Novel Pharmacological Treatment Options in Pediatric Glioblastoma—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Newly Diagnosed Pediatric Glioblastoma
3.2. Recurrent or Refractory Pediatric Glioblastoma
4. Discussion
4.1. Newly Diagnosed Pediatric Glioblastoma
4.2. Recurrent or Refractory Pediatric Glioblastoma
4.3. Novel Therapies within the Scope of Phase Ⅰ Trials and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
- Fangusaro, J. Pediatric High-Grade Gliomas and Diffuse Intrinsic Pontine Gliomas. J. Child Neurol. 2009, 24, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Da, W.; Xueli, C.; Xiao, P.; Yian, X. Prognostic factors and survival prediction of pediatric glioblastomas: A population-based study. Turk. Neurosurg. 2020, 31, 873–879. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, M.; Liu, X.; Wang, J.; Wang, Z.; Luo, W.; Yu, Y.; Sun, H. Clinical Features and Prognostic Factors of Pediatric Glioblastoma: Report of 38 Cases. World Neurosurg. 2021, 153, e105–e111. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.; Smirniotopoulos, J.G.; Jones, R.V.; Wong, K. Glioblastoma multiforme: Radiologic-pathologic correlation. RadioGraphics 1996, 16, 1413–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, C.; Wei, K.-C.; Chang, C.-N.; Hsu, P.-W.; Wong, H.-F.; Ng, S.-H.; Castillo, M.; Lin, C.-P. Differentiation of Pyogenic Brain Abscesses from Necrotic Glioblastomas with Use of Susceptibility-Weighted Imaging. Am. J. Neuroradiol. 2012, 33, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Gharzeddine, K.; Hatzoglou, V.; Holodny, A.I.; Young, R.J. MR Perfusion and MR Spectroscopy of Brain Neoplasms. Radiol. Clin. N. Am. 2019, 57, 1177–1188. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Das, K.K.; Mehrotra, A.; Nair, A.P.; Kumar, S.; Srivastava, A.K.; Sahu, R.N.; Kumar, R. Pediatric glioblastoma: Clinico-radiological profile and factors affecting the outcome. Child′s Nerv. Syst. 2012, 28, 2055–2062. [Google Scholar] [CrossRef]
- Perkins, S.M.; Rubin, J.B.; Leonard, J.R.; Smyth, M.D.; El Naqa, I.; Michalski, J.M.; Simpson, J.R.; Limbrick, D.L.; Park, T.S.; Mansur, D.B. Glioblastoma in Children: A Single-Institution Experience. Int. J. Radiat. Oncol. 2011, 80, 1117–1121. [Google Scholar] [CrossRef]
- Nikitovic, M.; Stanic, D.; Pekmezovic, T.; Gazibara, M.S.; Bokun, J.; Paripovic, L.; Grujicic, D.; Saric, M.; Miskovic, I. Pediatric glioblastoma: A single institution experience. Child′s Nerv. Syst. 2015, 32, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA A Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Duffner, P.K.; Horowitz, M.E.; Krischer, J.P.; Burger, P.C.; Cohen, M.E.; Sanford, R.A.; Friedman, H.S.; Kun, L.E. The treatment of malignant brain tumors in infants and very young children: An update of the Pediatric Oncology Group experience. Neuro-Oncology 1999, 1, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafay-Cousin, L.; Strother, D. Current Treatment Approaches for Infants with Malignant Central Nervous System Tumors. Oncologist 2009, 14, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, G.; Vinci, M.; Carai, A.; Rossi, S.; Colafati, G.S.; Cacchione, A.; Tornesello, A.; Miele, E.; Locatelli, F.; Mastronuzzi, A. Infantile/Congenital High-Grade Gliomas: Molecular Features and Therapeutic Perspectives. Diagnostics 2020, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.P.; Kocak, M.; Burger, P.C.; Merchant, T.E.; Gajjar, A.; Broniscer, A. High-grade astrocytoma in very young children. Pediatr. Blood Cancer 2006, 49, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.; Mackay, A.; Ismer, B.; Pickles, J.C.; Tatevossian, R.G.; Newman, S.; Bale, T.A.; Stoler, I.; Izquierdo, E.; Temelso, S.; et al. Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov. 2020, 10, 942–963. [Google Scholar] [CrossRef] [Green Version]
- Dufour, C.; Grill, J.; Lellouch-Tubiana, A.; Puget, S.; Chastagner, P.; Frappaz, D.; Doz, F.; Pichon, F.; Plantaz, D.; Gentet, J.; et al. High-grade glioma in children under 5 years of age: A chemotherapy only approach with the BBSFOP protocol. Eur. J. Cancer 2006, 42, 2939–2945. [Google Scholar] [CrossRef] [PubMed]
- Finlay, J.L.; Boyett, J.M.; Yates, A.J.; Wisoff, J.; Milstein, J.M.; Geyer, J.R.; Bertolone, S.J.; McGuire, P.; Cherlow, J.M.; Tefft, M. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J. Clin. Oncol. 1995, 13, 112–123. [Google Scholar] [CrossRef]
- Wolff, J.E.; Driever, P.H.; Erdlenbruch, B.; Kortmann, R.D.; Rutkowski, S.; Pietsch, T.; Parker, C.; Metz, M.W.; Gnekow, A.; Kramm, C.M. Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: Results of the HIT-GBM-C protocol. Cancer 2010, 116, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Vanan, M.I.; Eisenstat, D.D. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neuro-Oncol. Pr. 2014, 1, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Kramm, C.M.; Wagner, S.; van Gool, S.; Schmid, H.; Sträter, R.; Gnekow, A.; Rutkowski, S.; Wolff, J.E.A. Improved Sur-vival after Gross Total Resection of Malignant Gliomas in Pediatric Patients from the HIT-GBM Studies. Anticancer. Res. 2006, 26, 3773–3779. [Google Scholar] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Seidel, C.; Von Bueren, A.O.; Bojko, S.; Hoffmann, M.; Pietsch, T.; Gielen, G.H.; Warmuth-Metz, M.; Bison, B.; Kortmann, R.; Kramm, C.M. Concurrent radiotherapy with temozolomide vs. concurrent radiotherapy with a cisplatinum-based polychemotherapy regimen. Strahlenther. und Onkol. 2017, 194, 215–224. [Google Scholar] [CrossRef]
- Lashford, L.S.; Thiesse, P.; Jouvet, A.; Jaspan, T.; Couanet, D.; Griffiths, P.D.; Doz, F.; Ironside, J.; Robson, K.; Hobson, R.; et al. Temozolomide in Malignant Gliomas of Childhood: A United Kingdom Children’s Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J. Clin. Oncol. 2002, 20, 4684–4691. [Google Scholar] [CrossRef]
- Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; et al. Temozolomide in the treatment of high-grade gliomas in children: A report from the Children′s Oncology Group. Neuro-Oncology 2011, 13, 317–323. [Google Scholar] [CrossRef]
- Buttarelli, F.R.; Massimino, M.; Antonelli, M.; Lauriola, L.; Nozza, P.; Donofrio, V.; Arcella, A.; Oliva, M.A.; Di Rocco, C.; Giangaspero, F. Evaluation status and prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in pediatric high grade gliomas. Child’s Nerv. Syst. 2010, 26, 1051–1056. [Google Scholar] [CrossRef]
- Lu, V.M.; O’Connor, K.P.; Himes, B.T.; Brown, D.A.; Nesvick, C.L.; Siada, R.G.; Niazi, T.N.; Schwartz, J.; Daniels, D.J. Effect of surgery and chemotherapy on long-term survival in infants with congenital glioblastoma: An integrated survival analysis. J. Neurosurg. Pediatr. 2020, 26, 563–571. [Google Scholar] [CrossRef]
- Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.-A.; Jones, D.T.W.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S.; et al. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 2012, 22, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Raabe, E.H.; Eberhart, C.G. Methylome Alterations “Mark” New Therapeutic Opportunities in Glioblastoma. Cancer Cell 2012, 22, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Hummel, T.R.; Wagner, L.; Ahern, C.; Fouladi, M.; Reid, J.M.; McGovern, R.M.; Ames, M.M.; Gilbertson, R.J.; Horton, T.; Ingle, A.M.; et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: A children′s oncology group phase 1 consortium study. Pediatr. Blood Cancer 2013, 60, 1452–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.M.; Li, X.-N.; Thompson, P.; Ou, C.-N.; Ingle, A.M.; Russell, H.; Lau, C.C.; Adamson, P.C.; Blaney, S.M. Phase 1 Study of Valproic Acid in Pediatric Patients with Refractory Solid or CNS Tumors: A Children′s Oncology Group Report. Clin. Cancer Res. 2010, 17, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 2014, 20, 1394–1396. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Deshmukh, S.; Jessa, S.; Hadjadj, D.; Lisi, V.; Andrade, A.F.; Faury, D.; Jawhar, W.; Dali, R.; Suzuki, H.; et al. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020, 183, 1617–1633.e22. [Google Scholar] [CrossRef] [PubMed]
- Miklja, Z.; Yadav, V.N.; Cartaxo, R.T.; Siada, R.; Thomas, C.C.; Cummings, J.R.; Mullan, B.; Stallard, S.; Paul, A.; Bruzek, A.K.; et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J. Clin. Investig. 2020, 130, 5313–5325. [Google Scholar] [CrossRef]
- Kondyli, M.; Larouche, V.; Saint-Martin, C.; Ellezam, B.; Pouliot, L.; Sinnett, D.; Legault, G.; Crevier, L.; Weil, A.; Farmer, J.-P.; et al. Trametinib for progressive pediatric low-grade gliomas. J. Neuro-Oncol. 2018, 140, 435–444. [Google Scholar] [CrossRef]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.-D.; Joly, F.; et al. BRAF Inhibition in BRAFV600-Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef]
- Drobysheva, A.; Klesse, L.J.; Bowers, D.; Rajaram, V.; Rakheja, D.; Timmons, C.F.; Wang, J.; Koral, K.; Gargan, L.; Ramos, E.; et al. Targeted MAPK Pathway Inhibitors in Patients With Disseminated Pilocytic Astrocytomas. J. Natl. Compr. Cancer Netw. 2017, 15, 978–982. [Google Scholar] [CrossRef]
- Doz, F.; van Tilburg, C.M.; Geoerger, B.; Højgaard, M.; Øra, I.; Boni, V.; Capra, M.; Chisholm, J.; Chung, H.C.; DuBois, S.G.; et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro-Oncology 2021. [Google Scholar] [CrossRef]
- Makhlin, I.; Salinas, R.D.; Zhang, D.; Jacob, F.; Ming, G.-L.; Song, H.; Saxena, D.; Dorsey, J.F.; Nasrallah, M.P.; Morrissette, J.J.; et al. Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma. CNS Oncol. 2019, 8, CNS43. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, X.; Shi, L.; Shan, Q.; Cao, Q.; Yue, C.; Li, H.; Li, S.; Wang, J.; Gao, S.; et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J. Exp. Clin. Cancer Res. 2019, 38, 1–14. [Google Scholar] [CrossRef]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017, 32, 520–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korshunov, A.; Ryzhova, M.; Hovestadt, V.; Bender, S.; Sturm, D.; Capper, D.; Meyer, J.; Schrimpf, D.; Kool, M.; Northcott, P.A.; et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015, 129, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Chatwin, H.V.; Cruz, J.C.; Green, A.L. Pediatric high-grade glioma: Moving toward subtype-specific multimodal therapy. FEBS J. 2021, 288, 6127–6141. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Schrimpf, D.; Ryzhova, M.; Sturm, D.; Chavez, L.; Hovestadt, V.; Sharma, T.; Habel, A.; Burford, A.; Jones, C.; et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol. 2017, 134, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcastle—Ottawa Quality Assessment Scale Case Control Studies. Available online: https://www.ncbi.nlm.nih.gov/books/NBK47306/bin/appendixes.app3fm4.pdf (accessed on 11 April 2022).
- Grill, J.; Massimino, M.; Bouffet, E.; Azizi, A.; McCowage, G.; Cañete, A.; Saran, F.; Le Deley, M.-C.; Varlet, P.; Morgan, P.; et al. Phase II, Open-Label, Randomized, Multicenter Trial (HERBY) of Bevacizumab in Pediatric Patients With Newly Diagnosed High-Grade Glioma. J. Clin. Oncol. 2018, 36, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Risk of Bias 2 (RoB 2) Tool|Cochrane Methods. Available online: https://methods.cochrane.org/risk-bias-2 (accessed on 11 April 2022).
- Macdonald, T.J.; Vezina, G.; Stewart, C.F.; Turner, D.; Pierson, C.R.; Chen, L.; Pollack, I.F.; Gajjar, A.; Kieran, M.W. Phase II study of cilengitide in the treatment of refractory or relapsed high-grade gliomas in children: A report from the Children′s Oncology Group. Neuro-Oncology 2013, 15, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Gururangan, S.; Chi, S.N.; Poussaint, T.Y.; Onar-Thomas, A.; Gilbertson, R.J.; Vajapeyam, S.; Friedman, H.S.; Packer, R.J.; Rood, B.N.; Boyett, J.M.; et al. Lack of Efficacy of Bevacizumab Plus Irinotecan in Children With Recurrent Malignant Glioma and Diffuse Brainstem Glioma: A Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 2010, 28, 3069–3075. [Google Scholar] [CrossRef]
- Robison, N.J.; Campigotto, F.; Chi, S.N.; Manley, P.E.; Turner, C.D.; Zimmerman, M.A.; Chordas, C.A.; Werger, A.M.; Allen, J.; Goldman, S.; et al. A phase II trial of a multi-agent oral antiangiogenic (metronomic) regimen in children with recurrent or progressive cancer. Pediatr. Blood Cancer 2013, 61, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Su, J.M.; Murray, J.C.; McNall-Knapp, R.Y.; Bowers, D.C.; Shah, S.; Adesina, A.M.; Paulino, A.C.; Jo, E.; Mo, Q.; Baxter, P.A.; et al. A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr. Blood Cancer 2020, 67, e28283. [Google Scholar] [CrossRef] [PubMed]
- Wetmore, C.; Daryani, V.M.; Billups, C.A.; Boyett, J.M.; Leary, S.; Tanos, R.; Goldsmith, K.C.; Stewart, C.F.; Blaney, S.M.; Gajjar, A. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: A children′s Oncology Group Study ACNS1021. Cancer Med. 2016, 5, 1416–1424. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.H.; Shen, Y.L.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme. Oncology 2009, 14, 1131–1138. [Google Scholar] [CrossRef]
- Diaz, A.K.; Baker, S.J. The Genetic Signatures of Pediatric High-Grade Glioma: No Longer a One-Act Play. Semin. Radiat. Oncol. 2014, 24, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.; Karajannis, M.A.; Jones, D.T.W.; Kieran, M.W.; Monje, M.; Baker, S.J.; Becher, O.J.; Cho, Y.-J.; Gupta, N.; Hawkins, C.; et al. Pediatric high-grade glioma: Biologically and clinically in need of new thinking. Neuro-Oncology 2016, 19, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salloum, R.; DeWire, M.; Lane, A.; Goldman, S.; Hummel, T.; Chow, L.; Miles, L.; Sutton, M.; Stevenson, C.; Fouladi, M.; et al. Patterns of progression in pediatric patients with high-grade glioma or diffuse intrinsic pontine glioma treated with Bevacizumab-based therapy at diagnosis. J. Neuro-Oncol. 2014, 121, 591–598. [Google Scholar] [CrossRef]
- Camphausen, K.; Cerna, D.; Scott, T.; Sproull, M.; Burgan, W.E.; Cerra, M.A.; Fine, H.; Tofilon, P.J. Enhancement ofin vitro andin vivo tumor cell radiosensitivity by valproic acid. Int. J. Cancer 2004, 114, 380–386. [Google Scholar] [CrossRef]
- Karagiannis, T.C.; Kn, H.; El-Osta, A. The Epigenetic Modifier, Valproic Acid, Enhances Radiation Sensitivity. Epigenetics 2006, 1, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; De Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. J. Clin. Oncol. 2016, 34, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.; Camphausen, K.; et al. Phase II Trial of Single-Agent Bevacizumab Followed by Bevacizumab Plus Irinotecan at Tumor Progression in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E.; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; et al. Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma. Clin. Cancer Res. 2007, 13, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Ellis, L.M.; Hicklin, D.J. Pathways Mediating Resistance to Vascular Endothelial Growth Factor–Targeted Therapy: Fig. 1. Clin. Cancer Res. 2008, 14, 6371–6375. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, T.J.; Stewart, C.F.; Kocak, M.; Goldman, S.; Ellenbogen, R.G.; Phillips, P.; Lafond, D.; Poussaint, T.Y.; Kieran, M.W.; Boyett, J.M.; et al. Phase I Clinical Trial of Cilengitide in Children With Refractory Brain Tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J. Clin. Oncol. 2008, 26, 919–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Bu, X.-Y.; Khankaldyyan, V.; Gonzales-Gomez, I.; McComb, J.G.; Laug, W.E. Effect of the angiogenesis inhibitor cilengitide (emd 121974) on glioblastoma growth in nude mice. Neurosurgery 2006, 59, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.J.; Taga, T.; Shimada, H.; Tabrizi, P.; Zlokovic, B.V.; Cheresh, D.A.; Laug, W.E. Preferential Susceptibility of Brain Tumors to the Antiangiogenic Effects of an αv Integrin Antagonist. Neurosurgery 2001, 48, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, G.; Tonn, J.-C.; Stupp, R.; Weller, M. The Role of Integrins in Glioma Biology and Anti-Glioma Therapies. Curr. Pharm. Des. 2011, 17, 2402–2410. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.-K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Hegi, M.E.; Neyns, B.; Goldbrunner, R.; Schlegel, U.; Clement, P.M.; Grabenbauer, G.G.; Ochsenbein, A.F.; Simon, M.; Dietrich, P.-Y.; et al. Phase I/IIa Study of Cilengitide and Temozolomide With Concomitant Radiotherapy Followed by Cilengitide and Temozolomide Maintenance Therapy in Patients With Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2010, 28, 2712–2718. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, T.; Brodie, C.; Finniss, S.; Berens, M.E.; Rennert, J.L.; Nelson, K.; Lemke, N.; Brown, S.L.; Hahn, D.; Neuteboom, B.; et al. Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int. J. Cancer 2008, 124, 2719–2727. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, D.; Kaipainen, A.; Butterfield, C.E.; Chaponis, D.M.; Laforme, A.M.; Folkman, J.; Kieran, M.W. Inhibition of tumor angiogenesis by oral etoposide. Exp. Ther. Med. 2010, 1, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Klement, G.; Baruchel, S.; Rak, J.; Man, S.; Clark, K.; Hicklin, D.J.; Bohlen, P.; Kerbel, R.S. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Investig. 2000, 105, R15–R24. [Google Scholar] [CrossRef] [Green Version]
- Antiangiogenic Scheduling of Chemotherapy Improves Efficacy against Experimental Drug-Resistant Cancer—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10766175/ (accessed on 3 April 2022).
- Pasquier, E.; Kavallaris, M.; André, N. Metronomic chemotherapy: New rationale for new directions. Nat. Rev. Clin. Oncol. 2010, 7, 455–465. [Google Scholar] [CrossRef]
- Bahl, A.; Bakhshi, S. Metronomic Chemotherapy in Progressive Pediatric Malignancies: Old Drugs in New Package. Indian J. Pediatr. 2012, 79, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Grisanti, S.; Ferrari, V.D.; Buglione, M.; Agazzi, G.M.; Liserre, R.; Poliani, L.; Buttolo, L.; Gipponi, S.; Pedersini, R.; Consoli, F.; et al. Second line treatment of recurrent glioblastoma with sunitinib: Results of a phase II study and systematic review of literature. J. Neurosurg. Sci. 2019, 63, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Westerdijk, K.; Desar, I.M.; Steeghs, N.; van der Graaf, W.T.; van Erp, N.P.; Dutch Pharmacology and Oncology Group (DPOG). Imatinib, sunitinib and pazopanib: From flat-fixed dosing towards a pharmacokinetically guided personalized dose. Br. J. Clin. Pharmacol. 2020, 86, 258–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paugh, B.S.; Qu, C.; Jones, C.; Liu, Z.; Adamowicz-Brice, M.; Zhang, J.; Bax, D.A.; Coyle, B.; Barrow, J.; Hargrave, D.; et al. Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease. J. Clin. Oncol. 2010, 28, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, A.; Pfister, S.; Taylor, M.; Gilbertson, R.J. Molecular Insights into Pediatric Brain Tumors Have the Potential to Transform Therapy. Clin. Cancer Res. 2014, 20, 5630–5640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabanas, R.; Saurez, G.; Rios, M.; Alert, J.; Reyes, A.; Valdes, J.; Gonzalez, M.C.; Pedrayes, J.L.; Avila, M.; Herrera, R.; et al. Treatment of children with high grade glioma with nimotuzumab. mAbs 2013, 5, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Gorsi, H.S.; Malicki, D.M.; Barsan, V.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Nivolumab in the Treatment of Recurrent or Refractory Pediatric Brain Tumors: A Single Institutional Experience. J. Pediatr. Hematol. 2019, 41, e235–e241. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Severson, E.; Gay, L.; Vergilio, J.-A.; Elvin, J.; Suh, J.; Daniel, S.; Covert, M.; Frampton, G.M.; Hsu, S.; et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 2017, 22, 1478–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junior, A.G.; Abreu, N.M.P.; Leal, M.V.B.; de Aquino, H.L.A.; Rodrigues, J.P.C.; Malveira, C.B.; Silva, Y.P.; Coimbra, P.P.A. A Case Report of a Rare Pediatric Brain Tumor: Congenital Glioblastoma. Cureus 2022, 14, 3229. [Google Scholar] [CrossRef] [PubMed]
- Glod, J.; Rahme, G.; Kaur, H.; Raabe, E.H.; Hwang, E.I.; Israel, M.A. Pediatric Brain Tumors: Current Knowledge and Therapeutic Opportunities. J. Pediatr. Hematol. 2016, 38, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, G.K.; Johnston, J.M.; Bag, A.K.; Bernstock, J.D.; Li, R.; Aban, I.; Kachurak, K.; Nan, L.; Kang, K.-D.; Totsch, S.; et al. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N. Engl. J. Med. 2021, 384, 1613–1622. [Google Scholar] [CrossRef]
- Josupeit, R.; Bender, S.; Kern, S.; Leuchs, B.; Hielscher, T.; Herold-Mende, C.; Schlehofer, J.R.; Dinsart, C.; Witt, O.; Rommelaere, J.; et al. Pediatric and Adult High-Grade Glioma Stem Cell Culture Models Are Permissive to Lytic Infection with Parvovirus H-1. Viruses 2016, 8, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakefield, A.; Pignata, A.; Ghazi, A.; Ashoori, A.; Hegde, M.; Landi, D.; Gray, T.; Scheurer, M.E.; Chintagumpala, M.; Adesina, A.; et al. Is CMV a target in pediatric glioblastoma? Expression of CMV proteins, pp65 and IE1-72 and CMV nucleic acids in a cohort of pediatric glioblastoma patients. J. Neuro-Oncol. 2015, 125, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Lucas, K.G.; Bao, L.; Bruggeman, R.; Dunham, K.; Specht, C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J. Neuro-Oncol. 2010, 103, 231–238. [Google Scholar] [CrossRef]
- Ghazi, A.; Ashoori, A.; Hanley, P.J.; Brawley, V.S.; Shaffer, D.R.; Kew, Y.; Powell, S.Z.; Grossman, R.; Grada, Z.; Scheurer, M.E.; et al. Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. J. Immunother. 2012, 35, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, A.; Orrego, A.; Peredo, I.; Dzabic, M.; Wolmer-Solberg, N.; Strååt, K.; Stragliotto, G.; Söderberg-Nauclér, C. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J. Clin. Virol. 2013, 57, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Lasky, J.L.; Panosyan, E.H.; Plant, A.; Davidson, T.; Yong, W.H.; Prins, R.M.; Liau, L.M.; Moore, T.B. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res. 2013, 33, 2047–2056. [Google Scholar]
- Kieran, M.W.; Geoerger, B.; Dunkel, I.J.; Broniscer, A.; Hargrave, D.R.; Hingorani, P.; Aerts, I.; Bertozzi, A.-I.; Cohen, K.J.; Hummel, T.R.; et al. A Phase I and Pharmacokinetic Study of Oral Dabrafenib in Children and Adolescent Patients with Recurrent or Refractory BRAF V600 Mutation–Positive Solid Tumors. Clin. Cancer Res. 2019, 25, 7294–7302. [Google Scholar] [CrossRef] [Green Version]
- Becher, O.J.; Gilheeney, S.W.; Khakoo, Y.; Lyden, D.C.; Haque, S.; De Braganca, K.C.; Kolesar, J.M.; Huse, J.T.; Modak, S.; Wexler, L.H.; et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr. Blood Cancer 2017, 64, e26409. [Google Scholar] [CrossRef] [PubMed]
- McCrea, H.J.; Ivanidze, J.; O’Connor, A.; Hersh, E.H.; Boockvar, J.A.; Gobin, Y.P.; Knopman, J.; Greenfield, J.P. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: Results of a phase I trial. J. Neurosurg. Pediatr. 2021, 28, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Category | Mutation/Cytogenetics | Age Distribution | Tumor Location | Prognosis |
---|---|---|---|---|
H3-Mutant | H3K27M H3G34R/V | younger children [42] adolescents and young adults [42,43] | almost exclusively in midline structures (=DMG) [42] cerebral hemispheres [29] | near 100% mortality [44] better OS than H3K27 mutations [44] |
IDH-Mutant | IDH 1/2 mutation | older children/young adults [42,43] | cerebral hemispheres, frontal or temporal lobe [29] | better OS than H3-mutants [43] |
IDH/H3-Wildtype | BRAFV600E, NF1 mutations, RTK fusions amplifications of EGFR, CDK6, MYCN PDGFRA and MET amplifications | infants/children/adolescents rare in children and adolescents [29] children and adolescents, rather rare [45] | supratentorial, commonly hemispheric [29,44] occur throughout the brain [44] hemispheric and midline [42] | increased survival [42,45] worst OS of WT group [42] poor OS [42,45] |
Publication | Study Type | Recruitment Interval | pGBM Cohort (n) | Age at Study Entry ° (Years) (Median/Range) | Disease Status | Intervention | Primary Outcome GBM Cohort (EFS; PFS; OS) | Secondary Outcome (Toxicity; Toleration of Treatment) | Therapeutic Effect | Quality Assessment NOS/RoB-2 (points) |
---|---|---|---|---|---|---|---|---|---|---|
Gururangan et al., 2010 [51] | prospective phase-Ⅱ cohort trial | 10/2006–09/2008 | 8 | 15.7 (5.6–20.1) | r/r | BEV plus irinotecan | 2/8 SD at >12 weeks, of these 2 patients, median PFS: 8.3 months no sustained OR | 20% toxicity with interruption of treatment | no efficacy in recurrent pGBM | 5 (fair) |
MacDonald et al., 2013 [50] | prospective phase-Ⅱ cohort trial | 06/2008–12/2010 | 18 | 14.2 (1.1–20.3) | r/r | cilengitide | 1/18 SD at 19 months | low toxicity rate, well tolerated | no efficacy in recurrent pGBM | 5 (fair) |
Robinson et al., 2014 [52] | multicenter, prospective phase-Ⅱ cohort trial | 01/2005–03/2009 | 9 | 10 (0.6–21) | r/r | metronomic oral celecoxib, thalidomide, fenofibrate, low dose CPM and etoposide | 1/9 SD at 27 weeks | low toxicity rate, well tolerated | no efficacy in recurrent pGBM | 5 (fair) |
Wetmore et al., 2016 [54] | multicenter, prospec-tive phase-Ⅱ cohort trial | 01/2012–06/2013 | 7 | 14.5 (4.7–19.9) | r/r | sunitinib | Response rate (=CR or PR for at least 8 weeks): 0% | low toxicity rate, well tolerated | closing at interim analysis due to lack of efficiacy | 6 (good) |
Grill et al., HERBY trial 2018 [48] | randomized controlled trial | 10/2011–02/2015 | 84 | 11 (3–17) | newly diagnosed | BEV | HR: 1.37 (95% CI 0.83 to 2.27) for RT plus TMZ compared to RT + TMZ + BEV | no safety concerns; more AEs in BEV-cohort | No measurable effect for unmethylated pGBM | some concerns (RoB-2) |
Meng-Fen Su et al., 2020 [53] | multicenter, prospective phase-Ⅱ cohort trial | 09/2009–08/2015 | 11 | 7.9 (3.2–19.9) | newly diagnosed | VPA and radiation followed by VPA and BEV | median EFS: 10.5 months median OS: 14.9 months | 2 treatment interruptions after addition of BEV; RT and VPA with good tolerance | no improvement of OS | 5 (fair) |
Publication | Study Type | Conditions | Intervention | Outcome | Phase Ⅱ Proposed |
---|---|---|---|---|---|
Becher et al., 2017 [96] | multicenter | pediatric solid tumors | perifosine, temsirolimus | well tolerated, no objective response | NA |
Kieran et al., 2019 [95] | multicenter | BRAF V600E mutation positive pediatric tumors | dabrafenib | well tolerated | yes |
Friedman et al., 2021 [88] | multicenter | pediatric HGG | HSV-1 G207 | well tolerated, objective change in tumor metabolism | yes |
McCrea et al., 2021 [97] | multicenter | HGG and DIPG | intraarterial BEV and cetuximab with BBB disruption | well tolerated, little objective effect | yes |
NCT04295759 | multicenter | pediatric HGG | INCB7839 | recruiting | NA |
NCT04732065 | multicenter | pediatric brain tumors | ONC206 | recruiting | NA |
NCT04655404 | multicenter | pediatric HGG | larotrectinib | recruiting | NA |
NCT03615404 | single center | pediatric brain tumors | CMV-DC with GM-CSF | completed, publication pending | NA |
NCT02208362 | single center | pediatric and adult glioma | IL13Ralpha2-CAR-T cells | active, not recruiting | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyss, J.; Frank, N.A.; Soleman, J.; Scheinemann, K. Novel Pharmacological Treatment Options in Pediatric Glioblastoma—A Systematic Review. Cancers 2022, 14, 2814. https://doi.org/10.3390/cancers14112814
Wyss J, Frank NA, Soleman J, Scheinemann K. Novel Pharmacological Treatment Options in Pediatric Glioblastoma—A Systematic Review. Cancers. 2022; 14(11):2814. https://doi.org/10.3390/cancers14112814
Chicago/Turabian StyleWyss, Johanna, Nicole Alexandra Frank, Jehuda Soleman, and Katrin Scheinemann. 2022. "Novel Pharmacological Treatment Options in Pediatric Glioblastoma—A Systematic Review" Cancers 14, no. 11: 2814. https://doi.org/10.3390/cancers14112814
APA StyleWyss, J., Frank, N. A., Soleman, J., & Scheinemann, K. (2022). Novel Pharmacological Treatment Options in Pediatric Glioblastoma—A Systematic Review. Cancers, 14(11), 2814. https://doi.org/10.3390/cancers14112814