Dietary Intakes of Animal and Plant Proteins and Risk of Colorectal Cancer: The EPIC-Italy Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Follow-Up
2.3. Dietary Assessment
2.4. Other Study Variables
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA A Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, R. Progress against cancer: An epidemiologic assessment. The 1991 John C. Cassel Memorial Lecture. Am. J. Epidemiol. 1991, 134, 675–688. [Google Scholar] [CrossRef]
- Kucab, J.E.; Zou, X.; Morganella, S.; Joel, M.; Nanda, A.S.; Nagy, E.; Gomez, C.; Degasperi, A.; Harris, R.; Jackson, S.P.; et al. A Compendium of Mutational Signatures of Environmental Agents. Cell 2019, 177, 821–836. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef]
- Gurjao, C.; Zhong, R.; Haruki, K.; Li, Y.Y.; Spurr, L.F.; Lee-Six, H.; Reardon, B.; Ugai, T.; Zhang, X.; Cherniack, A.D.; et al. Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discov. 2021, 11, 2446–2455. [Google Scholar] [CrossRef]
- Riboli, E.; Kaaks, R. The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S6–S14. [Google Scholar] [CrossRef]
- Palli, D.; Berrino, F.; Vineis, P.; Tumino, R.; Panico, S.; Masala, G.; Saieva, C.; Salvini, S.; Cerati, M.; Pala, V.; et al. A molecular epidemiology project on diet and cancer: The EPIC-Italy Prospective Study. Design and baseline characteristics of participants. Tumori J. 2003, 89, 586–593. [Google Scholar] [CrossRef]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems; 10th revision; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Pala, V.; Sieri, S.; Palli, D.; Salvini, S.; Berrino, F.; Bellegotti, M.; Frasca, G.; Tumino, R.; Sacerdote, C.; Fiorini, L.; et al. Diet in the Italian EPIC cohorts: Presentation of data and methodological issues. Tumori J. 2003, 89, 594–607. [Google Scholar] [CrossRef]
- Salvini, S.; Parpinel, M.; Gnagnarella, P.; Maisonneuve, P.; Turrini, A. Banca Dati di Composizione Degli Alimenti per Studi Epidemiologici in Italia; Europeo di Oncologia: Milano, Italy, 1998. [Google Scholar]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; Brien, W.L.O.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Kipnis, V.; Freedman, L.S.; Brown, C.C.; Hartman, A.; Schatzkin, A.; Wacholder, S. Interpretation of energy adjustment models for nutritional epidemiology. Am. J. Epidemiol. 1993, 137, 1376–1380. [Google Scholar] [CrossRef]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; Continuous Update Project Expert Report; 2018; p. 54. Available online: https://www.aicr.org/research/third-expert-report/ (accessed on 29 March 2022).
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; Corpet, D.E. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.C.; Zeraatkar, D.; Han, M.A.; Vernooij, R.W.; Valli, C.; El Dib, R.; Marshall, C.; Stover, P.J.; Fairweather-Taitt, S.; Wójcik, G.; et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations from the Nutritional Recommendations (NutriRECS) Consortium. Ann. Intern. Med. 2019, 171, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Norat, T.; Lukanova, A.; Ferrari, P.; Riboli, E. Meat consumption and colorectal cancer risk: Dose-response meta-analysis of epidemiological studies. Int. J. Cancer 2002, 98, 241–256. [Google Scholar] [CrossRef]
- Miller, P.E.; Lazarus, P.; Lesko, S.M.; Cross, A.J.; Sinha, R.; Laio, J.; Zhu, J.; Harper, G.; Muscat, J.E.; Hartman, T.J. Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutr. Cancer 2013, 65, 202–226. [Google Scholar] [CrossRef]
- Giovannucci, E. Metabolic syndrome, hyperinsulinemia, and colon cancer: A review. Am. J. Clin. Nutr. 2007, 86, s836–s842. [Google Scholar] [CrossRef] [Green Version]
- Clifton, K.K.; Ma, C.X.; Fontana, L.; Peterson, L.L. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J. Clin. 2021, 71, 527–546. [Google Scholar] [CrossRef]
- Higurashi, T.; Hosono, K.; Takahashi, H.; Komiya, Y.; Umezawa, S.; Sakai, E.; Uchiyama, T.; Taniguchi, L.; Hata, Y.; Uchiyama, S.; et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: A multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016, 17, 475–483. [Google Scholar] [CrossRef]
- Sieri, S.; Krogh, V.; Agnoli, C.; Ricceri, F.; Palli, D.; Masala, G.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; et al. Dietary glycemic index and glycemic load and risk of colorectal cancer: Results from the EPIC-Italy study. Int. J. Cancer 2015, 136, 2923–2931. [Google Scholar] [CrossRef]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Dey, N.; Wagner, V.E.; Blanton, L.V.; Cheng, J.; Fontana, L.; Haque, R.; Ahmed, T.; Gordon, J.I. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 2015, 163, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Griffin, N.W.; Ahern, P.P.; Cheng, J.; Heath, A.C.; Ilkayeva, O.; Newgard, C.B.; Fontana, L.; Gordon, J.I. Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host Microbe 2017, 21, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.A.; Young, J.A.; Mathes, S.C.; List, E.O.; Carroll, R.K.; Kuhn, J.; Onusko, M.; Kopchick, J.J.; Murphy, E.R.; Berryman, D.E. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm. IGF Res. 2020, 53–54, 101333. [Google Scholar] [CrossRef]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. Coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef]
- Bernstein, A.M.; Song, M.; Zhang, X.; Pan, A.; Wang, M.; Fuchs, C.S.; Le, N.; Chan, A.T.; Willett, W.C.; Ogino, S.; et al. Processed and Unprocessed Red Meat and Risk of Colorectal Cancer: Analysis by Tumor Location and Modification by Time. PLoS ONE 2015, 10, e0135959. [Google Scholar]
Animal Proteins | Vegetable Proteins from High-GI Foods | Vegetable Proteins from Low-GI Foods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<8% | >9, <11% | >12% | <2% | >2.5, <3.1% | >3.8% | <1.5% | >1.9; <2.2% | >2.8% | ||||
Quintile 1 | Quintile 3 | Quintile 5 | p-Value § | Quintile 1 | Quintile 3 | Quintile 5 | p-Value § | Quintile 1 | Quintile 3 | Quintile 5 | p-Value § | |
Characteristics | ||||||||||||
Participants (n) | 9000 | 8999 | 8999 | 9000 | 8999 | 8999 | 9000 | 8999 | 8999 | |||
Age | 49.8 (8.12) | 50.5 (7.91) | 51.5 (7.66) | <0.001 | 50.6 (7.9) | 50.5 (7.9) | 50.6 (7.9) | 0.469 | 50.7 (8.0) | 50.4 (7.9) | 50.7 (7.8) | 0.048 |
Gender | ||||||||||||
Male (%) | 39.3 | 31.6 | 22.0 | 26.5 | 31.5 | 36.6 | 28.8 | 34.0 | 27.2 | |||
Female (%) | 60.7 | 68.4 | 78.0 | <0.001 | 73.5 | 68.5 | 63.4 | <0.001 | 71.2 | 66.0 | 72.8 | <0.001 |
Center | ||||||||||||
Turin (%) | 16.9 | 21.6 | 24.8 | 24.7 | 23.4 | 13.3 | 22.2 | 23.3 | 17.2 | |||
Varese (%) | 18.0 | 27.6 | 31.9 | 37.5 | 28.2 | 9.6 | 32.9 | 27.0 | 15.6 | |||
Florence (%) | 24.3 | 28.9 | 32.7 | 26.1 | 30.4 | 27.9 | 28.9 | 31.3 | 20.7 | |||
Naples (%) | 10.2 | 12.6 | 7.3 | 8.4 | 10.0 | 14.2 | 0.38 | 3.1 | 40.3 | |||
Ragusa (%) | 30.6 | 9.3 | 3.3 | <0.001 | 3.2 | 7.8 | 35.1 | <0.001 | 15.6 | 15.2 | 6.1 | <0.001 |
BMI (kg/m2) | 25.6 (3.94) | 25.9 (4.00) | 26.6 (4.23) | <0.001 | 25.8 (4.0) | 25.9 (4.0) | 26.3 (4.2) | <0.001 | 25.8 (4.1) | 25.9 (4.0) | 26.3 (4.2) | <0.001 |
Waist-to-hip ratio | 0.85 (0.09) | 0.83 (0.09) | 0.83 (0.09) | <0.001 | 0.82 (0.09) | 0.83 (0.09) | 0.86 (0.09) | <0.001 | 0.83 (0.09) | 0.84 (0.09) | 0.84 (0.08) | <0.001 |
Current smoker (%) | 21.6 | 19.5 | 18.5 | <0.001 | 20.3 | 19.5 | 20.9 | <0.001 | 20.6 | 19.1 | 22.3 | <0.001 |
Physical activity | ||||||||||||
Inactive (%) | 29.6 | 29.0 | 28.8 | 25.4 | 27.8 | 35.9 | 24.3 | 24.4 | 45.9 | |||
Moderately inactive (%) | 34.5 | 38.6 | 42.1 | 40.4 | 39.0 | 33.9 | 42.6 | 40.2 | 27.7 | |||
Moderately active (%) | 17.9 | 18.0 | 16.6 | 18.5 | 18.6 | 15.6 | 18.5 | 19.1 | 13.7 | |||
Active (%) | 18.0 | 14.4 | 12.5 | <0.001 | 15.7 | 14.6 | 14.2 | <0.001 | 14.5 | 16.3 | 16.9 | <0.001 |
Education (>8 years) | 20.4 | 20.4 | 18.7 | <0.001 | 19.5 | 21.1 | 18.8 | <0.001 | 20.7 | 19.6 | 20.3 | <0.001 |
Diastolic Pressure (mmHg) | 80.6 (9.8) | 81.9 (10.0) | 82.6 (10.3) | <0.001 | 81.9 (10.0) | 82.0 (10.2) | 81.0 (9.98) | <0.001 | 81.8 (10.1) | 81.7 (10.1) | 81.9 (10.0) | <0.001 |
Systolic Pressure (mmHg) | 127.7 (17.7) | 129.6 (18.1) | 130.7 (18.5) | <0.001 | 129.5 (17.9) | 129.8 (18.2) | 128.7 (18.1) | <0.001 | 128.7 (17.6) | 128.9 (17.9) | 131.6 (19.3) | <0.001 |
Dietary intake | ||||||||||||
Total proteins (% E/d) # | 14.0 (1.35) | 16.6 (1.00) | 20.0 (1.74) | <0.001 | 17.1 (2.7) | 16.9 (2.3) | 16.1 (2.0) | <0.001 | 16.8 (2.5) | 16.8 (2.4) | 16.7 (2.3) | <0.001 |
Animal proteins (%E/d) # | 6.41 (1.16) | 9.97 (0.40) | 14.3 (1.80) | <0.001 | 11.4 (3.1) | 10.4 (2.6) | 8.3 (2.3) | <0.001 | 10.6 (3.1) | 10.3 (2.8) | 9.4 (2.6) | <0.001 |
Vegetable proteins (%E/d) # | 6.00 (1.44) | 5.10 (1.12) | 4.36 (0.97) | <0.001 | 3.9 (0.9) | 5.0 (0.8) | 6.7 (1.0) | <0.001 | 4.5 (1.3) | 5.0 (1.1) | 6.0 (1.1) | <0.001 |
Total fats (% E/d) # | 30.4 (5.80) | 34.1 (4.84) | 37.9 (5.17) | <0.001 | 38.6 (5.3) | 34.4 (4.6) | 29.1 (4.5) | <0.001 | 33.7 (5.8) | 34.4 (5.6) | 33.9 (5.6) | <0.001 |
Starch (% E/d) # | 33.0 (7.77) | 27.5 (6.19) | 22.0 (5.88) | <0.001 | 20.1 (5.5) | 26.9 (4.6) | 36.5 (5.6) | <0.001 | 26.6 (7.7) | 27.0 (7.2) | 29.8 (7.3) | <0.001 |
Sugar (% E/d) # | 18.3 (6.05) | 17.6 (5.25) | 16.7 (4.98) | <0.001 | 20.1 (6.0) | 17.5 (5.0) | 15.1 (4.5) | <0.001 | 18.0 (5.8) | 17.7 (5.3) | 16.7 (5.1) | <0.001 |
Alcohol (% E/d) # | 4.3 (5.4) | 4.2 (5.1) | 3.3 (4.5) | <0.001 | 4.1 (5.4) | 4.3 (5.1) | 3.2 (4.3) | <0.001 | 4.9 (5.9) | 4.1 (4.9) | 2.9 (4.0) | <0.001 |
Fiber (g/day) | 25.9 (8.8) | 22.3 (6.9) | 18.33 (6.0) | <0.001 | 20.2 (7.4) | 21.9 (7.2) | 24.9 (8.0) | <0.001 | 19.1 (6.7) | 22.3 (7.2) | 25.6 (8.2) | <0.001 |
Total energy intake (kcal/day) | 2451 (696) | 2341 (640) | 2058 (610) | <0.001 | 2234 (676) | 2299 (655) | 2374 (669) | <0.001 | 2313 (701) | 2309 (665) | 2299 (606) | 0.013 |
Protein Sources | ||||||||||||
Red Meat (% E/d) # | 1.4 (0.9) | 2.5 (1.2) | 3.9 (1.9) | <0.001 | 2.9 (1.8) | 2.6 (1.5) | 2.1 (1.3) | <0.001 | 2.7 (1.7) | 2.6 (1.6) | 2.3 (1.4) | <0.001 |
Processed meat (% E/d) # | 0.6 (0.5) | 1.0 (0.7) | 1.3 (1.0) | <0.001 | 1.1 (0.8) | 1.0 (0.7) | 0.8 (0.7) | <0.001 | 1.2 (0.9) | 1.0 (0.7) | 0.7 (0.6) | <0.001 |
Poultry (% E/d) # | 0.8 (0.6) | 1.3 (0.8) | 2.1 (1.4) | <0.001 | 1.5 (1.2) | 1.4 (1.1) | 1.2 (0.9) | <0.001 | 1.3 (1.0) | 1.5 (1.1) | 1.4 (1.0) | <0.001 |
Fish (% E/d) # | 0.7 (0.6) | 1.1 (0.7) | 1.6 (1.2) | <0.001 | 1.3 (1.0) | 1.2 (0.9) | 1.0 (0.8) | <0.001 | 1.0 (0.8) | 1.1 (0.9) | 1.4 (1.0) | <0.001 |
Eggs (% E/d) # | 0.3 (0.2) | 0.4 (0.2) | 0.5 (0.3) | <0.001 | 0.4 (0.3) | 0.4 (0.3) | 0.3 (0.2) | <0.001 | 0.4 (0.3) | 0.4 (0.30) | 0.4 (0.2) | <0.001 |
Dairy (% E/d#) | 2.4 (1.1) | 3.6 (1.3) | 4.8 (1.9) | <0.001 | 4.2 (1.8) | 3.7 (1.6) | 2.8 (1.3) | <0.001 | 4.0 (1.9) | 3.6 (1.6) | 3.2 (1.4) | <0.001 |
Potatoes (% E/d) # | 0.10 (0.09) | 0.10 (0.08) | 0.10 (0.08) | <0.001 | 0.11 (0.09) | 0.10 (0.08) | 0.10 (0.07) | <0.001 | 0.08 (0.06) | 0.11 (0.08) | 0.12 (0.09) | <0.001 |
Vegetables (% E/d) # | 0.59 (0.36) | 0.62 (0.32) | 0.68 (0.34) | <0.001 | 0.73 (0.39) | 0.63 (0.32) | 0.53 (0.27) | <0.001 | 0.42 (0.18) | 0.62 (0.28) | 0.86 (0.43) | <0.001 |
Legumes (% E/d) # | 0.16 (0.32) | 0.19 (0.35) | 0.15 (0.26) | <0.001 | 0.18 (0.33) | 0.17 (0.31) | 0.17 (0.31) | <0.001 | 0.05 (0.06) | 0.10 (0.11) | 0.51 (0.56) | <0.001 |
Fruits (% E/d) # | 0.44 (0.28) | 0.39 (0.21) | 0.37 (0.20) | <0.001 | 0.43 (0.26) | 0.39 (0.22) | 0.37 (0.22) | <0.001 | 0.30 (0.15) | 0.41 (0.22) | 0.47 (0.28) | <0.001 |
Pasta (% E/d) # | 0.96 (0.67) | 0.87 (0.57) | 0.66 (0.51) | <0.001 | 0.89 (0.68) | 0.86 (0.58) | 0.76 (0.49) | <0.001 | 0.35 (0.23) | 0.79 (0.37) | 1.42 (0.72) | <0.001 |
Rice (% E/d) # | 0.13 (0.18) | 0.15 (0.16) | 0.14 (0.16) | <0.001 | 0.13 (0.13) | 0.16 (0.17) | 0.12 (0.17) | <0.001 | 0.13 (0.17) | 0.15 (0.17) | 0.14 (0.14) | <0.001 |
Bread (% E/d) # | 3.00 (1.49) | 2.14 (1.06) | 1.58 (0.90) | <0.001 | 0.83 (0.45) | 2.03 (0.44) | 4.01 (0.97) | <0.001 | 2.47 (1.41) | 2.22 (1.18) | 2.00 (1.10) | <0.001 |
Pizza (% E/d) # | 0.20 (0.18) | 0.18 (0.15) | 0.16 (0.14) | <0.001 | 0.16 (0.13) | 0.18 (0.14) | 0.21 (0.19) | <0.001 | 0.18 (0.16) | 0.18 (0.15) | 0.18 (0.14) | <0.001 |
Plasma Biomarkers * | ||||||||||||
Participants (n) | 540 | 504 | 520 | 553 | 493 | 515 | 529 | 508 | 517 | |||
Insulin (mU/L) | 9.62 (5.93) | 9.79 (7.92) | 9.69 (6.28) | 0.543 | 10.2 (9.4) | 9.53 (6.72) | 10.0 (7.76) | 0.237 | 10.7 (8.80) | 9.7 (5.64) | 8.25 (7.27) | <0.001 |
Blood glucose (mg/dl) | 97.9 (27.7) | 100.1 (31.1) | 104.3 (39.4) | 0.002 | 100.2 (26.8) | 99.4 (31.0) | 101.1 (29.2) | 0.554 | 100.6 (24.6) | 100.2 (25.9) | 98.3 (31.7) | 0.540 |
HOMA-IR | 2.02 (1.54) | 2.18 (2.70) | 2.21 (1.98) | 0.512 | 2.26 (3.43) | 2.10 (2.39) | 2.22 (2.40) | 0.258 | 2.37 (2.63) | 2.10 (1.62) | 1.83 (2.14) | 0.004 |
Cholesterol (mg/dl) | 227.8 (46.0) | 234.3 (47.4) | 241.3 (47.7) | <0.001 | 241.8 (48.6) | 234.5 (50.1) | 231.8 (48.8) | <0.001 | 235.3 (45.5) | 237.3 (45.5) | 231.6 (50.7) | 0.324 |
Triglycerides (mg/dl) | 146.8 (81.8) | 138.2 (79.8) | 143.9 (97.3) | 0.529 | 141.7 (96.2) | 146.0 (91.9) | 150.7 (84.3) | 0.187 | 144.9 (97.0) | 141.2 (78.7) | 144.9 (94.7) | 0.934 |
C reactive protein (mg/mL) | 1.87 (2.25) | 1.94 (2.63) | 2.06 (2.50) | 0.718 | 1.94 (2.47) | 1.84 (2.60) | 2.23 (2.80) | 0.082 | 2.00 (2.82) | 1.90 (2.43) | 1.98 (2.41) | 0.897 |
Colon Cancer | Rectal Cancer | |
---|---|---|
All Participants | No. Cases = 438 | No. Cases = 101 |
Animal proteins replaced with vegetable proteins | ||
HR 1 (95% CI) | 1.11 (0.99–1.25) | 0.76 (0.60–0.97) |
HR 2 (95% CI) | 1.12 (0.99–1.27) | 0.71 (0.55–0.92) |
Animal proteins replaced with vegetable proteins from high-GI foods | ||
HR 1 (95% CI) | 1.23 (1.08–1.40) | 0.71 (0.54–0.93) |
HR 2 (95% CI) | 1.23 (1.07–1.40) | 0.68 (0.51–0.89) |
Animal proteins replaced vegetable proteins from low-GI foods | ||
HR 1 (95% CI) | 0.93 (0.79–1.09) | 0.88 (0.64–1.20) |
HR 2 (95% CI) | 0.93 (0.79–1.11) | 0.82 (0.58–1.15) |
Colon Cancer | Rectal Cancer | |
---|---|---|
No. Cases = 438 | No. Cases = 101 | |
Animal sources replaced with vegetable proteins | ||
Processed and red meat | ||
HR 1 (95% CI) | 1.18 (1.03–1.34) | 0.71 (0.55–0.92) |
HR 2 (95% CI) | 1.21 (1.07–1.39) | 0.66 (0.50–0.87) |
Poultry | ||
HR 1 (95% CI) | 1.08 (0.92–1.25) | 0.72 (0.53–0.98) |
HR 2 (95% CI) | 1.07 (0.92–1.25) | 0.70 (0.50–0.96) |
Fish | ||
HR 1 (95% CI) | 1.05 (0.90–1.24) | 0.83 (0.58–1.17) |
HR 2 (95% CI) | 1.06 (0.90–1.24) | 0.79 (0.55–1.13) |
Eggs and dairy products | ||
HR 1 (95% CI) | 1.09 (0.96–1.23) | 0.80 (0.62–1.03) |
HR 2 (95% CI) | 1.11 (0.97–1.26) | 0.74 (0.57–0.97) |
Animal sources replaced with vegetable proteins from high-GI foods | ||
Processed and red meat | ||
HR 1 (95% CI) | 1.31 (1.13–1.50) | 0.67 (0.50–0.89) |
HR 2 (95% CI) | 1.32 (1.14–1.52) | 0.63 (0.47–0.85) |
Poultry | ||
HR 1 (95% CI) | 1.17 (1.00–1.38) | 0.69 (0.50–0.95) |
HR 2 (95% CI) | 1.15 (0.99–1.36) | 0.67 (0.48–0.94) |
Fish | ||
HR 1 (95% CI) | 1.15 (0.97–1.36) | 0.79 (0.541.13) |
HR 2 (95% CI) | 1.15 (0.97–1.36) | 0.76 (0.52–1.10) |
Eggs and dairy products | ||
HR 1 (95% CI) | 1.22 (1.06–1.39) | 0.74 (0.56–0.99) |
HR 2 (95% CI) | 1.22 (1.06–1.40) | 0.70 (0.52–0.94) |
Animal sources replaced with vegetable proteins from low-GI foods | ||
Processed and red meat | ||
HR 1 (95% CI) | 0.98 (0.82–1.16) | 0.82 (0.58–1.14) |
HR 2 (95% CI) | 1.00 (0.83–1.19) | 0.75 (0.52–1.08) |
Poultry | ||
HR 1 (95% CI) | 0.88 (0.72–1.07) | 0.84 (0.57–1.23) |
HR 2 (95% CI) | 0.87 (0.72–1.07) | 0.80 (0.53–1.21) |
Fish | ||
HR 1 (95% CI) | 0.86 (0.70–1.05) | 0.96 (0.63–1.44) |
HR 2 (95% CI) | 0.87 (0.70–1.06) | 0.90 (0.59–1.39) |
Eggs and dairy products | ||
HR 1 (95% CI) | 0.91 (0.77–1.07) | 0.91 (0.66–1.24) |
HR 2 (95% CI) | 0.92 (0.78–1.10) | 0.83 (0.59–1.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieri, S.; Agnoli, C.; Pala, V.; Grioni, S.; Palli, D.; Bendinelli, B.; Macciotta, A.; Ricceri, F.; Panico, S.; De Magistris, M.S.; et al. Dietary Intakes of Animal and Plant Proteins and Risk of Colorectal Cancer: The EPIC-Italy Cohort. Cancers 2022, 14, 2917. https://doi.org/10.3390/cancers14122917
Sieri S, Agnoli C, Pala V, Grioni S, Palli D, Bendinelli B, Macciotta A, Ricceri F, Panico S, De Magistris MS, et al. Dietary Intakes of Animal and Plant Proteins and Risk of Colorectal Cancer: The EPIC-Italy Cohort. Cancers. 2022; 14(12):2917. https://doi.org/10.3390/cancers14122917
Chicago/Turabian StyleSieri, Sabina, Claudia Agnoli, Valeria Pala, Sara Grioni, Domenico Palli, Benedetta Bendinelli, Alessandra Macciotta, Fulvio Ricceri, Salvatore Panico, Maria Santucci De Magistris, and et al. 2022. "Dietary Intakes of Animal and Plant Proteins and Risk of Colorectal Cancer: The EPIC-Italy Cohort" Cancers 14, no. 12: 2917. https://doi.org/10.3390/cancers14122917
APA StyleSieri, S., Agnoli, C., Pala, V., Grioni, S., Palli, D., Bendinelli, B., Macciotta, A., Ricceri, F., Panico, S., De Magistris, M. S., Tumino, R., Fontana, L., & Krogh, V. (2022). Dietary Intakes of Animal and Plant Proteins and Risk of Colorectal Cancer: The EPIC-Italy Cohort. Cancers, 14(12), 2917. https://doi.org/10.3390/cancers14122917