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Simple Summary: The findings of predictive and diagnostic systems in cancer are an intriguing
topic for physicians and the oncologic community. Computer-aided decision (CAD) is vital for
breast cancer diagnosis. It aids in higher accuracy and early, reliable diagnosis. To achieve such
aims, diverse imaging modalities have been used and decision-making was facilitated by artificial
intelligence and machine learning models. High-fidelity automated breast lesion finding, along
with their corresponding radiomic feature biomarkers, can be delivered by a trained model. In this
study, the potential impact of a machine learning model for detecting breast lesions and various
radiomic biomarkers are examined. This study presents a model that automatically segments
and extracts radiomics and can enable the clinical practice to find breast lesions while performing
diagnosis concurrently.

Abstract: Automated medical data analysis demonstrated a significant role in modern medicine, and
cancer diagnosis/prognosis to achieve highly reliable and generalizable systems. In this study, an
automated breast cancer screening method in ultrasound imaging is proposed. A convolutional deep
autoencoder model is presented for simultaneous segmentation and radiomic extraction. The model
segments the breast lesions while concurrently extracting radiomic features. With our deep model,
we perform breast lesion segmentation, which is linked to low-dimensional deep-radiomic extraction
(four features). Similarly, we used high dimensional conventional imaging throughputs and applied
spectral embedding techniques to reduce its size from 354 to 12 radiomics. A total of 780 ultrasound
images—437 benign, 210, malignant, and 133 normal—were used to train and validate the models in
this study. To diagnose malignant lesions, we have performed training, hyperparameter tuning, cross-
validation, and testing with a random forest model. This resulted in a binary classification accuracy
of 78.5% (65.1–84.1%) for the maximal (full multivariate) cross-validated model for a combination of
radiomic groups.

Keywords: ultrasound imaging; breast cancer; medical image analysis; dimensionality reduction;
deep learning; radiomics

1. Introduction

Despite high survival rates and the current advancement of various imaging systems,
used for diagnostic and treatment, breast cancer still accounts for the most fatal cancer
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among women, over 30% of the overall cancer death, according to the American Cancer
Society and World Health Organization (WHO) reports [1,2]. X-ray mammography is the
gold standard for breast cancer screening and is often used for the follow-up screening
process as well. Other imaging modalities, such as magnetic resonance imaging, are more
applicable to high-risk mutation cases and, due to being costly, are not considered for
screening. Ultrasound (US) imaging is another common screening modality, which is
highly dependent on the experience and expertise of its operator [3]. There are inherent
limitations concerning medical imaging such as mammography and ultrasound due to
being a projection imaging modality and a small field of view, which causes difficulties
in finding microcalcification deep inside the breast lesions. This might cause a high recall
rate for mammography, approximately 10%, or for digital breast tomosynthesis (DBT) [4,5].
Besides, the tissue superimposition increases false-positive rates in the diagnosis of benign
solid mass, pseudo lesion, or calcifications as malignant tumors [6–8]. The prevalence
of false-positive findings during breast imaging is known as the loudest criticism in the
field [9,10]. In the USA, up to 20% of assessed masses were categorized as Breast Imaging
Reporting and Data System (BI-RADS) category 3 (probably benign) and recommended for
biopsy and short-interval follow up (6 months), while only 9–11% of biopsies prove to be
malignant 36. On the other hand, without biopsy or frequent surveillance, diagnosis would
be delayed and have an adverse effect on patients’ health. Consequently, it is eminently
desired that next-generation breast imaging systems and screening practices must decrease
unnecessary biopsies and false-positive call-backs, to reduce invasive procedures, radiation
dose, cost, and avoidable anxiety in patients.

Computer-aided decision (CAD) systems showed undeniable help to physicians due
to recent advancements in artificial intelligence (AI) technology [11–14]. Particularly,
embedded advanced machine learning models, i.e., deep neural networks, helped boost
the capabilities of CAD [15]. Important parameters for the diagnosis of breast cancer are
related to tumor morphological information, which is often checked by physicians, and
baseline characteristic features verified by CAD [13,14]. Imaging throughputs, or radiomics,
decode information on the characteristics that were not visible to the naked/untrained eyes
and can have significant effects on cancer diagnosis/prognosis [16–23].

Deep learning improves the capability of imaging throughputs for CADs, deep-radiomics,
through transfer learning and extraction of hidden weights from the pre-trained models [24],
or by creating new models to enhance the deep radiomics [25,26]. In both scenarios, high
dimensional features aid CAD to enhance the ability to interpret the contents for non-
imaging experts [27]. Similarly, segmentation of breast lesions in ultrasound images can
be a challenging task that often involves physicians with trained eyes. CAD helped
in the past to increase the accuracy of tumor findings through multiple methodologies,
including deep learning with reasonably high accuracy [28,29]. Segmentation and clas-
sification of the tumors in medical imaging can be challenging due to multiple training
processing and limited data in the medical field. Such problems, along with imbalanced
training [26] or higher segmentation accuracy in the model [28], were addressed using
different models’ configurations.

We tackle this challenge by designing a deep convolutional neural network model
to segment and simultaneously extract deep-radiomics to be used for the classification of
the breast lesion types (see Figure 1). The segmentation and radiomic extraction tasks are
embedded in a single unit of the deep neural network, which mitigates the amount of data
and training time required for the training of the model.
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unit of the deep neural network, which mitigates the amount of data and training time required for 
the training of the model. 

2. Materials and Methods 
2.1. Study Data  

To test the feasibility of the proposed model, we conducted preliminary analyses exam-
ining an automated system for segmentation of the tumor in a large cohort of patients. The 
publicly available ultrasound images came from Baheya Hospital for Early Detection and 
Treatment of Women’s Cancer, Cairo, Egypt [30]. This imaging dataset consisted of 780 ultra-
sound images from 600 women ages 25 and 75 years old, collected in 2018. The collected ul-
trasounds represent different breast cancer states, normal, benign, and malignant. Figure 2 
shows four examples of our ultrasound images for normal, benign, and malignant cases. 

 
Figure 2. Four examples of ultrasound: (a) shows a normal case with no suspicious lesion, (b) depicts 
a benign nodule, while (c,d) show malignant tumors. These images show the challenge in discrimi-
nating different group of lesions with different textural complexities. 

Figure 1. The workflow for automated breast lesion finding and breast cancer diagnostic system
using deep autoencoder. The segmentation and radiomic extraction tasks are embedded in a single
unit of the deep neural network, which mitigates the amount of data and training time required for
the training of the model.

2. Materials and Methods
2.1. Study Data

To test the feasibility of the proposed model, we conducted preliminary analyses
examining an automated system for segmentation of the tumor in a large cohort of patients.
The publicly available ultrasound images came from Baheya Hospital for Early Detection
and Treatment of Women’s Cancer, Cairo, Egypt [30]. This imaging dataset consisted
of 780 ultrasound images from 600 women ages 25 and 75 years old, collected in 2018.
The collected ultrasounds represent different breast cancer states, normal, benign, and
malignant. Figure 2 shows four examples of our ultrasound images for normal, benign,
and malignant cases.
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2.2. The Proposed Deep Learning Model

Radiomics have demonstrated a high potential to discover the characteristics of dis-
eases in medical imaging that cannot be seen by the naked eye [18–23]. These imaging
throughputs are typically a useful complement to clinical and biological covariates to en-
hance diagnostic capacity. Deep neural networks recently achieved certain improvements
in diagnosis using conventional radiomics [31–34]. CAD systems often leverage receiving
an ample number of covariates encapsulating the imaging attributes, while having too
many radiomics inhibits the overall performance due to overfitting, known as the curse of
dimensionality [34–39].

Hidden layers in the pre-trained models, such as ResNet [40], ImageNet [41], and
VGG [42], are often used to extract deep features, which are high dimensional covariates
and require the preprocess to prevent overfitting of our decision-making unit. Conventional
feature selection or feature reduction methodology might not be the best solution to tackle
this problem due to difficulties in interpreting closely bonded covariates in hidden weight
which might be deduced as collinearity. A solution can be using a trained model to be
susceptible to slowly varying features and succinctly reduce the dimensionality [36].

In this study, we propose a convolutional deep autoencoder model with dual-purpose
applications for segmenting and simultaneously extracting concise deep radiomics of
the breast lesions. The generated radiomics are employed to diagnose breast cancer in
ultrasound imaging. In the training phase, the segmented breast lesions have been provided
to the model. After that, in the testing phase, the model performs segmentation while
generating low dimension radiomics, known as latent space features. The loss function
is measured as a distance between the model-segmented area and the ground truth. Our
model’s parameters are optimized using a stochastic gradient descent algorithm trying to
minimize the similarity distance and make sufficient segmentation. Figures 1 and 3 show
the workflow of the proposed approach in terms of model configuration and radiomic
throughput, respectively.

The input to the model, x ∈ Rn × m, has the spatial dimensions of 512× 512. Then
this length decreases to η, which is the latent space dimension. η = Fe(x) = ae(Wx + be)
is the abstracted representation for the input image, ae is the activation for compression
path, and be and W are the contracting path bias and weight matrices, respectively.
y = Gd(η) = ad

(
WTη

)
expands the latent representation of input to the original input

spatial dimensions. y is the corresponding of x, and ad is the activation expansion path. A
deep autoencoder is made of a multilayer model with some activations corresponding to
each layer a(.)i

, weights Wi, biases b(.)i
, and matrices minimizing {Wi, bei}. This is shown

by JAE = Ex
[
`
(
x, Gdi(Fei(x))

)]
, where `(.) is the model’s loss function, which is measured

by the Dice similarity coefficient (DSC).
The proposed model decreases the dimensionality to 16, and after filtering the features,

and weights, with lesser influence on our data, four deep-radiomics were extracted and
used for training the random forest model. Discussion of computational complexity of the
proposed model is in Appendix A.

This model is motivated by SPAER [43] configuration with slight modifications toward
segmentation and alleviating sparsity in the latent representation by taking away the
additional `1 penalty term from the model. Figures 1 and 3 display the configuration of the
proposed deep learning model.
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2.3. Conventional Radiomics in Breast US Imaging

Radiomic features can be divided into different categories. For example, first-order
features, which include tissue density, shape features (i.e., volume and surface area), and
texture features, describe spatial patterns of voxel intensities [5,7,9,11–17]. The proposed
approach employs 354 radiomics features in nine categories: first-order statistics (FO),
shape-based expression (SB), gray level co-occurrence matrix (GLCM), gray level depen-
dence matrix (GLDM), gray level run length matrix (GLRLM), gray level size zone ma-
trix (GLSZM), neighboring gray-tone difference matrix (NGTDM), Laplacian of Gaussian
(LOG), and three-layer filtering wavelet features (see Table 1 and Supplementary Materials
Table S1).

Table 1. The proposed application of conventional and modified deep learning texture descriptors.

Type of Texture Analysis Categories

Conventional Radiomics

First-Order Statistics (FO)

Shape-Based Expression (SB)

Gray Level Co-Occurrence Matrix (GLCM)

Gray Level Dependence Matrix (GLDM)

Gray Level Run Length Matrix (GLRLM)

Gray Level Size Zone Matrix (GLSZM)

Neighboring Gray Tone Difference Matrix (NGTDM)

Laplacian Of Gaussian (LOG)

Wavelet

Deep Learning model-made
Radiomics Deep Convolutional Autoencoders

2.4. Dimensionality Reduction

The high dimensional radiomic data is addressed through two separated methodolo-
gies which interact by combining the outcome imaging biomarkers for the final decision-
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making unit, random forest. A deep neural network structure motivated by SPAER [43]
proposed to reduce the dimensionality from 262,144 pixels to a 4 pixel-array biomarker.
The second dimensionality reduction path involves conventional radiomics. A spectral
embedding method and Laplacian eigenmaps [44], as a non-linear dimensionality reduction
technique, mitigates the dimensionality from 354 radiomics to 12 radiomics.

2.5. Metrics for Breast Lesions Finding

Deep learning-based segmentation models have shown great performance in natural
imaging [45]. In medicine, challenges are different from natural images and the models
are often need multiple modifications in their network’s configurations. Among many
structures, the UNet architecture has achieved exceptional capability in segmenting various
targets or organs in many medical imaging modalities [46,47]. Reviewing the literature,
we have chosen a slightly modified version of the original UNet [46] deep segmentation
network to segment the ventricles. All models are trained from scratch using training and
validation sets and evaluated on the testing set. The networks are trained with normalized
input images (MRI slices) and their respective labels through their segmentation maps with
stochastic gradient descent.

Dice loss: The dice loss function, originally the Sørensen–Dice similarity coefficient in
the 1940s, measures the similarity between two samples [48,49]. Dice score has been used
for 3D segmentation of medical imaging [50]. The definition of DSC is presented as follows:

DSC =
2 ∑N

i p(yi)gi

∑N
i p(yi)

2 + ∑N
i g2

i

(1)

where p(yi) is the probability of the outcome of the model for ith case, while the corre-
sponding ground truth for that is gi. This happens for N cases, the number of cases in the
study. LDice refers to the DSC obtained for the cases during one epoch. To train the model,
we compute the Dice loss for every sample in our selected batch and then average over
the batch.

2.6. Breast Lesions Detection

To detect the breast lesions, we used 550 cases from our overall cohort of patients and
100 cases for testing our model. We used this data pool concentrating on finding breast
lesions and extracting deep-radiomics from the model simultaneously. For every group
of patients, there was a random sampling which led to distributing the two categories of
lesions, benign and malignant, equally across the input cases into the model.

2.7. Evaluation of Classifying Lesions

To evaluate the system’s performance in classifying lesions, we used metrics such as
overall accuracy, precision, and recall through random forest classification. The number of
trees in the forest, the maximum depth, and the random state in the tree were optimized
by adjusting the hyperparameters for access to our data using the leave-one-out cross-
validation technique. The selected group of abnormal cases, with breast lesions, are
then analyzed by a classifier and evaluated by calculating and comparing their accuracy,
precision, and recall. Finally, different tuning hyperparameters were chosen to optimize the
model for diagnosis. The selected features from conventional radiomics and extracted deep-
radiomics are concatenated with each other as input covariates into the model, while the
ground truth of the classification is also given to the model to complete the benchmarking
process. The model was trained with leave-one-out cross-validation and performed a t-test
to check the statistical significance of the outcomes.

To develop a deep learning-based automated image analysis pipeline, segmentation
and extraction of high throughput quantitative measurements of breast cancer were per-
formed in a hierarchical order. The current segmentation methodology of applying deep
neural networks were improved to segment the breast lesions for ultrasound imaging and
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simultaneously extracted compressed deep radiomics. We developed a pipeline to incor-
porate a selection of image processing, deep learning, data analysis, and dimensionality
reduction algorithms to expedite a series of steps to perform breast lesion segmentation, and
deep/conventional radiomics (Figure 4). The pipeline includes training steps for segment-
ing breast lesions incorporating a deep autoencoder to train and perform segmentation.
Following the model training, feature extraction was performed through conventional
and our deep architecture imaging features to compute the breast lesions intensity and
texture descriptors. In the testing phase, the pipeline underwent an evaluation during
which parameters of deep autoencoder (i.e., batch size, learning rate, training epoch, etc.)
were optimized in association with the outcome of interest. Deep-imaging biomarkers gen-
erated from our model will be compressed, while some approaches for selecting important
features and dropping collinearity among the biomarkers need to be performed. Figure 3
demonstrates an overview of the workflow for automated diagnosis of breast cancer.
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Figure 4. Preliminary results indicate a promising outcome of automated breast lesion segmentation.
Some examples of successful (a.i,c.i,b.iii,c.iii), semi-successful (b.i,a.ii,b.ii,c.ii) and unsuccessful
segmentations (a.iii) are presented.

3. Results

The proposed CAD system involves a deep learning model with dual applications; we
present the results based on the application of the model.

3.1. Segmentation of the Breast Lesions

In total, 780 ultrasound images—437 benign, 210, malignant, and 133 normal—were
used as the input for this system. This set was divided at random into training and testing
sets, having 635 and 145 cases, respectively. We used the proposed deep learning structure
for 2D ultrasound imaging segmentation. The input ultrasound images dimensions were
512 × 512, which were normalized before feeding them to the model. A convolutional
layer, batch normalization, and a rectified activation linear unit (ReLu) layer were used for
all input images. In the contracting path, all consecutive convolutional layers had a filter
size of 3 × 3 and pooling layers of 2 × 2 shrunk the 512 × 512 input spatial dimension to 32
× 32 dimensions at the end of the encoder. Then, 16 filters were used in the convolutional
layer to convolve the input ultrasound image, which used the same size padding with a 2
× 2 stride. The model applied a mirrored architecture for the decoder (expanding path)
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without skip connection (bridges) between two paths, as shown in Figures 1 and 2. For
upsampling data, a 3 × 3 kernel size deconvolved the contracted images. The networks
overall number of trainable parameters was 190,279,473, with 512 maximum channels.
The Adam optimizer was used for the training of all models with a modifying learning
rate of 2× 10−4 to 10−6. The models were trained for 150 epochs with a batch size of 8
for the training cohort of patients. The proposed deep learning model was implemented
with the TensorFlow library in Python programming language [51,52]. The results of
segmentation were attained throughout the inference process using Dice score similarity
of the predicted lesions to the ground truth labels, which reached close to 85.7% and 70%
for the training and validation sets, respectively. During training, the value of the Dice
coefficient fluctuates approximately from 42% to 55% during the first 20 epochs, then
increased and stabilized after the 70th epoch. To avoid overfitting, we kept training the
proposed model in the 150 epochs range. Then, this trained model was used to segment
the breast lesions for other patients’ strata and generated masks for them while extracting
deep radiomics simultaneously. Figures 4 and 5 show the results of segmentation with
training and validation loss, and the accuracy of the training for 150 epochs, respectively.
The result of computational time of the proposed model is presented in Table S1 in the
Supplementary Material Section. In Figure 4, some examples of successful (a.i, c.i, b.iii,
c.iii), partially-successful (b.i, a.ii, b.ii, c.ii) and unsuccessful segmentations (a.iii) are
presented. The results indicate that the model tends to have more false positive errors than
false negatives.
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150 epochs.

3.2. Conventional and Deep Latent Space Radiomics

In total, 354 conventional radiomics [20] were extracted via the original ultrasound
images, and the proposed deep learning attained their matching masks for the validation
sets. The images that went through the segmentation process were then used for extracting
standard radiomics for their 2D targeted region of interest (ROI), i.e., solely for the breast
lesion areas from our trained model. Out of all traditional radiomics, the dimensionality
shrunk to 12 features using the spectral embedding approach. These twelve descriptors
were selected based on the elbow method of choosing the best number of grouping features
(Figure S1 in the Supplementary Material Section).

The proposed model consisted of five convolutional blocks and contained 190,279,473
trainable parameters, which preferred input images with 512 × 512 dimensions. After
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that, the input image goes through 32 filters with 3 × 3 kernels. The re-scaling process
of the dimensions through the model was from 512, 256, 128, 64, 32, 16, and 8, while
the dimensions grew from 8, 16, 32, 64, 128, 256, and 512. A hierarchy of dense layers
flattened and compressed the data in the middle of the model from 262,144 to 16, which
produced 16 deep latent space features. Out of 16, four features were selected, and the
rest were discarded due to having minimum variations or being zero, which were used
for classification.

Table 2 reports the classification power capability of a multivariate classifier, random
forest, to categorize breast lesions into benign and malignant classes. This leads to an
automatic diagnostic outcome for the model. The accuracies of the models are measured
with the respect to input imaging throughputs, and conventional or deep radiomics. Sta-
tistical distribution of each class of features was measured using the Wilcoxon test and
regression analysis, which determined a significant statistical strength for discriminating
benign versus malignant with a p-value < 0.005 (Figures S2–S5 in the Supplementary
Material Section).

Table 2. Results of automated diagnosis of breast cancer in ultrasound imaging based on the
classification of benign versus malignant patients with leave-one-out cross-validation. Convolutional
and Deep learning radiomics are presented by conv and deep, respectively. Also, number of the trees
(No. est.), maximum depth (Max. depth), and random state (Rand. state).

Accuracy of Different Multivariate Models for Breast Cancer Diagnosis in Ultrasound Images

Methods Hyperparameter Radiomics Classification
Accuracy 1 (%)

Kappa
Coefficient (κ)

t-Test 2

t-Statistic, Two-Tailed p-Value

Random
Forest

No. est. = 10 Conv 69.03 (52.9–74.3) 57.4 (±18.5) –
Max depth = 2 Deep 67.7 (45.5–72.7) 59.8 (±17.2) 10.2, <0.0005

Rand. state = 10 Conv + Deep 71.7 (52.9–74.3) 60.1 (±17.1) 6.01, <0.0005
No. est. = 25 Conv 73.1 (59.8– 78.8) 65.1 (±14.6) –

Max depth = 3 Deep 73.3 (59.9–76.9) 64.7 (±14.7) 10.1, <0.0005
Rand. state = 30 Conv + Deep 73.2 (59.8–76.7) 64.9 (±14.8) 7.9, <0.0005

No. est. = 15 Conv 75.6 (62.4–82.05) 69.1 (±13.6) –
Max depth = 4 Deep 75.2 (62.4–81.2) 69.8 (±13.5) 16.9, <0.0005

Rand. state = 65 Conv + Deep 75.2 (62.4–80.4) 69.7 (±13.2) 19.7, <0.0005
No. est. = 22 Conv 78.8 (64.7–85.5) 73.7 (±12.5) –

Max depth = 5 Deep 78.5 (64.5–83.9) 73.9 (±12.2) 21.6, <0.0005
Rand. state = 80 Conv + Deep 78.5 (65.1–84.1) 74.0 (±12.0) 29.8, <0.0005

No. est. = 22 Conv 83.9 (67.9–90.2) 79.2 (±12.8) –
Max depth = 6 Deep 84.9 (66.6–90.9) 78.4 (±12.1) 30.7, <0.0005

Rand. state = 80 Conv + Deep 84.6 (66.8–89.9) 79.6 (±12.2) 37.8, <0.0005
No. est. = 22 Conv 85.1 (65.9–89.9) 77.9 (±13.3) –

Max depth = 6 Deep 83.7 (65.1–89.8) 78.1 (±12.5) 33.2, <0.0005
Rand. state = 90 Conv + Deep 85.3 (65.3–89.1) 78.8 (±12.7) 39.1, <0.0005

1 Classification accuracy reported by median (± IQR) (interquartile range—IQR). 2 t-test calculated for each
method versus maximal accuracy.

3.3. Optimizing the Classifier’s Hyperparameters

Hyperparameters of the random forest model were playing important role in classi-
fying breast lesions. These hyperparameters consisted of the number of decision trees in
the forest, the maximum depth of the model, and the number of features considered by
each tree when splitting a node. To obtain the optimum hyperparameters, we tuned the
model for all the possible degrees of freedom through an empirical evaluation for each
combination. Figure 6 presents the variations in accuracy corresponding to each change in
hyperparameter.
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Figure 6. Hyperparameter tuning for the random forest, blue curves are representing deep radiomics
and red curves show conventional radiomics fed to the model for the tuning using leave-one-out
cross validation.

To tune the hyperparameters, many iterations of the entire leave-one-out cross-
validation process are performed, each time using different model settings for the three
aforementioned hyperparameters, i.e., number of the trees, max number of levels in each
decision tree (maximum depth), and random state. All the models were then compared to
select the best and train it on the training set, while one case was temporarily eliminated.
Moreover, a grid search algorithm was employed through K-fold (k = 5) cross-validation to
find the optimum hyperparameters for this model, which confirm the selected hyperpa-
rameters (Section S1 and Table S3 in the Supplementary Material Section).

3.4. Classification Performance of the Proposed Model

To measure the accuracy of the model quantitatively, we utilized the clinical diagnosis
as the gold standard or ground truth for our classification. The ground truth images were
labeled as 0 for benign and 1 for malignant lesions. The classification was then performed
based on binary classification for two groups of labels. There is a third category of the
participants that have no lesions detected for them and are healthy cases.

We created two groupings of patients based on imaging throughputs and classified
them by a random forest classifier. Three imaging biomarkers were incorporated to classify
the lesions as benign and malignant, i.e., conventional radiomics, deep radiomics, and
a combination of both groups. We classified other input cases based on four proposed
deep learning deep latent space radiomic descriptors, twelve conventional radiomics, and
lastly, a combination of the two and compared them with the ground truth data from
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clinical assessment. To examine the appropriateness of imaging biomarkers for diagnos-
ing breast cancer patients, we performed a classification with an optimized multivariate
random forest model with leave-one-out cross-validation. Table 2 and Figure 7 show the
cross-validated accuracy of the proposed method with the respect to hyperparameters’
adjustment, respectively.
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The proposed model could reach a higher accuracy by adjusting the hyperparameters.
In Table 2, the accuracy of the model reached to 85.3% (65.3–89.1%) for No. est. = 22, Max
depth = 6, and Rand. state = 90. However, we reported the accuracy of the classifier with
the respect to hyperparameters in order to avoid overfitting. The selected multivariate
binary-class classification model for benign versus malignant detected breast cancer lesions
was the conventional radiomics with No. est. = 22, Max depth = 5, and Rand. state = 80,
which resulted in an accuracy of 78.8% (64.7–85.5%), and combined radiomics for the
combination of both radiomic types (conventional radiomics and deep radiomics) resulted
in 78.5% (64.5–83.9%) and 78.5% (65.1–84.1%), respectively.

Conventional radiomics with hyperparameters of No. est. = 10, Max depth = 2, and
Rand. state = 10 for the random forest model showed the lowest binary-class classification
accuracy of 69.03% (52.9–74.3%), and deep and combined models to detect malignant
lesions, which yielded 67.7% (45.5–72.7%) and 71.7% (52.9–74.3%), respectively. This might
be due to a low number of random observations and feature reduction in the model, which
tends to weaken the classifier to generalize the model during the training stage. This trend
is also observed, yet improved in the models trained with No. est. = 25, Max depth = 3, and
Rand. state = 30 parameters for the classifier with 73.1% (59.8–78.8%), 73.3% (59.9–76.9%),
and 73.2% (59.8–76.7%) accuracies for conventional, deep, and combined radiomics, respec-
tively. The model’s hyperparameters, No. est. = 15, Max depth = 4, and Rand. state = 65,
showed the middle-high range accuracy, 75.6% (62.4–82.05%), 75.2% (62.4–81.2%), and
75.2% (62.4–80.4%) for three aforementioned types of imaging throughputs, respectively.
We also assessed the statistical distinction of the maximal accuracy, Conv. Radiomics No.
est. = 22, Max depth = 5, and Rand. state = 80, with other hyperparameters’ variations
applying a two-tailed t-test (see Table 2). The maximal model showed statistical significance
with the entire model, e.g., the maximal model versus the combined model yield difference
of t-statistic = 29.8 (p-value < 0.0005). Moreover, we calculated Kappa coefficients for vali-
dating our inter-rater reliability of the classifications for different tuning hyperparameters
of the random forest model for conventional and deep radiomics, which yielded to 74.0%
(± 12.0), corresponding to average and standard deviation of the Kappa coefficient for the
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reported accuracy of the model (See Table 2). Figure 7 shows the precision–recall curve for
each class for conventional and radiomic features separately. For binary-class classification
using deep-radiomics, the graph showed higher average precision (AP), reaching 81%,
while conventional radiomics yield 72% AP. This indicates that with deep radiomics, the
maximal model can classify the benign versus malignant with more precision.

4. Discussion

This study proposed an automatic approach to detect and diagnose breast lesions
concurrently employing a self-designed deep neural network model [53]. The model
generates deep radiomics and segments of breast cancer lesions, which helped to extract
standard radiomics in ultrasound images. The model is self-sufficient and creates low-
dimensional deep radiomics and integrates them with selected conventional radiomics for
diagnostic purposes. This study demonstrated the possibility of a diagnosis of breast cancer
lesions using a fast, non-invasive, and cost-effective ultrasound imaging-based diagnostic
system as a recommender system to be used as a tool for physicians and radiologists to
increase the precision.

The application of the proposed model implied the viability of a dual intended au-
tomated system with segmentation and extraction of low-dimensional deep radiomics
from ROI. The proposed model exhibited relatively considerable accuracy compared to the
state-of-art models, i.e., ASS-GANs [54], and W-Net [55], yet the combination of concurrent
low-dimensional radiomics increases the contribution of this model, which significantly
reduces the training process and required data compared cascading multiple models. Simi-
larly, our model exhibited considerable growth in model performance for classifying breast
cancer patients from benign cases (Figure 7, and Table 2). The proposed model in this study
follows the previously mentioned methodologies [43], to design models for generating
deep radiomics with low dimensionality, thereby surpassing the possibility of overfitting
in our model and the issue of the curse of dimensionality. The proposed model gave low-
dimensional deep radiomics through its latent space projection, while instantaneously
segmenting breast lesions in ultrasound images.

The proposed model exhibits some limitations, one limitation is due to the absence
of clinical information for this study, the clinical information and demographics were
not included in the diagnostic decisions. In addition, most women undergo screening
mammograms, and ultrasound is often utilized for confirmation of an abnormality on
ultrasound or to evaluate symptoms. This proposed system is a CAD model to assist this
procedure for ultrasound, and for the mammography there should be a comparable model
to perform CAD, i.e., [56,57].

Despite a considerable number of cases and features to project the attributes for
this study, there is a necessity for incorporating clinical input to achieve high diagnostic
reliability in this system. Moreover, to achieve high validity and generalizability of the
system, an independent imaging set seems to be required. In addition, exploring other deep
learning configurations may lead to high discriminative capability in ultrasound images.
Furthermore, there is a possibility to use an end-to-end deep neural mechanism to reduce
additional decision-making models. The application of the sophisticated manifold learning
and dimensionality reduction models is seemingly appealing as an alternative to the current
conventional radiomics. This model designed and trained for quality ultrasound images,
and may exhibit failing of segmenting lesions in poor sonographic images. This can be
an intriguing topic for future investigation. The proposed model, like other CADs, acts
as a recommendation system to physicians and is dependent on the training. To provide
higher reliability, generalizability, and accuracy for more difficult cases, i.e., fibroepithelial
lesion, or intraductal papilloma, the system must be trained with a sufficient number of the
relevant ultrasound images.

The proposed model offers several advantages. First, using the proposed deep learning
model to extract deep radiomics and concurrently segmenting the breast lesions delivers
an effective feature extraction technique with much lesser data and training duration. To
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the best of our knowledge, this is the first time such a model has been used in breast cancer
diagnosis in ultrasound imaging. In addition, this prevents pre-trained models with higher
dimensional feature extraction and consequent overfitting of the decision-making model.
Second, the dual application of the proposed deep learning model alleviates the complexity
of the model to use separate models for segmentation and feature extraction. Third, our
proposed model impedes applying human-engineered feature selection/reduction.

5. Conclusions

This study presented two methods to tackle the problem of the curse of dimensionality in-
volving conventional and deep convolutional neural network-driven imaging biomarkers,
radiomics. Moreover, the proposed deep learning model has exhibited a dual-purpose be-
havior, which automatically segmented ultrasound lesions and extracted low-dimensional
radiomics, four deep-radiomics. The model was trained to segment the breast lesions
while extracting radiomic features simultaneously. For traditional radiomics, 354 features
were extracted from automated segmented breast lesions using a radiomic library, and its
dimensionality decreased more than 29 times to 12 imaging biomarkers by applying the
spectral mapping algorithm. To make the final diagnosis decision, a random forest model
has been used that trained, tuned, and tested to classify segmented lesions to malignant
and benign categories. The proposed system has been trained and validated using 780
ultrasound images to segment and diagnose the segmented breast lesions. The accuracy of
the random forest model obtained through leave-one-out cross-validation yielded 78.5%
(65.1–84.1%) for the maximal (full multivariate) cross-validated model, while the model
for conventional- and deep-radiomics gave the accuracies of 78.8% (64.7–85.5%) and 78.5%
(64.5–83.9%), respectively. In future work, we would expand our analysis for an indepen-
dent dataset by combining it with other types of data to tackle the system’s generalizability
and reliability.
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10.3390/cancers14112663/s1. Table S1. Computational time of the designed deep learning model.
Table S2. More detailed information about the Radiomic features. Table S3. The hyperparameter
scoring obtained by grid search and 5-fold cross validation of the model and their scores and
optimization time. Figure S1. Elbow technique to calculate the distortion score and find out the
optimum number of the cluster for conventional radiomics. Figure S2. Regression analysis for
benign and malignant lesions for four conventional radiomics and four deep radiomics. Figure S3.
Distribution of conventional radiomics and their effect on diagnosis for malignant and benign lesions.
Figure S4. The distribution of Deep radiomics and their classification strength. Figure S5. The receiver
operating characteristic (ROC) curves for different multivariant models using conventional and deep
radiomic features.
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Appendix A Computational Complexity of the Proposed Model

The major computational complexity of the convolutional neural networks concerns
convolutional layers, which leads to 90–95% of the overall complexity of the model [58,59].
The proposed convolutional autoencoder also follows the same complex tendency due to
the designed convolutional layers. The given complexity of the proposed structure can be
approximated as:

O
(

L

∑
i=1

ci−1.s2
i . ci.m2

i

)
(A1)

where i is the convolutional layer index and L is the overall number of convolutional layers,
which is 5 for the presented model. ci presents the channel number of the ith layer index
and spatial kernel size is shown by si (all consecutive convolutional layers had a filter size
of 3 × 3), while mi denotes the spatial size of the output feature maps. In our model, 16
filters were used in the convolutional layer to convolve the input ultrasound image, which
used the same size padding with a 2 × 2 stride. Our model followed the standard network
and have mi of each layer, as half-resolution of the input image, which is also halved.
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