Matrix Effectors and Cancer
Funding
Conflicts of Interest
References
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef]
- Karamanos, N.K.; Piperigkou, Z.; Theocharis, A.D.; Watanabe, H.; Franchi, M.; Baud, S.; Brezillon, S.; Gotte, M.; Passi, A.; Vigetti, D.; et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 2018, 118, 9152–9232. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.S.; Motta, J.M.; Teixeira, F.; Gomes, A.M.; Vilanova, E.; Kozlowski, E.O.; Borsig, L.; Pavao, M.S.G. Non-anticoagulant heparan sulfate from the ascidian phallusia nigra prevents colon carcinoma metastasis in mice by disrupting platelet-tumor cell interaction. Cancers 2020, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Kyykallio, H.; Oikari, S.; Bueno Alvez, M.; Gallardo Dodd, C.J.; Capra, J.; Rilla, K. The density and length of filopodia associate with the activity of hyaluronan synthesis in tumor cells. Cancers 2020, 12, 1908. [Google Scholar] [CrossRef] [PubMed]
- Nassar, E.; Hassan, N.; El-Ghonaimy, E.A.; Hassan, H.; Abdullah, M.S.; Rottke, T.V.; Kiesel, L.; Greve, B.; Ibrahim, S.A.; Gotte, M. Syndecan-1 promotes angiogenesis in triple-negative breast cancer through the prognostically relevant tissue factor pathway and additional angiogenic routes. Cancers 2021, 13, 2318. [Google Scholar] [CrossRef] [PubMed]
- Reszegi, A.; Karaszi, K.; Toth, G.; Rada, K.; Vancza, L.; Turiak, L.; Schaff, Z.; Kiss, A.; Szilak, L.; Szabo, G.; et al. Overexpression of human syndecan-1 protects against the diethylnitrosamine-induced hepatocarcinogenesis in mice. Cancers 2021, 13, 1548. [Google Scholar] [CrossRef]
- Pinto, F.; Santos-Ferreira, L.; Pinto, M.T.; Gomes, C.; Reis, C.A. The extracellular small leucine-rich proteoglycan biglycan is a key player in gastric cancer aggressiveness. Cancers 2021, 13, 1330. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, S.N.; Toraskar, J.; Hadler-Olsen, E.; Steigedal, T.S.; Svineng, G. Nephronectin as a matrix effector in cancer. Cancers 2021, 13, 959. [Google Scholar] [CrossRef]
- Nallanthighal, S.; Heiserman, J.P.; Cheon, D.J. Collagen type XI alpha 1 (COL11A1): A novel biomarker and a key player in cancer. Cancers 2021, 13, 935. [Google Scholar] [CrossRef]
- Tzanakakis, G.N.; Giatagana, E.M.; Berdiaki, A.; Spyridaki, I.; Hida, K.; Neagu, M.; Tsatsakis, A.M.; Nikitovic, D. The role of IGF/IGF-IR-signaling and extracellular matrix effectors in bone sarcoma pathogenesis. Cancers 2021, 13, 2478. [Google Scholar] [CrossRef]
- Jeanne, A.; Sarazin, T.; Charlé, M.; Moali, C.; Boulagnon-Rombi, C.; Callewaert, M.; Andry, M.C.; Diesis, E.; Delolme, F.; Rioult, D.; et al. Targeting ovarian carcinoma with TSP-1:CD47 antagonist TAX2 activates anti-tumor immunity. Cancers 2021, 13, 5019. [Google Scholar] [CrossRef]
- Kolliopoulos, C.; Chatzopoulos, A.; Skandalis, S.S.; Heldin, C.H.; Heldin, P. TRAF4/6 is needed for CD44 cleavage and migration via RAC1 activation. Cancers 2021, 13, 1021. [Google Scholar] [CrossRef]
- Majo, S.; Auguste, P. The Yin and Yang of discoidin domain receptors (DDRS): Implications in tumor growth and metastasis development. Cancers 2021, 13, 1725. [Google Scholar] [CrossRef] [PubMed]
- Piperigkou, Z.; Kyriakopoulou, K.; Koutsakis, C.; Mastronikolis, S.; Karamanos, N.K. Key matrix remodeling enzymes: Functions and targeting in cancer. Cancers 2021, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Vallet, S.D.; Berthollier, C.; Salza, R.; Muller, L.; Ricard-Blum, S. The interactome of cancer-related lysyl oxidase and lysyl oxidase-like proteins. Cancers 2020, 13, 71. [Google Scholar] [CrossRef]
- Dauvé, J.; Belloy, N.; Rivet, R.; Etique, N.; Nizet, P.; Pietraszek-Gremplewicz, K.; Karamanou, K.; Dauchez, M.; Ramont, L.; Brézillon, S.; et al. Differential MMP-14 targeting by lumican-derived peptides unraveled by in silico approach. Cancers 2021, 13, 4930. [Google Scholar] [CrossRef] [PubMed]
- Holstein, E.; Dittmann, A.; Kaariainen, A.; Pesola, V.; Koivunen, J.; Pihlajaniemi, T.; Naba, A.; Izzi, V. The burden of post-translational modification (PTM)-disrupting mutations in the tumor matrisome. Cancers 2021, 13, 1081. [Google Scholar] [CrossRef]
- Izzi, V.; Davis, M.N.; Naba, A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome. Cancers 2020, 12, 2046. [Google Scholar] [CrossRef]
- Zolota, V.; Tzelepi, V.; Piperigkou, Z.; Kourea, H.; Papakonstantinou, E.; Argentou Mu, I.; Karamanos, N.K. Epigenetic alterations in triple-negative breast cancer-the critical role of extracellular matrix. Cancers 2021, 13, 713. [Google Scholar] [CrossRef]
- Karamanos, N.K.; Piperigkou, Z.; Passi, A.; Gotte, M.; Rousselle, P.; Vlodavsky, I. Extracellular matrix-based cancer targeting. Trends Mol. Med. 2021, 27, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, P.A.; Koufaki, M.A.; Kostourou, V. The adhesome network: Key components shaping the tumour stroma. Cancers 2021, 13, 525. [Google Scholar] [CrossRef]
- Javadi, J.; Heidari-Hamedani, G.; Schmalzl, A.; Szatmari, T.; Metintas, M.; Aspenstrom, P.; Hjerpe, A.; Dobra, K. Syndecan-1 overexpressing mesothelioma cells inhibit proliferation, wound healing, and tube formation of endothelial cells. Cancers 2021, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Mavrogonatou, E.; Papadopoulou, A.; Fotopoulou, A.; Tsimelis, S.; Bassiony, H.; Yiacoumettis, A.M.; Panagiotou, P.N.; Pratsinis, H.; Kletsas, D. Down-regulation of the proteoglycan decorin fills in the tumor-promoting phenotype of ionizing radiation-induced senescent human breast stromal fibroblasts. Cancers 2021, 13, 1987. [Google Scholar] [CrossRef] [PubMed]
- Caon, I.; D’Angelo, M.L.; Bartolini, B.; Carava, E.; Parnigoni, A.; Contino, F.; Cancemi, P.; Moretto, P.; Karamanos, N.K.; Passi, A.; et al. The secreted protein c10orf118 is a new regulator of hyaluronan synthesis involved in tumour-stroma cross-talk. Cancers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piperigkou, Z.; Karamanos, N.K. Matrix Effectors and Cancer. Cancers 2022, 14, 200. https://doi.org/10.3390/cancers14010200
Piperigkou Z, Karamanos NK. Matrix Effectors and Cancer. Cancers. 2022; 14(1):200. https://doi.org/10.3390/cancers14010200
Chicago/Turabian StylePiperigkou, Zoi, and Nikos K. Karamanos. 2022. "Matrix Effectors and Cancer" Cancers 14, no. 1: 200. https://doi.org/10.3390/cancers14010200
APA StylePiperigkou, Z., & Karamanos, N. K. (2022). Matrix Effectors and Cancer. Cancers, 14(1), 200. https://doi.org/10.3390/cancers14010200