Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature)
Abstract
:Simple Summary
Abstract
1. Epidemiology
2. Risk Factors
2.1. Sex
2.2. Age
2.3. Degree of Economic Development
2.4. Hormonal Status
2.5. Reproductive and Hormonal Risk Factors in Breast Cancer Patients
2.6. Genetic Factors, Family Occurrence
2.7. Mild Breast Changes
2.8. Ionizing Radiation
2.9. Alcohol Consumption
2.10. Diet
2.11. Obesity
2.12. Nicotinism
3. Pathomorphology
4. Prognostic and Predictive Factors
4.1. TNM
4.2. Degree of Histological Malignancy
4.3. Hormonal Receptors
4.4. HER-2 Receptor
4.5. Proliferation Rate Ki67
4.6. Polygenic Prognostic Factors
4.7. pCR
5. Biological Types of Breast Cancer
6. Breast Cancer Treatment
- -
- tumor excision;
- -
- mastectomy;
- -
- excision of the sentinel lymph node;
- -
- excision of the armpit lymphatic system.
- -
- simple amputation—this is most often a palliative procedure in patients who are not eligible for radical treatment;
- -
- subcutaneous amputation, consisting in the removal of breast gland tissue and the nipple-areola complex, but leaving the skin;
- -
- modified radical mastectomy according to the Patey method, consisting in the removal of the mammary gland, lymph nodes of the axillary fossa, pectoral muscle minor and fascia of the pectoral muscle major;
- -
- modified radical mastectomy according to the Madden method, consisting in the removal of the mammary gland along with the fascia of the pectoral muscle major and the lymph nodes of the armpit in one tissue block;
- -
- radical mastectomy according to the Halsted method—performed in patients who have been diagnosed with infiltration of the cancer process on the pectoral muscles, consists in the removal of the mammary gland, lymph nodes of the axillary fossa, pectoral muscle larger. This treatment is currently rarely used [99,100].
- -
- removal of the tumor along with the margin of healthy tissues;
- -
- quadrantectomy;
- -
- surgery within the axillary fossa (all lymph nodes of the axillary fossa—axillary lymphadenectomy or sentinel lymph node).
7. Recent Treatments for Triple Negative Breast Cancer
- -
- study E2100 (more than 700 patients) evaluated the combination of bevacizumab with paclitaxel vs. paclitaxel with placebo in line 1 treatment for breast cancer recurrence/spread. This study showed that the addition of bevacizumab allowed for prolongation of the median PFS;
- -
- a similar study (more than 700 patients) evaluated the doublet bevacizumab plus docetaxel vs. docetaxel with placebo and in this study also achieved improvements in PFS in the combination group (AVADO study);
- -
- in the RIBBON-1 study, bevacizumab was attached to capecitabine, to taxane (docetaxel or nab-paclitaxel), to anthracyclines—here also PFS elongation was achieved by adding bevacizumab to CHT (study with 2nd line of treatment; the next study with 2nd line was IMELDA-elongation and PFS and OS were shown)
- -
- the last study mentioned by the NCCN was the Phase III CALGB 4050 study, which evaluated the addition of bevacizumab to nab-paclitaxel in line 1 of advanced TNBC treatment and achieved a median PFS of 7.4 months. In general, research shows that the addition of bevacizumab has an effect on ORR and PFS, but not OS and QoL.
8. The Role of Non-Coding RNAs in Breast Cancer
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Nardin, S.; Mora, E.; Varughese, F.M.; D’Avanzo, F.; Vachanaram, A.R.; Rossi, V.; Saggia, C.; Rubinelli, S.; Gennari, A. Breast Cancer Survivorship, Quality of Life, and Late Toxicities. Front. Oncol. 2020, 16, 864. [Google Scholar] [CrossRef] [PubMed]
- “Global Cancer Observatory” International Agency for Research on Cancer, Lyon, France. Available online: https://gco.iarc.fr/ (accessed on 1 June 2020).
- Bellanger, M.; Zeinomar, N.; Tehranifar, P.; Terry, M.B. Are Global Breast Cancer Incidence and Mortality Patterns Related to Country-Specific Economic Development and Prevention Strategies? J. Glob. Oncol. 2018, 4, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.G.; Armstrong, K.; Lehman, C.D.; Fletcher, S.W. Screening for breast cancer. JAMA 2005, 293, 1245–1256. [Google Scholar] [CrossRef]
- Francies, F.Z.; Hull, R.; Khanyile, R.; Dlamini, Z. Breast cancer in low-middle income countries: Abnormality in splicing and lack of targeted treatment options. Am. J. Cancer Res. 2020, 10, 1568–1591. [Google Scholar] [PubMed]
- Religioni, U. Cancer incidence and mortality in Poland. Clin. Epidemiol. Glob. Hearth 2020, 8, 329–334. [Google Scholar] [CrossRef] [Green Version]
- SEER. Available online: http://seer.cancer.gov (accessed on 1 June 2020).
- Lakhani, S.; Ellis, I.; Schnitt, S.; Tan, P.H.; van de Vijver, M.J. WHO Classification of Tumours of the Breast, 4th ed.; IARC Press: Lyon, France, 2012. [Google Scholar]
- Lima, S.M.; Kehm, R.D.; Terry, M.B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMedicine 2021, 38, 100985. [Google Scholar] [CrossRef] [PubMed]
- Kudela, E.; Samec, M.; Kubatka, P.; Nachajova, M.; Laucekova, Z.; Liskova, A.; Dokus, K.; Biringer, K.; Simova, D.; Gabonova, E.; et al. Breast Cancer in Young Women: Status Quo and Advanced Disease Management by a Predictive, Preventive, and Personalized Approach. Cancers 2019, 11, 1791. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer in Women: Burden and Trends. Cancer Epidemiol. Biomark. Prev. 2017, 26, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac. J. Cancer Prev. 2016, 17, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health 2020, 8, e1027–e1037. [Google Scholar] [CrossRef]
- Sisti, J.S.; Collins, L.C.; Beck, A.H.; Tamimi, R.M.; Rosner, B.A.; Eliassen, A.H. Reproductive risk factors in relation to molecular subtypes of breast cancer: Results from the nurses’ health studies. Int. J. Cancer 2016, 138, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- Brinton, L.A.; Schairer, C.; Hoover, R.N.; Fraumeni, J.F., Jr. Menstrual Factors and Risk of Breast Cancer. Cancer Investig. 1988, 6, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef]
- De Blok, C.J.M.; Wiepjes, C.M.; Nota, N.M.; van Engelen, K.; Adank, M.A.; Dreijerink, K.M.A.; Barbé, E.; Konings, I.R.H.M.; den Heijer, M. Breast cancer risk in transgender people receiving hormone treatment: Nationwide cohort study in the Netherlands. BMJ 2019, 365, l1652. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: Nested case-control studies using the QResearch and CPRD databases. BMJ 2020, 371, m3873. [Google Scholar] [CrossRef]
- Yue, W.; Wang, J.P.; Li, Y.; Fan, P.; Liu, G.; Zhang, N.; Conaway, M.; Wang, H.; Korach, K.S.; Bocchinfuso, W.; et al. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int. J. Cancer 2010, 127, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Dall, G.V.; Britt, K.L. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front. Oncol. 2017, 7, 110. [Google Scholar] [CrossRef]
- Singletary, S.E. Rating the risk factors for breast cancer. Ann. Surg. 2003, 237, 474–482. [Google Scholar] [CrossRef]
- Harlow, S.D.; Paramsothy, P. Menstruation and the menopausal transition. Obstet. Gynecol. Clin. N. Am. 2011, 38, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, J.L.; Gammon, M.D.; John, E.M. Reproductive factors and breast cancer. Epidemiol. Rev. 1993, 15, 36–47. [Google Scholar] [CrossRef]
- Cohain, J.S.; Buxbaum, R.E.; Mankuta, D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more. BMC Pregnancy Childbirth 2017, 17, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: Collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 1997, 350, 1047–1059. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 2019, 394, 1159–1168. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: Collaborative reanalysis of individual data on 53,297 women with breast cancer and 100,239 women without breast cancer from 54 epidemiological studies. Lancet 1996, 347, 1713–1727. [Google Scholar] [CrossRef] [Green Version]
- Mørch, L.S.; Skovlund, C.W.; Hannaford, P.C.; Iversen, L.; Fielding, S.; Lidegaard, Ø. Contemporary Hormonal Contraception and the Risk of Breast Cancer. N. Engl. J. Med. 2017, 377, 2228–2239. [Google Scholar] [CrossRef]
- Mehrgou, A.; Akouchekian, M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med. J. Islam. Repub. Iran 2016, 30, 369. [Google Scholar]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, J.; Zhang, Z.; Tang, Y.; Li, X.; Liu, S.; Cao, S.; Li, X. Association Between BRCA Status and Triple-Negative Breast Cancer: A Meta-Analysis. Front. Pharmacol. 2018, 9, 909. [Google Scholar] [CrossRef]
- De Talhouet, S.; Peron, J.; Vuilleumier, A.; Friedlaender, A.; Viassolo, V.; Ayme, A.; Bodmer, A.; Treilleux, I.; Lang, N.; Tille, J.C.; et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci. Rep. 2020, 10, 7073. [Google Scholar] [CrossRef]
- Abdel-Razeq, H.; Tamimi, F.; Abujamous, L.; Edaily, S.; Abunasser, M.; Bater, R.; Salama, O. Patterns and Prevalence of BRCA1 and BRCA2 Germline Mutations Among Patients with Triple-Negative Breast Cancer: Regional Perspectives. Cancer Manag. Res. 2021, 13, 4597–4604. [Google Scholar] [CrossRef]
- Angeli, D.; Salvi, S.; Tedaldi, G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int. J. Mol. Sci. 2020, 21, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamseddine, R.S.; Wang, C.; Yin, K.; Wang, J.; Singh, P.; Zhou, J.; Robson, M.E.; Braun, D.; Hughes, K.S. Penetrance of male breast cancer susceptibility genes: A systematic review. Breast Cancer Res. Treat. 2022, 191, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Armaou, S.; Pertesi, M.; Fostira, F.; Thodi, G.; Athanasopoulos, P.S.; Kamakari, S.; Athanasiou, A.; Gogas, H.; Yannoukakos, D.; Fountzilas, G.; et al. Contribution of BRCA1 germ-line mutations to breast cancer in Greece: A hospital-based study of 987 unselected breast cancer cases. Br. J. Cancer 2009, 101, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Lingle, W.L.; Degnim, A.C.; Ghosh, K.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Hillman, D.W.; et al. Benign Breast Disease and the Risk of Breast Cancer. N. Engl. J. Med. 2005, 353, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, K.; Steel, C.M.; Dixon, J.M. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 2000, 321, 624–628. [Google Scholar] [CrossRef] [Green Version]
- John, E.M.; Phipps, A.I.; Knight, J.A.; Milne, R.L.; Dite, G.S.; Hopper, J.L.; Andrulis, I.L.; Southey, M.; Giles, G.G.; West, D.W.; et al. Medical radiation exposure and breast cancer risk: Findings from the Breast Cancer Family Registry. Int. J. Cancer 2007, 121, 386–394. [Google Scholar] [CrossRef]
- Moskowitz, C.S.; Chou, J.F.; Wolden, S.L.; Bernstein, J.L.; Malhotra, J.; Novetsky Friedman, D.; Mubdi, N.Z.; Leisenring, W.M.; Stovall, M.; Hammond, S.; et al. Breast Cancer After Chest Radiation Therapy for Childhood Cancer. J. Clin. Oncol. 2014, 32, 2217–2223. [Google Scholar] [CrossRef]
- Henderson, T.O.; Amsterdam, A.; Bhatia, S.; Hudson, M.M.; Meadows, A.T.; Neglia, J.P.; Diller, L.R.; Constine, L.S.; Smith, R.A.; Mahoney, M.C.; et al. Surveillance for Breast Cancer in Women Treated with Chest Radiation for a Childhood, Adolescent or Young Adult Cancer: A Report from the Children’s Oncology Group. Ann. Intern. Med. 2010, 152, W444–W455. [Google Scholar] [CrossRef]
- Travis, L.B.; Hill, D.; Dores, G.M.; Gospodarowicz, M.; van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Pukkala, E.; Lynch, C.F.; et al. Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J. Natl. Cancer Inst. 2005, 97, 1428–1437. [Google Scholar] [CrossRef] [Green Version]
- Helm, J.S.; Rudel, R.A. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch. Toxicol. 2020, 94, 1511–1549. [Google Scholar] [CrossRef]
- Meyer, S.B.; Foley, K.; Olver, I.; Ward, P.R.; McNaughton, D.; Mwanri, L.; Miller, E.R. Alcohol and breast cancer risk: Middle-aged women’s logic and recommendations for reducing consumption in Australia. PLoS ONE 2019, 14, e0211293. [Google Scholar] [CrossRef] [PubMed]
- Khushalani, J.S.; Qin, J.; Ekwueme, D.U.; White, A. Awareness of breast cancer risk related to a positive family history and alcohol consumption among women aged 15–44 years in United States. Prev. Med. Rep. 2019, 17, 101029. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jung, S.; Eliassen, A.H.; Chen, W.Y.; Willett, W.C.; Cho, E. Alcohol Consumption and Breast Cancer Risk in Younger Women According to Family History of Breast Cancer and Folate Intake. Am. J. Epidemiol. 2017, 186, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; Buykx, P.; Shevills, C.; Sullivan, C.; Clark, L.; Newbury-Birch, D. Population Level Effects of a Mass Media Alcohol and Breast Cancer Campaign: A Cross-Sectional Pre-Intervention and Post-Intervention Evaluation. Alcohol Alcohol. 2018, 53, 31–38. [Google Scholar] [CrossRef]
- Gomberg, E.S. Treatment for alcohol-related problems: Special populations: Research opportunities. Recent Dev. Alcohol. 2003, 16, 313–333. [Google Scholar]
- Rojas, K.; Stuckey, A. Breast Cancer Epidemiology and Risk Factors. Clin. Obstet. Gynecol. 2016, 59, 651–672. [Google Scholar] [CrossRef]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- Dandamudi, A.; Tommie, J.; Nommsen-Rivers, L.; Couch, S. Dietary Patterns and Breast Cancer Risk: A Systematic Review. Anticancer Res. 2018, 38, 3209–3222. [Google Scholar] [CrossRef] [Green Version]
- Maumy, L.; Harrissart, G.; Dewaele, P.; Aljaber, A.; Bonneau, C.; Rouzier, R.; Eliès, A. Impact of nutrition on breast cancer mortality and risk of recurrence, a review of the evidence. Bull. Cancer 2020, 107, 61–71. [Google Scholar] [CrossRef]
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019, 11, 1514. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.; Bragazzi, N.L. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiralerspong, S.; Goodwin, P.J. Obesity and Breast Cancer Prognosis: Evidence, Challenges, and Opportunities. J. Clin. Oncol. 2016, 34, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Orsini, N.; Saji, S.; Key, T.J.; Wolk, A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status: A meta-analysis. Int. J. Cancer 2009, 124, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Fortner, R.T.; Katzke, V.; Kühn, T.; Kaaks, R. Obesity and Breast Cancer. Recent Results Cancer Res. 2016, 208, 43–65. [Google Scholar]
- Pierobon, M.; Frankenfeld, C.L. Obesity as a risk factor for triple-negative breast cancers: A systematicreview and meta-analysis. Breast Cancer Res. Treat. 2013, 137, 307–314. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, D.; Kang, S. Physical activity andrisk of breast cancer: A meta-analysis of prospectivestudies. Breast Cancer Res. Treat. 2013, 137, 869–882. [Google Scholar] [CrossRef]
- Chan, D.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef]
- Gilbert, C.A.; Slingerland, J.M. Cytokines, obesity, and cancer: New insights on mechanisms linking obesity to cancer risk and progression. Ann. Rev. Med. 2013, 64, 45–57. [Google Scholar] [CrossRef]
- Picon-Ruiz, M.; Morata-Tarifa, C.; Valle-Goffin, J.J.; Friedman, E.R.; Slingerland, J.M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 2017, 67, 378–397. [Google Scholar] [CrossRef]
- Tornatore, L.; Thotakura, A.K.; Bennett, J.; Moretti, M.; Franzoso, G. The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends Cell Biol. 2012, 22, 557–566. [Google Scholar] [CrossRef]
- Prasad, S.; Ravindran, J.; Aggarwal, B.B. NF-kappaB and cancer: How intimate is this relationship. Mol. Cell. Biochem. 2010, 336, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Arcidiacono, B.; Iiritano, S.; Nocera, A.; Possidente, K.; Nevolo, M.T.; Ventura, V.; Foti, D.; Chiefari, E.; Brunetti, A. Insulin resistance and cancer risk: An overview of the pathogenetic mechanisms. Exp. Diabetes Res. 2012, 2012, 789174. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kruper, L.; Dieli-Conwright, C.M.; Mortimer, J.E. The Impact of Obesity on Breast Cancer Diagnosis and Treatment. Curr. Oncol. Rep. 2019, 21, 41. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef]
- Tyagi, A.; Sharma, S.; Wu, K.; Wu, S.Y.; Xing, F.; Liu, Y.; Zhao, D.; Deshpande, R.P.; D’Agostino, R.B., Jr.; Watabe, K. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat. Commun. 2021, 12, 474. [Google Scholar] [CrossRef]
- Türker Şener, L.; Güven, C.; Şener, A.; Adin Çinar, S.; Solakoğlu, S.; Albeniz, I. Nicotine reduces effectiveness of doxorubicin chemotherapy and promotes CD44+CD24- cancer stem cells in MCF-7 cell populations. Exp. Ther. Med. 2018, 16, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Leong, A.S.; Zhuang, Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology 2011, 78, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Makki, J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin. Med. Insights Pathol. 2015, 8, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Rakha, E.A.; Ellis, I.O. An overview of assessment of prognostic and predictive factors in breast cancer needle core biopsy specimens. J. Clin. Pathol. 2007, 60, 1300–1306. [Google Scholar] [CrossRef]
- Wysocka, J. New WHO classification of breast tumours—As published in 2019. J. Oncol. 2020, 70, 250–252. [Google Scholar]
- Tan, P.H.; Ellis, I.; Allison, K.; Brogi, E.; Fox, S.B.; Lakhani, S.; Lazar, A.J.; Morris, E.A.; Sahin, A.; Salgado, R.; et al. The 2019 World Health Organization classification of tumours of the breast. Histopathology 2020, 77, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.F.; Isaacs, C.; Stearns, V. Prognostic Factors in Breast Cancer: Current and NewPredictors of Metastasis. J. Mammary Gland Biol. Neoplasia 2001, 6, 375–392. [Google Scholar] [CrossRef]
- De Boer, M.; van Dijck, J.A.; Bult, P.; Borm, G.F.; Tjan-Heijnen, V.C. Breast Cancer Prognosis and Occult Lymph Node Metastases, Isolated Tumor Cells, and Micrometastases. J. Natl. Cancer Inst. 2010, 102, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.K.; Giri, D.; Hummer, A.J.; Panageas, K.S.; Brogi, E.; Norton, L.; Hudis, C.; Borgen, P.I.; Cody, H.S. Occult axillary node metastases in breast cancer are prognostically significant: Results in 368 node-negative patients with 20-year follow-up. J. Clin. Oncol. 2008, 26, 1803–1809. [Google Scholar] [CrossRef] [Green Version]
- Goldhirsch, A.; Ingle, J.N.; Gelber, R.D.; Coates, A.S.; Thürlimann, B.; Senn, H.J.; Panel members. Thresholds for therapies: Highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann. Oncol. 2009, 20, 1319–1329. [Google Scholar] [CrossRef]
- Ogawa, Y.; Moriya, T.; Kato, Y.; Oguma, M.; Ikeda, K.; Takashima, T.; Nakata, B.; Ishikawa, T.; Hirakawa, K. Immunohistochemical assessment for estrogen receptor and progesterone receptor status in breast cancer: Analysis for a cut-off point as the predictor for endocrine therapy. Breast Cancer 2004, 11, 267–275. [Google Scholar] [CrossRef]
- Diaz, L.K.; Sneige, N. Estrogen receptor analysis for breast cancer: Current issues and keys to increasing testing accuracy. Adv. Anat. Pathol. 2005, 12, 10–19. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 1998, 339, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.M.; Neven, P.; Giobbie-Hurder, A.; Goldhirsch, A.; Ejlertsen, B.; Mauriac, L.; Forbes, J.F.; Smith, I.; Láng, I.; Wardley, A.; et al. Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: The BIG 1-98 randomised clinical trial at 81 years median follow-up. Lancet Oncol. 2011, 12, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.; Cuzick, J.; Baum, M.; Buzdar, A.; Dowsett, M.; Forbes, J.F.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Tobias, J.S.; et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005, 365, 60–62. [Google Scholar] [PubMed]
- Fisher, B.; Redmond, C.; Fisher, E.R.; Caplan, R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J. Clin. Oncol. 1988, 6, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Hähnel, R.; Woodings, T.; Vivian, A.B. Prognostic value of estrogen receptors in primary breast cancer. Cancer 1979, 44, 671–675. [Google Scholar] [CrossRef]
- Moja, L.; Tagliabue, L.; Balduzzi, S.; Parmelli, E.; Pistotti, V.; Guarneri, V.; D’Amico, R. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst. Rev. 2012, 2012, CD006243. [Google Scholar]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemothera py in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.; Procter, M.; Gelber, R.D.; Guillaume, S.; Feyereislova, A.; Dowsett, M.; Goldhirsch, A.; Untch, M.; Mariani, G.; Baselga, J.; et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: A randomised controlled trial. Lancet 2007, 369, 29–36. [Google Scholar] [CrossRef]
- Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1673–1684. [Google Scholar] [CrossRef] [Green Version]
- Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.H.; Sledge, G.; Geyer, C.E., Jr.; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; et al. Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patients with HER2-positive breast cancer. J. Clin. Oncol. 2007, 25, LBA512. [Google Scholar] [CrossRef]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.E.; Ferraro, E.; Safonov, A.; Morales, C.B.; Lahuerta, E.J.A.; Li, Q.; Kulick, A.; Ross, D.; Solit, D.B.; de Stanchina, E.; et al. HER2+ breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat. Commun. 2021, 12, 6667. [Google Scholar] [CrossRef] [PubMed]
- De Azambuja, E.; Cardoso, F.; de Castro, G., Jr.; Colozza, M.; Mano, M.S.; Durbecq, V.; Sotiriou, C.; Larsimont, D.; Piccart-Gebhart, M.J.; Paesmans, M. Ki-67 as prognostic marker in early breast cancer: A meta-analysis of published studies involving 12,155 patients. Br. J. Cancer 2007, 96, 1504–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef]
- Burstein, H.J.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Denkert, C.; Piccart-Gebhart, M.; Regan, M.; et al. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef] [Green Version]
- Towpik, E. Rola Chirurgii w Rozpoznawaniu i Leczeniu Raka Piersi; Pawlicki, M., Ed.; Rak Piersi, Nowe Nadzieje i Możliwości Leczenia; Alfa-Medica Press: Bielsko-Biała, Poland, 2002; pp. 30–37. [Google Scholar]
- Samulak, D.; Pięta, B.; Michalska, M.; Grzelak, W.; Sajdak, S. Oszczędzające metody diagnostyczno-terapeutyczne guzów gruczołu sutkowego. Ginekol. Prakt. 2008, 4, 6–9. [Google Scholar]
- Niwińska, A.; Litwiniuk, M. Hormonoterapia uzupełniająca raka piersi. Współczesna Onkol. 2007, 11, 82–88. [Google Scholar]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A., Jr.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Panel members. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Planes-Laine, G.; Rochigneux, P.; Bertucci, F.; Chrétien, A.S.; Viens, P.; Sabatier, R.; Gonçalves, A. PD-1/PD-L1 Targeting in Breast Cancer: The First Clinical Evidences Are Emerging. A Literature Review. Cancers 2019, 11, 1033. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, L.; Wang, Z.; Kong, X.; Zhai, J.; Fang, Y.; Wang, J. Efficacy and Safety of Anti-PD-1/PD-L1 Monotherapy for Metastatic Breast Cancer: Clinical Evidence. Front. Pharmacol. 2021, 12, 653521. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Miles, D.; Gligorov, J.; André, F.; Cameron, D.; Schneeweiss, A.; Barrios, C.; Xu, B.; Wardley, A.; Kaen, D.; Andrade, L.; et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol. 2021, 32, 994–1004. [Google Scholar] [CrossRef]
- Spini, A.; Donnini, S.; Pantziarka, P.; Crispino, S.; Ziche, M. Repurposing of drugs for triple negative breast cancer: An overview. Ecancermedicalscience 2020, 14, 1071. [Google Scholar] [CrossRef]
- Shiao, J.; Thomas, K.M.; Rahimi, A.S.; Rao, R.; Yan, J.; Xie, X.J.; DaSilva, M.; Spangler, A.; Leitch, M.; Wooldridge, R.; et al. Stosowanie aspiryny/środka przeciwpłytkowego poprawia przeżycie wolne od choroby i zmniejsza ryzyko przerzutów odległych u pacjentek z potrójnie ujemnym rakiem piersi w II i III stopniu zaawansowania. Breast Cancer Res. Treat. 2017, 161, 463–471. [Google Scholar] [CrossRef]
- Williams, A.D.; Li, Y.R.; So, A.; Steel, L.; Carrigan, E.; Ro, V.; Nguyen, J.; Tchou, J. Wpływ stosowania aspiryny na podtyp raka piersi i przebieg kliniczny. J. Surg. Res. 2018, 230, 71–79. [Google Scholar] [CrossRef]
- Sardesai, S.D.; Thomas, A.; Gallagher, C.; Lynce, F.; Ottaviano, Y.L.; Ballinger, T.J.; Schneider, B.P.; Storniolo, A.M.; Bauchle, A.; Althouse, S.K.; et al. Hamowanie syntazy kwasów tłuszczowych w operacyjnym potrójnie ujemnym raku piersi. J. Clin. Oncol. 2020, 38 (Suppl. S15), 584. [Google Scholar]
- Kristensen, T.B.; Knutsson, M.L.; Wehland, M.; Laursen, B.E.; Grimm, D.; Warnke, E.; Magnusson, N.E. Anti-vascular endothelial growth factor therapy in breast cancer. Int. J. Mol. Sci. 2014, 15, 23024–23041. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Grenda, A.; Budzyński, M.; Filip, A.A. Biogeneza cząsteczek mikroRNA oraz ich znaczenie w powstawaniu i przebiegu wybranych zaburzeń hematologicznych. Postepy Hig. Med. Dosw. 2013, 67, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 2014, 51, 759–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budzyński, M.; Grenda, A.; Filip, A.A. Cząsteczki mikroRNA jako istotny składnik mechanizmów regulacji ekspresji genów związanych z nowotworami. J. Oncol. 2014, 64, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.; Alitheen, N.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Mo, Y.Y. Role of microRNAs in breast cancer. Cancer Biol. Ther. 2013, 14, 201–212. [Google Scholar] [CrossRef]
- Smolarz, B.; Zadrożna-Nowak, A.; Romanowicz, H. The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int. J. Mol. Sci. 2021, 22, 8427. [Google Scholar] [CrossRef]
Hormonal and reproductive | Early age of the first menstruation |
Late age of the last menstruation | |
The first reported pregnancy at a late age (after 30 years of age) | |
No pregnancies | |
Postmenopausal condition | |
Use of oral contraception | |
Use of hormone replacement therapy | |
Related to physiological factors and health status | Older age (increased risk from 35 years of age) |
Family history of breast cancer | |
Breast, ovarian and endometrial cancer in the past | |
Occurrence of benign changes in the breasts, proceeding with the presence of atypical hyperplasia | |
Ionizing radiation, used in connection with, for example, Hodgkin lymphoma therapy | |
Rapid growth in adolescence and high growth in adulthood | |
Infection with an oncogenic virus (e.g., Epstein–Barr) | |
Nutritional | Western type diet |
Excessive consumption of fats, especially animal fats | |
High consumption of red and fried meat | |
High iron intake | |
Development of overweight/obesity after menopause | |
Low consumption of fresh vegetables and fruits | |
Low intake of phytoestrogens (isoflavones, lignans) | |
Other lifestyle-related | Regular moderate/high alcohol consumption |
Lack of regular physical activity | |
Night work |
Epithelial Precursor Lesions | Invasive Changes |
---|---|
Atypical lobular hyperplasia | Nonspecific weaving cancer (NST) Medullary carcinoma |
Lobular carcinoma in situ | Oncocytic carcinoma |
Ordinary wired hyperplasia | Cancer with rich fat weaving |
Cylindrical cell changes | Cancer with rich glycogen weaving |
Atypical ductal hyperplasia | Sebaceous cancer |
In situ ductal carcinoma | Microinvasive cancer |
Lobular cancer | |
Tubular cancer | |
Sit-like cancer | |
Mucous cancer | |
Cystadenocarcinoma | |
Invasive micro beard carcinoma | |
Cancer with apocrine differentiation | |
Metaplastic cancer | |
Rare cancers and types of salivary gland cancers |
Feature | Score (Points) |
---|---|
Formation of coils and glands | |
>75% | 1 |
10–75% | 2 |
<10% | 3 |
Nuclear pleomorphism (degree of nuclei atypia) | |
Small, regular, homogeneous | 1 |
Moderately enlarged and heterogeneous | 2 |
Clearly pleomorphic | 3 |
Number of figures of cancer cell division | |
Depends on the size of the microscope’s field of view | From 1 to 3 |
The degree of histological malignancy after summing up the above results | |
Grade 1 | 3–5 |
Grade 2 | 6–7 |
Grade 3 | 8–9 |
pT | ||
TX | It is impossible to evaluate the tumor | |
T0 | Tumor absent | |
Tis | Cancer in situ | |
Tis (DCIS) | Ductal carcinoma in situ | |
Tis (Paget) | Paget’s cancer (no infiltrating or in situ cancer in the breast) | |
T1 | Infiltrating cancer ≤ 20 mm | |
T1mi | Micro-infiltrating cancer ≤ 1 mm | |
T1a | Infiltrating cancer > 1 mm i ≤ 5 mm | |
T1b | Infiltrating cancer > 5 mm i ≤ 10 mm | |
T1c | Infiltrating cancer > 10 mm i ≤ 20 mm | |
T2 | Infiltrating cancer > 20 mm i ≤ 50 mm | |
T3 | Infiltrating cancer > 50 mm | |
T4 | Infiltrating cancer of any size with invasion of the chest wall and skin (ulcer or satellite nodules) | |
T4a | Infiltration of the chest wall (but not the pectoral muscles) | |
T4b | Ulcer, satellite nodules, swelling of the skin that does not meet the criteria for inflammatory cancer | |
T4c | T4a + T4b | |
T4d | Inflammatory cancer | |
pN | ||
NX | Unable to evaluate nodes | |
N0 | There are no metastases to regional lymph nodes | |
N0 (i-) | There are no metastases to regional lymph nodes in the HE and IHC study | |
N0 (i+) | Isolated cancer cells (HE or IHC) ≤ 0.2 mm or < 200 cells were detected | |
N0 (mol-) | There are no metastases to regional lymph nodes (also molecular biology techniques) | |
N0 (mol+) | Molecularly detected metastatic features with negative HE and IHC image | |
N1 | Metastases in 1–3 regional lymph nodes | |
N1mi | Micrometastases > 0.2 mm or > 200 cells in 1–3 lymph nodes | |
N1a | Metastases in 1–3 regional lymph nodes (including at least one >2 mm) | |
N1b | Metastases (or micrometastases) in the internal thoracic lymph nodes (SLNB) | |
N1c | N1a + N1b | |
N2 | Metastases in 4–9 regional lymph nodes | |
N2a | Metastases in 4–9 regional lymph nodes (including at least one >2 mm) | |
N2b | Metastases (or micrometastases) in the internal thoracic lymph nodes in the absence of metastases in the axillary lymph nodes | |
N3 | Metastases in the ≥10 regional lymph nodes or in the supraclavicular node or >3 axillary and thoracic | |
N3a | Metastases in the ≥ 10 regional lymph nodes (axillary) or in the subclavian node (third floor of the axillary fossa) | |
N3b | Axillary > 3 and thoracic internal | |
N3c | Metastasis in the supraclavicular node | |
pM | ||
M0 | No metastases | |
M0 (i+) | Cancer cells detected microscopically or by molecular biology techniques in blood or other tissues, excluding regional lymph nodes ≤ 0.2 mm (or ≤200 cells), in the absence of other signs of metastasis | |
M1 | Metastases to distant organs (clinically or pathologically) |
Result | Interpretation |
---|---|
0—no reaction or color reaction in the <10% of infiltrating cancer cells | Negative state |
1+—discontinuous coloration, complete membrane staining in the <10% of infiltrating cancer cells | Negative state |
2+—weak or medium complete membrane staining in >/= 10% of infiltrating cancer cells | Ambiguous (borderline) state, requires in situ hybridization of the same material or reassessment of IHC or ISH from other material of the examined tumor |
3+—Strong complete membrane staining in >/= 30% of infiltrating cancer cells | Positive state |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. https://doi.org/10.3390/cancers14102569
Smolarz B, Nowak AZ, Romanowicz H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers. 2022; 14(10):2569. https://doi.org/10.3390/cancers14102569
Chicago/Turabian StyleSmolarz, Beata, Anna Zadrożna Nowak, and Hanna Romanowicz. 2022. "Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature)" Cancers 14, no. 10: 2569. https://doi.org/10.3390/cancers14102569
APA StyleSmolarz, B., Nowak, A. Z., & Romanowicz, H. (2022). Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers, 14(10), 2569. https://doi.org/10.3390/cancers14102569