Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy—A Retrospective Bi-Centric Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced Nonsquamous Non–Small-Cell lung cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced Squamous-Cell Non–Small-Cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus chemotherapy in metastatic Non–Small-Cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Wallis, C.J.D.; Butaney, M.; Satkunasivam, R.; Freedland, S.J.; Patel, S.P.; Hamid, O.; Pal, S.K.; Klaassen, Z. Association of patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers. JAMA Oncol. 2019, 5, 529. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; Viale, G.; De Pas, T.; Pagan, E.; Pennacchioli, E.; Cocorocchio, E.; Ferrucci, P.F.; De Marinis, F.; et al. Sex-Based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. JNCI J. Natl. Cancer Inst. 2019, 111, 772–781. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Pagan, E.; Bagnardi, V.; De Pas, T.; Queirolo, P.; Pennacchioli, E.; Catania, C.; Cocorocchio, E.; Ferrucci, P.F.; et al. Sex-Based dimorphism of anticancer immune response and molecular mechanisms of immune evasion. Clin. Cancer Res. 2021, 27, 4311–4324. [Google Scholar] [CrossRef] [PubMed]
- Huemer, F.; Lang, D.; Westphal, T.; Gampenrieder, S.P.; Hutarew, G.; Weiss, L.; Hackl, H.; Lamprecht, B.; Rinnerthaler, G.; Greil, R. Baseline absolute lymphocyte count and ECOG performance score are associated with survival in advanced non-small cell lung cancer undergoing PD-1/PD-L1 Blockade. J. Clin. Med. 2019, 8, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, D.; Horner, A.; Brehm, E.; Akbari, K.; Hergan, B.; Langer, K.; Asel, C.; Scala, M.; Kaiser, B.; Lamprecht, B. Early serum tumor marker dynamics predict progression-free and overall survival in single PD-1/PD-L1 inhibitor treated advanced NSCLC—A retrospective cohort study. Lung Cancer 2019, 134, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Huemer, F.; Rinnerthaler, G.; Horner, A.; Wass, R.; Brehm, E.; Akbari, K.; Granitz, M.; Hutarew, G.; Kaiser, B.; et al. Therapy line and associated predictors of response to PD-1/PD-L1-Inhibitor monotherapy in advanced Non-small-Cell lung cancer: A retrospective bi-centric cohort study. Target. Oncol. 2019, 14, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Chansky, K.; Detterbeck, F.C.; Nicholson, A.G.; Rusch, V.W.; Vallières, E.; Groome, P.; Kennedy, C.; Krasnik, M.; Peake, M.; Shemanski, L.; et al. The IASLC Lung cancer staging project: External validation of the revision of the TNM stage groupings in the eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 2017, 12, 1109–1121. [Google Scholar] [CrossRef] [Green Version]
- Cyriac, G.; Gandhi, L. Emerging biomarkers for immune checkpoint inhibition in lung cancer. Semin. Cancer Biol. 2018, 52, 269–277. [Google Scholar] [CrossRef]
- Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C.-H. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non–small cell lung carcinoma. JAMA Oncol. 2018, 4, 210. [Google Scholar] [CrossRef]
- Prelaj, A.; Tay, R.; Ferrara, R.; Chaput, N.; Besse, B.; Califano, R. Predictive biomarkers of response for immune checkpoint inhibitors in non–small-cell lung cancer. Eur. J. Cancer 2019, 106, 144–159. [Google Scholar] [CrossRef]
- Akamine, T.; Takada, K.; Toyokawa, G.; Kinoshita, F.; Matsubara, T.; Kozuma, Y.; Haratake, N.; Takamori, S.; Hirai, F.; Tagawa, T.; et al. Association of preoperative serum CRP with PD-L1 expression in 508 patients with non-small cell lung cancer: A comprehensive analysis of systemic inflammatory markers. Surg. Oncol. 2018, 27, 88–94. [Google Scholar] [CrossRef]
- Riedl, J.M.; Barth, D.A.; Brueckl, W.M.; Zeitler, G.; Foris, V.; Mollnar, S.; Stotz, M.; Rossmann, C.H.; Terbuch, A.; Balic, M.; et al. C-Reactive Protein (CRP) Levels in Immune Checkpoint Inhibitor Response and Progression in Advanced Non-Small Cell Lung Cancer: A Bi-Center Study. Cancers 2020, 12, 2319. [Google Scholar] [CrossRef] [PubMed]
- Adachi, Y.; Tamiya, A.; Taniguchi, Y.; Enomoto, T.; Azuma, K.; Kouno, S.; Inagaki, Y.; Saijo, N.; Okishio, K.; Atagi, S. Predictive factors for progression-free survival in non-small cell lung cancer patients receiving nivolumab based on performance status. Cancer Med. 2020, 9, 1383–1391. [Google Scholar] [CrossRef]
- Hackl, M.; Ihle, P. Krebserkrankungen in Österreich 2020; Statistik Austria, Ed.; Statistik Austria: Austria, Vienna, 2020; ISBN 978-3-903264-40-3. [Google Scholar]
- O’Connor, J.M.; Seidl-Rathkopf, K.; Torres, A.Z.; You, P.; Carson, K.R.; Ross, J.S.; Gross, C.P. Disparities in the use of programmed death 1 immune checkpoint inhibitors. Oncologist 2018, 23, 1388–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smida, T.; Bruno, T.C.; Stabile, L.P. Influence of estrogen on the NSCLC microenvironment: A comprehensive picture and clinical implications. Front. Oncol. 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Socinski, M.A.; Obasaju, C.; Gandara, D.; Hirsch, F.R.; Bonomi, P.; Bunn, P.; Kim, E.S.; Langer, C.J.; Natale, R.B.; Novello, S.; et al. Clinicopathologic features of advanced squamous NSCLC. J. Thorac. Oncol. 2016, 11, 1411–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakelee, H.A.; Chang, E.T.; Gomez, S.L.; Keegan, T.H.; Feskanich, D.; Clarke, C.A.; Holmberg, L.; Yong, L.C.; Kolonel, L.N.; Gould, M.K.; et al. Lung cancer incidence in never smokers. J. Clin. Oncol. 2007, 25, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Miller, K.D.; Ma, J.; Siegel, R.L.; Fedewa, S.A.; Islami, F.; Devesa, S.S.; Thun, M.J. Higher lung cancer incidence in young women than young men in the United States. N. Engl. J. Med. 2018, 378, 1999–2009. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Lotter, H.; Altfeld, M. Sex differences in immunity. Semin. Immunopathol. 2019, 41, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cowley, L.A.; Liu, X.-S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 2019, 24, 3214. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, L.E.L.; Menis, J.; De Ruysscher, D.K.M.; Reck, M. Combination of immunotherapy and radiotherapy—The next magic step in the management of lung cancer? J. Thorac. Oncol. 2020, 15, 166–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after chemoradiotherapy in stage III Non–Small-Cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mono-Immunotherapy | Chemo-Immunotherapy | ||||||||
---|---|---|---|---|---|---|---|---|---|
All (n = 228) | Male (n = 136) | Female (n = 92) | p | All (n = 80) | Male (n = 47) | Female (n = 33) | p | ||
Mean age (years; SE) | 67.4 (0.71) | 68.9 (1.0) | 65.1 (1.0) | 0.003 | 62.9 (1.1) | 63.2 (1.3) | 62.5 (1.8) | 0.623 | |
Age categories (n, %) | 0.030 | 0.636 | |||||||
<60 years | 47 (20.6) | 21 (15.4) | 26 (28.2) | 28 (35.0) | 16 (34.0) | 12 (36.4) | |||
60–69 years | 80 (35.1) | 45 (33.1) | 35 (38.0) | 34 (42.5) | 20 (42.6) | 14 (42.4) | |||
70–79 years | 78 (34.2) | 53 (39.0) | 25 (27.2) | 17 (21.3) | 11 (23.4) | 6 (18.2) | |||
80+ years | 23 (10.1) | 17 (12.5) | 6 (6.5) | 1 (1.3) | 0 (0.0) | 1 (3.0) | |||
ECOG (n, %) | 0.167 | 0.104 | |||||||
0.1 | 172 (75.4) | 107 (78.7) | 65 (70.7) | 68 (86.1) | 38 (80.9) | 30 (93.8) | |||
≥2 | 56 (24.6) | 29 (21.3) | 27 (29.4) | 11 (13.9) | 9 (19.2) | 2 (6.2) | |||
Mean pack years (SE) | 45.1 (2.1) | 50.9 (2.9) | 36.5 (2.9) | <0.001 | 40.9 (3.0) | 44.3 (3.7) | 36.1 (4.8) | 0.067 | |
ICI substance (n, %) | 0.897 | NA | |||||||
Nivolumab | 90 (39.5) | 52 (38.2) | 38 (41.3) | - | - | - | |||
Pembrolizumab | 105 (46.1) | 64 (47.1) | 41 (44.6) | 77 (96.3) | 45 (95.7) | 32 (97) | |||
Atezolizumab | 33 (14.5) | 20 (14.7) | 13 (14.1) | 3 (3.8) | 2 (4.3) | 1 (3) | |||
Therapy line (n, %) | 0.629 | NA | |||||||
1,2 | 136 (59.7) | 110 (80.9) | 72 (78.3) | 77 (96.3) | 45 (95.7) | 32 (97) | |||
≥3 | 92 (40.3) | 26 (21.7) | 20 (21.7) | 3 (3.8) | 2 (4.3) | 1 (3) | |||
Median number of ICI-CHT cycles (IQR) | - | - | - | - | 4 (2) | 4 (2) | 4 (2) | 0.962 | |
Median number of ICI-monotherapy cycles (IQR) | 4 (5) | 4 (5) | 4 (7) | 0.343 | 3 (5.3) | 3 (4) | 2 (7) | 0.761 | |
Histological subtype (n, %) | 0.005 | 0.409 | |||||||
Adenocarcinoma | 140 (62.2) | 74 (54.8) | 66 (73.3) | 61 (77.2) | 34 (73.9) | 27 (81.8) | |||
Squamous-cell carcinoma | 85 (37.8) | 61 (45.2) | 24 (26.7) | 18 (22.8) | 12 (26.1) | 6 (18.2) | |||
PD-L1 positive (n, % *) | 137 (68.8) | 84 (70.6) | 53 (66.3) | 0.517 | 41 (54.7) | 23 (53.5) | 18 (56.3) | 0.812 | |
PD-L1 expression (n, % **) | 0.820 | 0.277 | |||||||
n.a. | 29 (12.7) | 18 (13.2) | 11 (12) | 5 (6.3) | 4 (8.5) | 1 (3) | |||
<1% | 67 (29.4) | 38 (27.9) | 29 (31.5) | 34 (42.5) | 20 42.6) | 14 (42.4) | |||
1–49% | 71 (31.1) | 44 (32.4) | 27 (29.3) | 26 (32.5) | 17 (36.2) | 9 (27.3) | |||
≥50% | 61 (26.8) | 36 (26.5) | 25 (27.2) | 15 (18.6) | 6 (12.8) | 9 (27.3) | |||
Targetable genetic alteration (n, %) | 18 (7.9) | 6 (4.4) | 12 (13.0) | 0.018 | 6 (7.5) | 2 (4.3) | 4 (12.1) | 0.189 | |
Mean lymphocyte count (G/L; SE) | 1.4 (0.1) | 1.4 (0.1) | 1.4 (0.1) | 0.388 | 1.3 (0.1) | 1.3 (0.1) | 1.2 (0.1) | 0.973 | |
Mean C-reactive protein (mg/dL; SE) | 3.5 (0.3) | 3.5 (0.4) | 3.4 (0.5) | 0.261 | 3.1 (0.6) | 2.6 (0.6) | 3.7 (1.2) | 0.788 |
Univariate | Multivariate | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | ||
Mono-immunotherapy (n = 228) | Progression-free survival | Overall survival | |||||||
Age (years) | 0.99 (0.98–1.00) | 0.543 | 0.99 (0.98–1.00) | 0.753 | |||||
Female vs. male | 0.86 (0.65–1.15) | 0.312 | 0.91 (0.66–1.25) | 0.551 | |||||
ECOG (≥2 vs. 0.1) | 1.51 (1.09–2.10) | 0.014 | 1.56 (1.08–2.26) | 0.017 | 1.89 (1.31–2.74) | <0.001 | 1.78 (1.17–2.72) | 0.008 | |
Therapy line (≥3 vs. 1,2) | 1.50 (1.08–2.10) | 0.002 | 1.45 (1.02–2.07) | 0.040 | |||||
Targetable genetic alteration (yes vs. no) | 1.64 (0.99–2.70) | 0.060 | 1.87 (1.11–3.15) | 0.020 | |||||
Lymphocyte count (G/L) | 0.98 (0.85–1.13) | 0.783 | 0.87 (0.72–1.06) | 0.871 | |||||
Squamous-cell vs. adenocarcinoma | 0.99 (0.74–1.32) | 0.917 | 1.18 (0.86–1.62) | 0.314 | |||||
Pack years (≥5 vs. <5) | 0.93 (0.60–1.44) | 0.731 | 1.03 (0.63–1.68) | 0.917 | |||||
CRP (mg/dL) | 1.05 (1.01–1.08) | 0.005 | 1.08 (1.05–1.12) | <0.001 | 1.06 (1.02–1.10) | 0.003 | |||
PD-L1 status (neg. vs. ≥1%) | 1.56 (1.13–2.14) | 0.006 | 1.51 (1.09–2.08) | 0.013 | 1.22 (0.86–1.73) | 0.268 | 1.21 (0.85–1.72) | 0.303 | |
Chemo-immunotherapy (n = 80) | Progression-free survival | Overall survival | |||||||
Age (years) | 1.00 (0.97–1.03) | 0.884 | 1.01 (0.97–1.05) | 0.691 | |||||
Female vs. male | 1.09 (0.64–1.87) | 0.747 | 1.32 (0.67–2.63) | 0.423 | |||||
ECOG (≥2 vs. 0.1) | 2.27 (1.13–4.56) | 0.027 | 2.27 (1.07–4.80) | 0.032 | 3.48 (1.59–7.63) | 0.002 | 3.76 (1.50–9.42) | 0.005 | |
Targetable genetic alteration (yes vs. no) | 2.02 (0.85–4.78) | 0.110 | 1.96 (0.75–5.10) | 0.171 | 2.85 (1.03–7.86) | 0.043 | |||
Lymphocyte count (G/L) | 1.08 (0.76–1.53) | 0.688 | 0.84 (0.50–1.41) | 0.500 | |||||
Squamous-cell vs. adenocarcinoma | 1.55 (0.83–2.91) | 0.171 | 1.59 (0.71–3.57) | 0.265 | |||||
Pack years (≥5 vs. <5) | 0.53 (0.27–1.07) | 0.075 | 0.69 (0.26–1.79) | 0.685 | |||||
CRP (mg/dL) | 1.11 (1.06–1.18) | <0.001 | 1.11 (1.06–1.17) | <0.001 | 1.16 (1.10–1.22) | <0.001 | 1.13 (1.07–1.19) | <0.001 | |
PD-L1 status (neg. vs. ≥1%) | 1.48 (0.86–2.54) | 0.155 | 1.76 (1.00–3.08) | 0.049 | 1.43 (0.71–2.91) | 0.319 | 1.57 (0.77–3.23) | 0.219 |
Progression-Free Survival | Univariate | Multivariate | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
Mono-immunotherapy (n = 228) | Male | Female | ||||||
Age (years) | 0.99 (0.98–1.01) | 0.860 | 0.99 (0.97–1.02) | 0.351 | ||||
ECOG (≥2 vs. 0.1) | 2.19 (1.39–3.45) | <0.001 | 1.90 (1.10–3.29) | 0.021 | 1.16 (0.71–1.88) | 0.553 | 1.27 (0.74–2.19) | 0.384 |
Therapy line (≥3 vs. 1,2) | 1.34 (0.86–2.10) | 0.194 | 1.69 (1.01–2.52) | 0.044 | ||||
Targetable genetic alteration (yes vs. no) | 2.20 (0.88–5.46) | 0.091 | 1.56 (0.83–2.92) | 0.165 | ||||
Lymphocyte count (G/L) | 1.03 (0.90–1.17) | 0.660 | 0.83 (0.62–1.12) | 0.228 | ||||
Squamous-cell vs. adenocarcinoma | 0.99 (0.69–1.43) | 0.954 | 0.92 (0.57–1.51) | 0.752 | ||||
Pack years (≥5 vs. <5) | 0.97 (0.45–2.09) | 0.940 | 0.86 (0.49–1.50) | 0.592 | ||||
CRP (mg/dL) | 1.09 (1.04–1.13) | <0.001 | 1.06 (1.00–1.11) | 0.037 | 1.01 (0.96–1.07) | 0.696 | ||
PD-L1 status (neg. vs. ≥1%) | 1.93 (1.26–2.95) | 0.002 | 2.04 (1.32–3.15) | 0.001 | 1.29 (0.79–2.10) | 0.316 | 1.26 (0.78–2.07) | 0.344 |
Chemo-immunotherapy (n = 80) | Male | Female | ||||||
Age (years) | 1.01 (0.97–1.04) | 0.717 | 0.99 (0.96–1.04) | 0.936 | ||||
ECOG (≥2 vs. 0.1) | 2.30 (1.02–5.23) | 0.046 | 1.75 (0.72–4.26) | 0.217 | 6.06 (1.28–28.7) | 0.023 | 5.18 (0.91–29.5) | 0.064 |
Targetable genetic alteration (yes vs. no) | 1.33 (0.32–5.61) | 0.700 | 2.24 (0.74–6.84) | 0.155 | ||||
Lymphocyte count (G/L) | 0.97 (0.64–1.48) | 0.896 | 1.60 (0.67–3.78) | 0.288 | ||||
Squamous-cell vs. adenocarcinoma | 2.68 (1.17–6.12) | 0.019 | 4.00 (1.41–11.2) | 0.009 | 1.04 (0.35–3.10) | 0.938 | ||
Pack years (≥5 vs. <5) | 0.75 (0.29–1.96) | 0.556 | 0.42 (0.15–1.19) | 0.101 | ||||
CRP (mg/dL) | 1.14 (1.04–1.25) | 0.004 | 1.10 (1.04–1.17) | 0.001 | 1.09 (1.02–1.16) | 0.007 | ||
PD-L1 status (neg. vs. ≥1%) | 1.45 (0.72–2.93) | 0.297 | 1.45 (0.70–3.03) | 0.321 | 1.62 (0.68–3.85) | 0.274 | 1.59 (0.65–3.93) | 0.311 |
Overall Survival | Univariate | Multivariate | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
Mono-immunotherapy (n = 228) | Male | Female | ||||||
Age (years) | 1.00 (0.98–1.02) | 0.783 | 0.99 (0.97–1.01) | 0.345 | ||||
ECOG (≥2 vs. 0.1) | 2.44 (1.44–4.12) | <0.001 | 1.78 (0.97–3.39) | 0.063 | 1.64 (0.96–2.81) | 0.072 | 1.90 (1.04–3.46) | 0.037 |
Therapy line (≥3 vs. 1,2) | 1.30 (0.81–2.09) | 0.273 | 1.63 (0.94–2.80) | 0.090 | ||||
Targetable genetic alteration (yes vs. no) | 1.97 (0.79–4.92) | 0.145 | 1.87 (0.97–3.62) | 0.060 | ||||
Lymphocyte count (G/L) | 0.95 (0.78–1.14) | 0.567 | 0.73 (0.51–1.04) | 0.726 | ||||
Squamous-cell vs. adenocarcinoma | 1.11 (0.74–1.66) | 0.624 | 1.25 (0.74–2.10) | 0.601 | ||||
Pack years (≥5 vs. <5) | 0.83 (0.36–1.91) | 0.666 | 1.10 (0.59–2.07) | 0.764 | ||||
CRP (mg/dL) | 1.11 (1.07–1.16) | <0.001 | 1.09 (1.03–1.14) | 0.002 | 1.05 (0.99–1.10) | 0.084 | ||
PD-L1 status (neg. vs. ≥1%) | 1.32 (0.83–2.09) | 0.245 | 1.35 (0.84–2.16) | 0.216 | 1.09 (0.64–1.88) | 0.747 | 1.10 (0.64–1.90) | 0.738 |
Chemo-immunotherapy (n = 80) | Male | Female | ||||||
Age (years) | 1.02 (0.96–1.07) | 0.535 | 0.99 (0.95–1.05) | 0.956 | ||||
ECOG (≥2 vs. 0.1) | 4.89 (1.83–13.1) | 0.002 | 5.58 (1.88–16.5) | 0.002 | 3.74 (0.45–31.4) | 0.225 | 1.26 (0.09–16.4) | 0.860 |
Targetable genetic alteration (yes vs. no) | 1.09 (0.14–8.30) | 0.934 | 2.16 (0.67–6.68) | 0.201 | ||||
Lymphocyte count (G/L) | 0.62 (0.31–1.26) | 0.187 | 1.63 (0.61–4.35) | 0.329 | ||||
Squamous-cell vs. adenocarcinoma | 1.93 (0.65–5.71) | 0.237 | 1.23 (0.35–4.37) | 0.751 | ||||
Pack years (≥5 vs. <5) | 0.90 (0.21–3.96) | 0.886 | 0.48 (0.13–1.80) | 0.277 | ||||
CRP (mg/dL) | 1.18 (1.08–1.70) | <0.001 | 1.19 (1.06–1.32) | 0.002 | 1.13 (1.06–1.20) | <0.001 | 1.11 (1.03–1.19) | 0.004 |
PD-L1 status (neg. vs. ≥1%) | 1.27 (0.48–3.34) | 0.634 | 2.78 (0.91–8.46) | 0.072 | 1.78 (0.62–5.09) | 0.282 | 1.39 (0.47–4.13) | 0.553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, D.; Brauner, A.; Huemer, F.; Rinnerthaler, G.; Horner, A.; Wass, R.; Brehm, E.; Kaiser, B.; Greil, R.; Lamprecht, B. Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy—A Retrospective Bi-Centric Cohort Study. Cancers 2022, 14, 93. https://doi.org/10.3390/cancers14010093
Lang D, Brauner A, Huemer F, Rinnerthaler G, Horner A, Wass R, Brehm E, Kaiser B, Greil R, Lamprecht B. Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy—A Retrospective Bi-Centric Cohort Study. Cancers. 2022; 14(1):93. https://doi.org/10.3390/cancers14010093
Chicago/Turabian StyleLang, David, Anna Brauner, Florian Huemer, Gabriel Rinnerthaler, Andreas Horner, Romana Wass, Elmar Brehm, Bernhard Kaiser, Richard Greil, and Bernd Lamprecht. 2022. "Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy—A Retrospective Bi-Centric Cohort Study" Cancers 14, no. 1: 93. https://doi.org/10.3390/cancers14010093
APA StyleLang, D., Brauner, A., Huemer, F., Rinnerthaler, G., Horner, A., Wass, R., Brehm, E., Kaiser, B., Greil, R., & Lamprecht, B. (2022). Sex-Based Clinical Outcome in Advanced NSCLC Patients Undergoing PD-1/PD-L1 Inhibitor Therapy—A Retrospective Bi-Centric Cohort Study. Cancers, 14(1), 93. https://doi.org/10.3390/cancers14010093