Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. CTC Assessment
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. CTC Detection and HER2 Expression
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moravan, M.J.; Fecci, P.E.; Anders, C.K.; Clarke, J.M.; Salama, A.K.S.; Adamson, J.D.; Floyd, S.R.; Torok, J.A.; Salama, J.K.; Sampson, J.H.; et al. Current multidisciplinary management of brain metastases. Cancer 2020, 126, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Beyond na Updated Graded Prognostic Assessment (Breast GPA): A Prognostic Index and Trends in Treatment and Survival in Breast Cancer Brain Metastases From 1985 to Today. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Peacock, D.N.; Attia, A.; Braunstein, S.E.; Ahluwalia, M.S.; Hepel, J.; Chung, C.; Contessa, J.; McTyre, E.; Peiffer, A.M.; Lucas Jr, J.T.; et al. Prediction of new brain metastases after radiosurgery: Validation and analysis of performance of a multi-institutional nomogram. J. Neurooncol. 2017, 135, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Press, R.H.; Prabhu, R.S.; Nickleach, D.C.; Liu, Y.; Shu, H.G.; Kandula, S.; Patel, K.R.; Curran, W.J.; Crocker, I. Novel risk stratification score for predicting early distant brain failure and salvage whole-brain radiotherapy after stereotactic radiosurgery for brain metastases. Cancer 2015, 121, 3836–3843. [Google Scholar] [CrossRef] [Green Version]
- McTyre, E.R.; Soike, M.H.; Farris, M.; Ayala-Peacock, D.N.; Hepel, J.T.; Page, B.R.; Shen, C.; Kleinberg, L.; Contessa, J.N.; Corso, C.; et al. Multi-institutional validation of brain metastasis velocity, a recently defined predictor of outcomes following stereotactic radiosurgery. Radiother. Oncol. 2020, 142, 168–174. [Google Scholar] [CrossRef]
- De Castro, D.G.; Braun, A.C.; Calsavara, V.F.; Gondim, G.R.M.; Silva, M.L.G.; Chen, M.J.; Fogaroli, R.C.; Ramos, H.; Coelho, T.M.; Herbst, A.C.S.; et al. Prospective Assessment of the Association Between Circulating Tumor Cells and Control of Brain Disease After Focal Radiation Therapy of Breast Cancer Brain Metastases. Adv. Radiat. Oncol. 2021, 6, 100673. [Google Scholar] [CrossRef]
- Zhang, L.; Ridgway, L.D.; Wetzel, M.D.; Ngo, J.; Yin, W.; Kumar, D.; Goodman, J.C.; Groves, M.D.; Marchetti, D. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 2013, 5, 180ra48. [Google Scholar] [CrossRef] [Green Version]
- Boral, D.; Vishnoi, M.; Liu, H.N.; Yin, W.; Sprouse, M.L.; Scamardo, A.; Hong, D.S.; Tan, T.Z.; Thiery, J.P.; Chang, J.C.; et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat. Commun. 2017, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, E.M.; Anders, C.K. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann. Transl. Med. 2018, 6, 163. [Google Scholar] [CrossRef]
- Kotecha, R.; Tonse, R.; Rubens, M.; McDermott, M.W.; Odia, Y.; Appel, H.; Mehta, M.P. Systematic review and meta-analysis of breast cancer brain metastasis and primary tumor receptor expression discordance. Neurooncol Adv. 2021, 3, vdab010. [Google Scholar] [CrossRef]
- Jordan, N.V.; Bardia, A.; Wittner, B.S.; Benes, C.; Ligorio, M.; Zheng, Y.; Yu, M.; Sundaresan, T.K.; Licausi, J.A.; Desai, R. HER2 expression identifies Dynamic functional states within circulating breast cancer cells. Nature 2016, 537, 102–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, T.R.A.; Tundisi, C.F.; Ramos, H.; Maia, M.A.C.; Pellizzon, A.C.A.; Silva, M.L.G.; Fogaroli, R.F.; Chen, M.J.; Suzuki, S.H.; Dias Jr, J.E.S.D.; et al. Local control after radiosurgery for brain metastases: Predictive factors and implications for clinical decision. Radiat. Oncol. 2015, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; et al. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef]
- Vern-Gross, T.Z.; Lawrence, J.A.; Case, L.D.; McMullen, K.P.; Bourland, J.D.D.; Metheny-Barlow, L.J.; Ellis, T.E.; Tatter, S.B.; Shaw, E.D.; Urbanic, J.J.; et al. Breast cancer subtype affects patterns of failure of brain metastases after treatment with stereotactic radiosurgery. J. Neurooncol. 2012, 110, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, M.N.; Thawani, C.; Figura, N.B.; Oliver, D.E.; Soyano, A.E.; Etame, A.; Robinson, T.J.; Liu, J.K.; Vogelbaum, M.A.; Forsyth, P.A.; et al. Breast cancer subtype predicts clinical outcomes after stereotactic radiation for brain metastases. J. Neurooncol. 2021, 152, 591–601. [Google Scholar] [CrossRef]
- Wallwiener, M.; Hartkopf, A.D.; Riethdorf, S.; Nees, J.; Sprick, M.R.; Schönfisch, B.; Taran, F.; Heil, J.; Sohn, C.; Pantel, K.; et al. The impact of HER2 phenotype of circutaing tumor cells in metastatic breast cancer: A retrospective study in 107 patients. BMC Cancer 2015, 15, 403. [Google Scholar] [CrossRef] [Green Version]
- Hulsbergen, A.F.C.; Claes, A.; Kavouridis, V.K.; Ansaripour, A.; Nogarede, C.; Hughes, M.E.; Smith, T.R.; Brastianos, P.K.; Verhoeff, J.J.C.; Lin, N.U.; et al. Subtype switching in breast cancer brain metastases: A multicenter analysis. Neuro Oncol. 2020, 22, 1173–1181. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Wang, T.; Bian, L.; Hu, H.; Xu, C.; Liu, B.; Liu, Y.; Cristofanilli, M.; Liang, Z. Real-time HER2 status detected on circulating tumor cells predicts different outcomes of anti-HER2 therapy in histologically HER2-positive metastatic breast cancer patients. BMC Cancer 2016, 16, 526. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.; Banys-Paluchowski, M.; Friedl, T.W.P.; Fasching, P.A.; Schneeweiss, A.; Hartkopf, A.; Wallwiener, D.; Rack, B.; Meier-Stiegen, F.; Huober, J.; et al. Prognostic relevance of the HER2 status of circulating tumor cells in metastatic breast cancer patients screened for participation in the DETECT study program. ESMO Open 2021, 6, 100299. [Google Scholar] [CrossRef]
- Wang, C.; Mu, Z.; Ye, Z.; Zhang, Z.; Abu-Khalaf, M.M.; Silver, D.P.; Palazzo, J.P.; Jagannathan, G.; Fellin, F.M.; Bhattacharya, S.; et al. Prognostic value of HER2 status on circulating tumor cells in advanced-stage breast cancer patients with HER2-negative tumors. Breast Cancer Res. Treat. 2020, 181, 679–689. [Google Scholar] [CrossRef]
- Fehm, T.; Müller, V.; Aktas, B.; Janni, W.; Schneeweiss, A.; Stickeler, E.; Lattrich, C.; Löhberg, C.R.; Solomayer, E.; Rack, B.; et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: A prospective, multicenter trial. Breast Cancer Res. Treat. 2010, 124, 403–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, B.; Kasimir-Bauer, S.; Müller, V.; Janni, W.; Fehm, T.; Walwiener, D.; Pantel, K.; Tewes, M. Comparison of the HER2, estrogen and progesterone receptor expression profile of primary tumor, metastases and circulating tumor cells in metastatic breast cancer patients. BMC Cancer 2016, 16, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riethdorf, S.; Müller, V.; Zhang, L.; Rau, T.; Loibl, S.; Komor, M.; Roller, M.; Huober, J.; Fehm, T.; Schrader, I.; et al. Detection and HER2 expression of circulating tumor cells: Prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res. 2010, 16, 2634–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, S.; Tripathy, D.; Shete, S.; Ashfaq, R.; Haley, B.; Perkins, S.; Beitsch, P.; Khan, A.; Euhus, D.; Osborne, C.; et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl. Acad. Sci USA 2004, 101, 9393–9398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanches, S.M.; Braun, A.C.; Calsavara, V.F.; Barbosa, P.N.V.P.; Chinen, L.T.D. Comparison of hormonal receptor expression and HER2 status between circulating tumor cells and breast cancer metastases. Clinics 2021, 76, e2971. [Google Scholar] [CrossRef] [PubMed]
- Riebensahm, C.; Joosse, S.A.; Mohme, M.; Hanssen, A.; Matschke, J.; Goy, Y.; Witzel, I.; Lamszus, K.; Kropidlowski, J.; Petersen, C. Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Res. 2019, 21, 101. [Google Scholar] [CrossRef] [Green Version]
- Sammons, S.; Van Swearingen, A.E.D.; Chung, C.; Anders, C.K. Advances in the management of breast cancer brain metastases. Neurooncol. Adv. 2021, 3, v63–v74. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Ippolito, E.; Silipigni, S.; Matteucci, P.; Greco, C.; Carrafiello, S.; Palumbo, V.; Tacconi, C.; Talocco, C.; Fiore, M.; D’Angelillo, R.M.; et al. Radiotherapy for HER2 Positive Brain Metastases: Urgent Need for a Paradigm Shift. Cancers 2022, 14, 1514. [Google Scholar] [CrossRef]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H.; Yomo, S.; et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): A multi-institutional prospective observational study. Lancet Oncol. 2014, 15, 387–395. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Loreth, D.; Schuette, M.; Zinke, J.; Zink, J.; Mohme, M.; Piffko, A.; Schneegans, S.; Stadler, J.; Janning, M.; Loges, S. CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. Int. J. Mol. Sci. 2021, 22, 6993. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, P.; Reduzzi, C.; Gandini, S.; Gerratana, L.; Qiang, W.; Zhang, Q.; St-Pierre, F.; Zhang, Y.; Shah, A.N.; Davis, A.A.; et al. Correlation between different levels of HER2 expression in circulating tumor cells (cHER2 ratio) and metastatic behavior in stage IVagressive breast cancer. J. Clin. Oncol. 2021, 39 (Suppl. 15), 3036. [Google Scholar]
- Visal, T.H.; den Hollander, P.; Cristofanilli, M.; Mani, S.A. Circulating tumor cells in the -omics era: How far are we from achieving the ‘singularity’? Br. J. Cancer 2022, 1–12, online ahead of print. [Google Scholar] [CrossRef]
Median Age, Years (Range) | |
54 (34–70) | |
Immunophenotype (%) | |
HER2-positive | 20 (51) |
Luminal B | 12 (31) |
Triple negative | 7 (18) |
Diagnosis-specific graded prognostic assessment (%) | |
0–1 | 1 (2.5) |
1.5–2 | 6 (15.5) |
2.5–3 | 6 (15.5) |
3.5–4 | 26 (66.5) |
Extracranial metastases status (%) | |
Absent | 6 (15.5) |
Progressive | 17 (43.5) |
Stable | 16 (41) |
Previous treatment to the brain (%) | |
None | 18 (46) |
SRT | 9 (23) |
Surgery | 5 (13) |
WBRT | 4 (10) |
Surgery and SRT or WBRT | 3 (8) |
Systemic therapy before CTC1 (%) | |
None | 3 (8) |
Hormonal therapy | 9 (23) |
Chemotherapy | 12 (31) |
HER2-targeted therapy | 15 (38) |
Primary Immunophenotype | Total (%) | |||
---|---|---|---|---|
HER2-Negative (%) | HER2-Positive (%) | |||
CTC1 | HER2-negative | 15 (47) | 14 (44) | 29 (90.5) |
HER2-positive | 2 (6.5) | 1 (3) | 3 (9.5) | |
Total | 17 (53) | 15 (47) | 32 (100) | |
CTC2 | HER2-negative | 7 (26) | 12 (44.5) | 19 (70.5) |
HER2-positive | 6 (22) | 2 (7.5) | 8 (29.5) | |
Total | 13 (48) | 14 (52) | 27 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, D.G.; Pellizzon, A.C.A.; Braun, A.C.; Chen, M.J.; Silva, M.L.G.; Fogaroli, R.C.; Gondim, G.R.M.; Ramos, H.; Neto, E.S.; Abrahão, C.H.; et al. Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control. Cancers 2022, 14, 3101. https://doi.org/10.3390/cancers14133101
de Castro DG, Pellizzon ACA, Braun AC, Chen MJ, Silva MLG, Fogaroli RC, Gondim GRM, Ramos H, Neto ES, Abrahão CH, et al. Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control. Cancers. 2022; 14(13):3101. https://doi.org/10.3390/cancers14133101
Chicago/Turabian Stylede Castro, Douglas Guedes, Antônio Cássio Assis Pellizzon, Alexcia Camila Braun, Michael Jenwei Chen, Maria Letícia Gobo Silva, Ricardo Cesar Fogaroli, Guilherme Rocha Melo Gondim, Henderson Ramos, Elson Santos Neto, Carolina Humeres Abrahão, and et al. 2022. "Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control" Cancers 14, no. 13: 3101. https://doi.org/10.3390/cancers14133101
APA Stylede Castro, D. G., Pellizzon, A. C. A., Braun, A. C., Chen, M. J., Silva, M. L. G., Fogaroli, R. C., Gondim, G. R. M., Ramos, H., Neto, E. S., Abrahão, C. H., Yu, L. S., Abdallah, E. A., Calsavara, V. F., & Chinen, L. T. D. (2022). Heterogeneity of HER2 Expression in Circulating Tumor Cells of Patients with Breast Cancer Brain Metastases and Impact on Brain Disease Control. Cancers, 14(13), 3101. https://doi.org/10.3390/cancers14133101