotide. PRRT demonstrated a pronounced
positive effect on PFS compared to high dose SSAs (28 vs. 8.4 months, HR 0.21, p = 0.001),
with a trend towards an improved overall survival (data still immature) and a favorable
toxicity profile.

Combinations of Lu-177-labeled peptides with Y-90-labeled peptides or with other
agents are being actively investigated and may prove to be of additional therapeutic benefit.
The rationale of combining the two isotopes is based on their different emission profile. Y-90
emits beta particles with a high maximum energy higher than Lu-177 and longer maximum
particle range in tissues (10 mm). It is hypothesized that 90Y may be more adequate to treat
larger tumors while 177Lu, with a shorter beta particle range and a longer half-life, may be
preferable for small tumors. The combination of both isotopes may therefore be considered
for patients with tumors of various sizes and non-homogeneous receptor distribution.
Initial data indicate that combination treatments with the two isotopes of Y-90 and Lu-
177 linked either to DOTATOC or to DOTATATE administered in sequential treatment
cycles or as a cocktail infusion for several cycles are feasible and may improve treatment
outcomes, although they are also more toxic [137–139]. Several clinical studies are also
exploring the combination of 177Lu-DOTATATE with chemotherapy (fluoropyrimidines
alone or with temozolomide) or targeted agents such as everolimus [140–142]. PRRT
is also being assessed, alone or in combination with chemotherapy, in the neoadjuvant
setting with some encouraging results [143]. Promising results have been reported for
the combination of CAPTEM with 177Lu-DOTATATE with ORRs reported in up to 80%
of P-NETs [130]. Based on these encouraging results, the Australasian Gastrointestinal
Trials Group (AGITG) designed the CONTROL NET Study, a Phase II randomized (2:1)
exploratory study evaluating the activity of 177Lu-Octreotate and CAPTEM in two patient
cohorts [144]. The P-NET cohort (n = 27) was randomized (2:1) to receive PRRT and
CAPTEM vs. CAPTEM alone, and the midgut cohort (n = 45) was randomized (2:1) to
receive PRRT and CAPTEM vs. PRRT alone. Recently presented preliminary results
showed numerically higher ORR for the combination in both patient cohorts with no clear
PFS benefit. Longer follow-up is needed to adequately assess whether the increased ORR
is translated or not to a clinically meaningful PFS benefit to justify the increased toxicity
observed with the combination.

Other SSTR radiolabeled agonists, such as 177Lu-Edotreotide or 177Lu-DOTATOC,
have shown promising activity in NETs and are currently being assessed in GEP-NETs
versus everolimus in the phase III COMPETE randomized trial (NCT03049189). Addition-
ally, PRRT with alpha particle-emitting radionuclides (i.e., Bismuth-213 or Actinium-225)
is also being actively developed as alpha particles are characterized by the emission of
high-energy with a short-range, thereby allowing high-precision potent targeted therapy,
avoiding the irradiation of normal surrounding tissues [145]. These isotopes have ex-
tremely high cytotoxic activity at the cellular level and may overcome resistance to PRRT
using beta-emitting isotopes [146,147].

An alternative strategy to improve the absorption and binding of radiopharmaceuti-
cals to NET cells include the intra-arterial (IA) administration of these agents in patients
with liver-dominant disease. Several non-controlled studies have evaluated the administra-
tion of different radiopharmaceuticals through the hepatic artery (e.g., 177Lu-DOTATATE,
90Y-DOTATOC, etc.) with promising results [148–152]. Currently, the randomized LUTIA
study is comparing the tumor-absorbed dose in liver metastases after intra-arterial admin-
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istration of 177Lu-DOTATATE to that achieved after conventional intravenous adminis-
tration [152]. The results of this trial are awaited with great interest and may potentially
lead to the development of a large phase 3 trial to investigate the long-term outcome of
IA PRRT.

In general, PRRT is considered a safe treatment option. However, some short- and
long-term side effects have to be beared in mind and carefully considered. Bone marrow
and renal toxicity are more commonly grade 1 and 2, but they may be transient or persis-
tent [153]. The co-infusion of amino acids during the isotope infusion was demonstrated
to reduce the risk of nephrotoxicity, although it was associated with manageable nausea
and vomiting [154]. Notably, 5–21% of patients who had previously received chemother-
apy developed grade 3 or 4 haematological toxicity [155]. Patients with bone metastases
present a higher risk of myelotoxicity [156]. Finally, acute myeloid leukemia (AML) and
myelodysplastic syndrome (MDS) are severe long-term complications related to PRRT
and were reported to occur in approximately 0.5 and 1.5% of patients, respectively, after
a median of 55 and 28 months following PRRT [11,136,157]. Patients that have received
prior alkylating chemotherapy are at greater risk of developing MDS/acute leukemia
following PRRT [158,159].

4.3.2. Antagonists (177Lu-Satoreotide Tetraxetan, 177Lu-DOTA-LM3)

Radiolabeled SSTR2 antagonists, such as 177Lu-satoreotide tetraxetan, have shown
higher tumor uptake, independent of SSTR activation, and greater tumor-to-organ ratios
than agonists in preclinical models [160]. SSTR antagonists such as 68Ga-DOTA-JR11, [18F]
AlF-NOTA-JR11, 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3, have demonstrated great sen-
sitivity for the detection of NENs, potentially superior to [68Ga]Ga-DOTATATE [161–164].
A phase I study evaluated the efficacy and safety of 177Lu-satoreotide tetraxetan in 20 pa-
tients with advanced SSTR2-positive NETs [165]. Six patients received one cycle and 14
received two. The maximum activity per cycle was 7.4 GBq. However, grade 4 hematologic
toxicity occurred in four of the seven (57%) patients after cycle 2. The study was suspended,
and the protocol modified to limit the cumulative absorbed bone marrow dose to 1 Gy
and to reduce prescribed activity for cycle 2 by 50%. The ORR was 45% (5% CR and 40%
PR) and the median PFS was 21 months. Additional studies are ongoing to determine the
optimal therapeutic dose and schedule [95]. Another study evaluated the safety and ac-
tivity of the 177Lu-labeled somatostatin receptor (SSTR) antagonist DOTA-p-Cl-Phe-cyclo
(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr-NH2 (177Lu-DOTA-LM3) [166].
Fifty-one patients with metastatic NENs received PRRT with 177Lu-DOTA-LM3, with good
tolerance and promising activity.

5. Immunotherapy and Antibody-Drug Conjugates
5.1. Immune Check Point Inhibitors

Several immune check-point inhibitors (ICIs) have been demonstrated over the past
decade to significantly improve the survival of patients with a wide spectrum of tumor
types, including, among others, melanoma [167,168], renal and urothelial cancer [169],
non–small cell lung cancer [170] and tumors with high microsatellite instability (MSI-h) or
high tumor mutational burden (TMB-h) [171]. The immune response is tightly regulated by
a fine balance between stimulating and inhibitory signals that also play a very relevant role
in cancer surveillance and control. The Programmed Death-1 (PD-1) pathway is essential
for maintaining peripheral T cell tolerance and is critical for attenuating autoimmunity and
maintaining T cell homeostasis. However, this pathway also limits anti-tumor immunity.
The PD-1 receptor is expressed on activated T cells and interacts with its ligand (PD-L1),
expressed in tumor and immune cells, to down-regulate T-cell activation and promote
tumor immune escape [172].

The immune landscape is highly heterogeneous in NENs. PDL-1 expression is low
in G1-2 NET, whereas it is often high in G3 NENs [173,174]. Additionally, TMB is also
higher in G3 NENs. Consistent with these observations, encouraging results have been
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reported with ICIs in different settings of high-grade NEN such as small cell lung cancer
(SCLC) [175] or Merkel cell carcinoma (MCC) [176,177]. Indeed, several ICIs (i.e., ate-
zolizumab or durvalumab) have been demonstrated to improve the survival of patients
with extensive-stage SCLC when added to platinum-based chemotherapy and have been
approved to treat SCLC in this context. In 2017, FDA approval was also granted for both
the PD-L1 inhibitor avelumab and the PD-1 inhibitor pembrolizumab for the treatment of
metastatic MCC [176]. Other PD-1 inhibitors such as nivolumab are also effective and are
recommended for the treatment of advanced MCC in current National Comprehensive
Cancer Network guidelines [177].

Many ICIs have also been tested in NENs (Table 4). Results have been rather dis-
appointing in G1-2 NETs [178–180] with the sole exception of spartalizumab (anti-PD1
antibody) in a small cohort of lung carcinoids that reported an ORR of 20% [181]. Single-
agent treatment with ICIs has also been essentially ineffective in G3 NENs [182,183], except
for toripalimab (anti-PD1 antibody), that reported an overall ORR in NENs with Ki-67 >
10% of 20% and greater for PDL1-positive tumors or tumors with high TMB (50 and 75%,
respectively) [184].

More encouraging results have been reported for NEN patients treated in basket trials
with dual CTLA4 and PD1 blockades (ipilimumab and nivolumab), with an ORR of 24–25%;
responses were notably higher in G3 NENs and in those of lung origin [185]. However, the
recently reported results from the DUNE basket trial (durvalumab and ipilimumab) con-
ducted exclusively in GEP NENs have not confirmed these positive results [186]. Several
other studies are currently testing novel treatment strategies with different combinations
of ICIs, angiogenesis inhibitors or chemotherapy in GEP-NETs, lung carcinoids and extra-
pulmonary NECs (Table 4). The results of these trials shall help clarify the role, if any, of
immunotherapy in NENs.

Table 4. Summary of relevant published trials with immune check-point inhibitors in advanced NETs and extrapulmonary
neuroendocrine carcinomas (NECs).

Study Drug Population n Phase Line ORR PFS (Median) OS (Median)

KEYNOTE 028,
2019 [172] Pembrolizumab

PDL1-positive
EP-NETs

PDL1-positive
P-NETs

25
16 Ib 2 + line 12%

6.3%
5.6 m
4.5 m

21.1 m
21.0 m

KEYNOTE 158,
2020 [178] Pembrolizumab NETs (16%

PDL1-positive) 107 II Any line

3.7%
40% TMB-high

(n = 5)
1.3% TMB-low

(n = 80)

4.1 m 24.2 m

NCT02939651,
2020 [182] Pembrolizumab G3 NENs 29 II 2 + line 3.4% 2.2 m 5.1 m

CPDR001E2201,
2019 [181]

Spartalizumab
(PDR001)

Lung-NETs
P-NETs
GI-NETs

GEP NECs

30
33
32
21

II 2 + line
20%
3%
0%
5%

NA NA

NCT03167853,
2020 [18] Toripalimab (JS001) NENs (Ki67 > 10%) 40 Ib 2 + line

43% (PD-L1 ≥ 10%)
8.3% (PD-L1 < 10%)

50% (G3 NENs)
75% (high TMB)

3.8 m
(PD-L1 ≥ 10%)

2.2 m
(PD-L1 < 10%)

9.1 m
(PD-L1 ≥ 10%)

7.2 m
(PD-L1 < 10%)

AVENEC,
2019 [183] Avelumab G3 NENs (except

SCLC) 60 II 2nd line 6.9% 4 m 7 m

NCT03074513,
2020 [180]

Atezolizumab and
bevacizumab

P-NETs
EP-NETs

20
20 II 2 + line 20%

15%
19.6 m
14.9 m NA

DART/SWOG
1609, 2020 [179]

Ipilimumab and
nivolumab

NENs (all)
G3

G1-2

32
18
14

II Any line
25%
45%
0%

4 m 11 m

CA209-538,
2020 [96]

Ipilimumab and
nivolumab

NENs (all)
G3

lung NETs

29
13
9

II Any line
24%
31%
33%

4.8 m 14.8 m

DUNE Trial
2020 [186]

Durvalumab and
tremelimumab

Lung NETs
GI NETs
P-NETs

GEP/unknown NECs

27
31
32
33

II 2 + line
0%
0%

6.9%
7.2%

5.3 m
8.0 m
8.1 m
2.5 m

NA

Abbreviations: EP-NETs: extrapancreatic NETs, GEP: gastroenteropancreatic, GI: gastrointestinal, LAR: long-acting repeatable, NA: not
available, NET: neuroendocrine tumor, NEC: neuroendocrine carcinoma, NR: not reached, NS: not significant, ORR: objective response rate,
OS: overall survival, P-NET: pancreatic NETs, PFS: progression free survival, SCLC: small cell lung cancer.
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5.2. Antibody-Drug Conjugates Targeting SSTRs or DLL3

Antibody–drug conjugates (ADC) are a class of agents that consists of a mAb con-
jugated to a cytotoxic drug via a chemical linker. The monoclonal antibody directs the
cytotoxic payload towards a target antigen expressed on the cancer cell surface, thereby
reducing systemic drug exposure and therefore toxicity. This approach has shown to be
effective in different types of cancers and is also being explored in NENs. Delta-like protein
3 (DLL3) is a Notch ligand that is expressed in tumor-initiating cells and > 80% of SCLC
and other high grade NECs (lung, ovarian, prostate, bladder, etc.), with minimal to no
expression in normal tissues [187–189]. Notch signaling regulates stem cell differentiation
and self-renewal and is involved in cell–cell communication and cell-fate decisions during
development. DLL3 is an atypical Notch receptor family ligand that, unlike related family
members, inhibits Notch receptor activation. Delta-like protein 3 (DLL3)-targeted ADC
rovalpituzumab tesirine (Rova-T) was initially tested in small cell lung cancer (SCLC)
with some encouraging results, although randomized pivotal trials failed to demonstrate
a survival benefit versus standard of care in pretreated patients and the development of
this drug was halted [190,191]. At ESMO 2017, preliminary results of a phase I-II study
of Rova-T were presented. This study planned to include several expansion cohorts of
patients with different DLL3-positive high grade non-pulmonary NECs. However, this trial
has not been published to date and no further data update has been presented since [192].

Another interesting target in NETs for ADC therapy is SSTRs. PEN-221 is a peptide–
drug conjugate designed to target cancer cells via an SSTR2-targeting ligand conjugated to
the antimicrotubular cytotoxic agent, DM1. In vitro, PEN-221 treatment of SSTR2-positive
cells resulted in PEN-221 internalization and receptor-dependent inhibition of cellular
proliferation. In vivo, PEN-221 exhibited rapid accumulation in SSTR2-positive SCLC
xenograft tumors with quick clearance from plasma [193]. These data suggest potential for
antitumor activity of PEN-221 in patients with SSTR2-positive tumors. With this rationale,
a phase I/II study (NCT02936323) is currently exploring the activity of PEN-221 in SSTR2-
expressing advanced cancers including NETs, pheochromocytomas and SCLC [194]. Other
promising strategies at earlier stages of clinical development include bispecific antibodies
or bites targeting CD3 and DLL3 or SSTR2 that will hopefully provide new therapeutic
options for patients in the very near future. Other currently ongoing trials with novel
targeted agents or novel combinations are summarized in Table 5.

Table 5. Relevant ongoing trials with targeted therapy in advanced NENs.

Study Population Drug Type/Phase Line Estimated
n

Primary
Endpoint

NETTER 2 trial
NCT03972488

High G2/lowG3
GEP NETs
(Ki-67 11–55%)

177Lu-DOTATATE vs.
High dose Octreotide
(60 mg every 28 days)

Randomized, phase III
study Any line 222 PFS

COMPETE trial
NCT03049189

Non-functioning GI
NETs, functioning
or not P-NETs

177Lu-Edotreotide
everolimus

Randomized, phase III
study

Any line (progression
required) 300 PFS

NCT04375267 SSTR + NETs 177Lu-DOTATATE plus
olaparib I Any line 18 Safety

OCCLURANDOM
trial
NCT02230176

P-NETs 177Lu-DOTATATE vs.
sunitinib

Randomized, phase II
study

Any line (progression
required, only one line
of previous
chemotherapy)

80 PFS

LU-CA-S trial
NCT02736448 GEP-NETs

177Lu-DOTATATE plus
capecitabine followed by
SSA vs. 177Lu-DOTATATE
followed by SSA

Randomized, phase II
study Any line 176 PFS

NCT04194125 GEP-NETs 177Lu-DOTATATE plus
CAPTEM

Not randomized,
phase II study Any line 25 PFS

NCT03466216 NETs
AlphaMedix
(212Pb-DOTATATE)

I Any line 50 Safety

CABINET trial
NCT03375320) Advanced NETs Cabozantinib vs. placebo Randomized, phase III Any line (progression

required) 395 PFS

NCT04427787 GEP-NETs Cabozantinib plus
lanreotide ATG

Not randomized,
phase II study Any line 69 ORR, Safety

NCT03891784 NETs Abemaciclib Not randomized,
phase II study Any line 37 ORR

NCT03950609 NETs Lenvatinib plus everolimus Not randomized,
phase II study

Any line (progression
required) 32 ORR
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Table 5. Cont.

Study Population Drug Type/Phase Line Estimated
n

Primary
Endpoint

NCT03600233 NETs CVM-1118 Not randomized,
phase II study Any line 30 PFS

HORMONET study
NCT03870399

Hormone receptor
positive NETs Tamoxifen Not randomized,

phase II study Any line 22 DCR at week
24

NCT03420521 NETs Nivolumab and ipilimimab II Any line 64 ORR
NCT03591731 NECs Nivolumab versus

nivolumab and ipilimimab II Any line 180 ORR

NCT04207463 NETs AK105 (antiPD-1) plus
anlotinib (multi-TKI)

Not randomized,
phase II study Any line 150 ORR

NCT03475953 GEP-NETs (solid
tumors)

Regorafenib with
avelumab

Not randomized,
phase I/II study Any line 362 (solid

tumors) Safety

NCT03074513
Rare tumors,
including NETs and
NECs

Atezolizumab and
bevacizumab II Any line 164 ORR

CABATEN trial,
NCT04400474 NETs, NECs Cabozantinib plus

atezolizumab
Not randomized,
phase II study Any line 144 ORR

NCT04197310 NETs excluding
P-NETs

Cabozantinib plus
nivolumab

Not randomized,
phase II study Any line 35 ORR

NCT04079712 NECs
Cabozantinib plus
nivolumab plus
ipilimumab

Not randomized,
phase II study Any line 30 ORR

NCT04197310 Extra-pancreatic
NETs

Nivolumab and
cabozantinib II Any line 35 ORR

NCT03290079 Lung and GI NETs Pembrolizumab and
lenvatinib II Any line 35 ORR

NCT03879057
Advanced solid
tumors including
NENs

Toripalimab and
surufatinib I Any line 24 Safety

NCT03910660 Prostate NECs Talabostat mesylate plus
pembrolizumab

Not randomized, I/II
study Any line 40 ORR

NCT03411915 NETs
Tidutamab (XmAb18087)
(anti-SSTR2 x anti-CD3
monoclonal antibody)

I Any line 87 Safety

NCT03879694 Lung and P-NETs

Octreotide LAR plus
sargramostim plus
SVN53-67/M57-KLH
Peptide Vaccine

I Any line 10 Safety

NCT03992911 Bladder NECs

Ph.II simmtecan, 5-FU and
l-LV plus toripalimab
Ph.III simmtecan, 5-FU and
l-LV plus toripalimab
Ph.III etoposide versus
etoposide, cisplatin

Not randomized,
phase II study;
Randomized phase III
study

Any line 336 OS

NCT03582475 Prostate/bladder
NECs

Chemotherapy
(platinum–etoposide or
docetaxel) plus
pembrolizumab

Not randomized,
phase I study Any line 30 ORR, PFS, OS

NICE-NEC
GETNE T1913 NECs carboplatinum–etoposide

plus nivolumab
Not randomized,
phase II study I 38 ORR

NCT03901378 NECs (excluding
SCLC)

Pembrolizumab and
platinum–etoposide II I 36 PFS

NCT03728361 NECs Temozolomide plus
nivolumab

Not randomized,
phase II study Any line 53 ORR

Abbreviations: DCR: disease control rate, GEP: gastroenteropancreatic, GI: gastrointestinal, LAR: long-acting repeatable, NET: neu-
roendocrine tumor, NEC: neuroendocrine carcinoma, ORR: objective response rate, OS: overall survival, P-NET: pancreatic NETs, PFS:
progression free survival, SSTR2: somatostatin receptor 2.

6. Future Perspectives and Conclusions

Recent advances in understanding the biology of NENs have opened new avenues
for the development of new therapeutic strategies that have substantially expanded the
treatment armamentarium of these patients, including SSA, PRRT, mTOR and angiogenesis
inhibitors. However, available treatment options are still rather limited, and all patients
eventually develop resistance to these agents. Major efforts shall be made to overcome
resistance and to develop innovative strategies to improve the treatment benefit–risk ratio
in these patients, including the identification of novel targets for therapy and of biomarkers
that allow an improved selection of patients for personalized patient care. The optimal
sequence and/or treatment combinations are other pending issues, as are strategies to
increase efficacy and minimize drug toxicity to improve patient outcomes, including quality
of life.
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