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Abstract

:

Simple Summary


Acute myeloid leukemia (AML) is a devastating but potentially curable disease. The updated version of the European Leukemia Net (ELN) 2017 genetic risk stratification is used as the standard for the prognosis and classification of AML. In the present study, we evaluated the prognostic value of the ELN 2017 criteria on post-hematopoietic stem-cell transplantation (HSCT) outcomes and compared it with pre-HSCT measurable residual disease (MRD) status, determined by Wilms tumor gene 1 (WT1) expression. We classified the patients as intermediate (INT) risk and adverse (ADV) risk. We found that the ELN 2017 risk classification did not effectively predict post-HSCT outcomes in patients with INT or ADV risk. The pre-HSCT WT1 level predicted post-HSCT relapse better than ELN 2017 and had a more prominent prognostic value in the ELN INT risk group than in the ADV risk group.




Abstract


We evaluated the prognostic efficiency of the European Leukemia Net (ELN) 2017 criteria on the post-transplant outcomes of 174 patients with intermediate (INT; n = 108, 62%) or adverse (ADV) risk (n = 66, 38%) of acute myeloid leukemia; these patients had received the first allogeneic hematopoietic stem-cell transplantation (HSCT) at remission. After a median follow-up period of 18 months, the 2 year OS, RFS, and CIR after HSCT were estimated to be 58.6% vs. 64.4% (p = 0.299), 50.5% vs. 53.7% (p = 0.533), and 26.9% vs. 36.9% (p = 0.060) in the INT and ADV risk groups, respectively. Compared to the ELN 2017 stratification, pre-HSCT WT1 levels (cutoff: 250 copies/104 ABL) more effectively segregated the post-HSCT outcomes of INT risk patients compared to ADV risk patients regarding their 2 year OS (64.2% vs. 51.5%, p = 0.099), RFS (59.4% vs. 32.4%, p = 0.003), and CIR (18.9% vs. 60.0% p < 0.001). Indeed, high WT1 levels were more prominent in INT risk patients than in ADV risk patients. Notably, FLT3-ITD had the greatest impact on post-HSCT outcomes among all the ELN 2017 criteria components; patients in the FLT3-ITD mutant subgroups exhibited the worst outcomes regardless of their allelic ratios or NPM1 status compared to the pre-HSCT WT1 level of other INT and ADV risk patients.
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1. Introduction


Acute myeloid leukemia (AML) is a devastating but potentially curable disease with a 5 year relative survival rate of up to 50% for younger patients [1,2]. With the increasing knowledge of the genomic landscapes that underly AML pathogenesis, there have been substantial changes in the classification of AML, and the prognostication system has evolved [3,4,5,6]. At present, the updated version of the European Leukemia Net (ELN) 2017 genetic risk stratification [7] is adopted as the standard for AML prognostication, with the wide application of next-generation sequencing (NGS).



AML patients are allocated into three possible risk groups by the revised ELN, on the basis of certain cytogenetic or molecular aberrations at diagnosis, which serves as a basis for the establishment of treatment strategies. Since ELN 2017 stratification primarily represents the inherited risk of AML at diagnosis, it cannot explain disease kinetics. In the same context, it is unclear whether this genetic risk stratification is applicable for outcome prediction in the setting of allogeneic hematopoietic stem-cell transplantation (HSCT) although it was not intended to stratify post-HSCT outcomes. The issue has already been addressed in earlier research by German researchers, where they found that the ELN 2017 classification remains effective even after HSCT [8]. However, patients receiving nonmyeloablative (NMA)-conditioning protocols comprised 71.1% of the cohort in this study, which is unlikely to represent the totality of people receiving AML transplants. As conditioning regimens and alternative donor selection strategies differ between continents [9,10], it is debatable whether the ELN2017 risk could predict HSCT outcomes in other cohorts.



Regarding the various aspects of risk prediction during treatment, mounting evidence suggests that invisible disease burden estimated by minimal (measurable) residual disease (MRD) pre or post HSCT has a significant impact on the recurrence of the disease [11,12,13,14,15,16,17]. Although active discussions regarding the best tool for MRD assessment have been ongoing, multiparameter flow cytometry (MFC), polymerase chain reaction (PCR), and NGS are all known to reliably detect MRD [18,19,20]. However, to date, owing to difficulties in standardization, the routine use of these methods in clinical practice presents challenges. Wilms tumor gene 1 (WT1) is a potential marker for MRD assessment, with broad applicability, comparability of results, and a standardized assay with a validated cutoff level [21]. The WT1 gene is located on chromosome 11p13 and encodes the zinc finger transcription factor involved in the regulation of the cell cycle, proliferation, differentiation, and apoptosis [22]. It has been shown to be highly expressed in a majority of hematologic malignancies, including AML, and, therefore, has been intensively studied as a potential marker for minimal residual disease [23,24,25,26,27,28,29,30]. Its prognostic impact on AML is consistent across different study groups, and our institution has used WT1 expression for a long time [31,32,33,34,35,36,37], even though current recommendations do not favorably support the use of WT1 for MRD assessment in this era of novel technologies [18,20].



Considering this, we evaluated the prognostic value of ELN 2017 criteria for post-HSCT outcomes and compared them with the value of pre-HSCT MRD status, determined by WT1 expression.




2. Materials and Methods


2.1. Patient Selection


The cohort consisted of 174 patients with an intermediate (INT) risk or adverse (ADV) risk of AML according to the ELN 2017 recommendations, who underwent allogeneic HSCT at Seoul St. Mary’s Hospital between November 2017 and November 2020. All patients were treated with standard anthracycline plus cytarabine-intensive chemotherapy and underwent consolidation treatment with allogeneic HSCT after achieving complete remission (CR) or CR with incomplete peripheral recovery (CRi). Figure 1 demonstrates the CONSORT flow diagram for patient selection. This study was approved by the Institutional Review Board and Ethics Committee of the Catholic Medical Center in South Korea (KC21RISI0572).




2.2. Preparative Regimens for Allogeneic HSCT


Conditioning regimens were chosen according to the institutional strategy in consideration of the donor type, age, or comorbidities of the patient at the time of HSCT. As for myeloablative conditioning (MAC) protocols, BuCy (busulfan 3.2 mg/kg/day for 4 days from D-7 to D-4 and cyclophosphamide 60 mg/kg/day for 2 days from D-3 to D-2) for matched sibling donor (MSD) or matched unrelated donor (MUD) transplantation, and FluBu2TBI800 (total body irradiation (TBI) 400 cGy/day for 2 days on D-9 to 8, fludarabine 30 mg/m2/day for 5 days from D-7 to D-3, busulfan 3.2 mg/kg/day for 2 days from D-6 to D-5) for haploidentical donor (HID) transplantation have been the mainstay of regimens for younger patients. CyTBI (cyclophosphamide 60 mg/kg/day for 2 days from D-7 to D-6 and TBI 330 cGy/day for 4 days from D-5 to D-2) or FluAraCTBI (fludarabine 30 mg/m2/day for 5 days from D-9 to D-5, cytarabine 3g/m2/day for 3 days from D-9 to D-7, and TBI 400 cGy/day for 3 days on D-4 to D-2) regimens were also used, while the latter was only applied for patients receiving cord blood transplantation. For elderly or fragile patients, a reduced-intensity conditioning (RIC) protocol, FluBu2TBI400 (fludarabine 30 mg/m2/day for 5 days from D-6 to D-2, busulfan 3.2 mg/kg/day for 2 days from D-5 to D-4, and TBI 400 cGy/day for 1 day on D-1), was primarily chosen, regardless of donor type. The prevention of graft-versus-host disease (GVHD) differs according to the status of HLA matching and the type of transplant donor. Cyclosporine (transplantation from MSD) or tacrolimus (transplantation from other donors) with methotrexate was used for GVHD prevention. Additionally, patients received mycophenolate mofetil at 3 g three times per day if receiving umbilical cord blood transplantation. Anti-thymocyte globulin (ATG) was used for patients with an unrelated donor (1.25 mg/kg once daily for 2 days, D-3 to D-2) or haploidentical donor (1.25 mg/kg once daily for 4 days, D-4 to D-1), while it was not routinely administered to patients with a matched sibling donor.




2.3. Detection of Genetic Mutation on Pretreatment Bone Marrow Samples


In patients with adequate available samples, genomic DNA was extracted from the bone marrow (BM) aspirates with the QIAamp DNA Mini Kit (Qiagen, Hamburg, Germany). NGS analysis was performed using a customized St. Mary’s customized NGS panel for acute leukemia (SM acute leukemia panel) including 67 genes. Target capturing sequencing was performed using a customized target kit (3039061, Agilent Technologies, Santa Clara, CA, USA), and library preparation was carried out according to the manufacturer’s instructions. NGS was performed on an Illumina HiSeq4000 platform (Illumina, Inc., San Diego, CA, USA). Sequenced reads were mapped to the human reference genome (hg19, Genome Reference Consortium, February 2009).



For detection of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutation, PCR for fragment analysis was performed using a modified protocol as previously described [38,39,40,41]. The functional domains of the FLT3 gene (Gene Bank Accession NM_004119.2) were PCR-amplified with forward primers that were 5′ end-labeled with a fluorescent dye. The PCR products were analyzed using a model 3130XL genetic analyzer (Applied Biosystems, Foster City, CA, USA), and the amplicons with a size greater than that of the wildtype (328 ± 1 base) were considered positive for the ITD mutation. The number, area, and length of mutant peaks on the electropherogram were analyzed using GeneMapper analysis software (Applied Biosystems). The FLT3-ITD mutant allelic burden was calculated as the ratio of the area under the curve of mutant and wildtype alleles (mutant/total FLT3).




2.4. Assessment of WT1 Transcript Levels


The expression of BM WT1 before allo-HSCT was determined via real-time quantitative-PCR using the WT1 ProfileQuant kit (Ipsogen, Marseille, France) [21]. WT1 gene transcripts generated by RQ-PCR were normalized with respect to the number of Abelson murine leukemia viral oncogene homolog 1 (ABL1) transcripts and expressed as copy numbers per 104 copies of ABL1. The cutoff level was 250 copies of WT1 per 104 copies of ABL1 [21], specifically, ≥250 copies for WT1high and <250 copies for WT1low.




2.5. Definition of Outcomes and Statistical Analyses


Baseline clinical, demographic, and molecular features between the patients with INT risk and ADV risk by ELN 2017 were compared using the chi-square test or Fisher exact test for categorical variables, and a two-sample t-test or Mann–Whitney U test for continuous variables. Overall survival (OS), relapse-free survival (RFS), the cumulative incidence of relapse (CIR), and non-relapse mortality (NRM) were calculated from the date of allogeneic transplantation. OS was defined as death from any cause. For RFS, relapse and death, whichever occurred first, were considered uncensored events. For CIR, relapse was assessed as an uncensored event, and death in CR was considered a competing cause of failure. NRM was defined as death with relapse as a competing risk factor. The OS and RFS were estimated using the Kaplan–Meier method, and groups were compared using the log-rank test. The Cox proportional hazards model was used for univariate and multivariate analysis for OS and RFS. CIR and NRM were estimated in a competing risk framework using the cumulative incidence of competing events, Gray test for univariate analysis, and Fine–Gray proportional hazard regression for multivariate analysis. Variables with a p-value < 0.10, determined by univariate analysis, were considered for entry into the multivariate analysis, while ELN 2017 risk, as a variable of interest, was included in the multivariate analysis, regardless of the p-value from univariate analysis. Statistical analyses were performed using R statistical software (version 3.4.3; R Foundation for Statistical Computing, Vienna, Austria).





3. Results


3.1. Patient Characteristics


In the 174 AML patient cohort, on the basis of the ELN 2017 risk stratification, 108 and 66 patients were allocated to the INT risk (62%) and ADV risk (38%) groups, respectively (Table 1). The median age at transplantation was 54 years (range, 18–74 years), and 37.9% of patients had a hematopoietic stem-cell transplantation-specific comorbidity index (HCT-CI) of ≥3 at the time of transplantation. Most patients included in this study received MAC transplants (n = 138, 79.3%). HID transplants were the most common and accounted for 43.7%, which were followed by transplantations from MUD (26.4%), MSD (25.9%), and mismatched unrelated donors or umbilical cord blood (4%). The remission status at allogeneic HSCT was CR1 in 90.8% and CR2 in 9.2% of patients. Pre-transplantation WT1 levels were available in all patients; 48 were WT1high (27.6%) and 126 were WT1low (72.4%) at allogeneic HSCT.



There were no significant differences in age, sex, HCT-CI, disease type, donor type, and pre-HSCT WT1 level between the INT and ADV risk patients. However, more patients in the ADV risk group received MAC transplants compared to the INT risk group (87.9% vs. 74.1%, p = 0.047).




3.2. Post-HSCT Outcomes According to ELN 2017 Genetic Risk Stratification


The clinical outcomes after transplantation are presented in Figure 2. The probability of OS and RFS at 2 years after allogeneic HSCT for the entire cohort were 60.7% (95% CI, 53.6–68.9) and 51.8% (95% CI, 44.6–60.1). Specifically, for patients of the INT and ADV risk groups, the 2 year OS and RFS were estimated to be 58.6% vs. 64.4% (OS, p = 0.299, Figure 2A) and 50.5% vs. 53.7% (RFS, p = 0.533, Figure 2B), respectively. The CIR and NRM at 2 years after allogeneic HSCT were 31.2% (95% CI, 23.9–38.8) and 22.3% (95% CI, 16.0–29.3) for the entire cohort: in detail, 26.9% vs. 36.9% (CIR, p = 0.060, Figure 2C) and 29.0% vs. 19.6% (NRM, p = 0.015, Figure 2D) for patients with INT- and ADV-risk by ELN, respectively.



The results of univariate and multivariate analysis are demonstrated in Table 2. ELN 2017 risk did not show a significant prognostic value for post-transplant OS, RFS, and CIR in the univariate and multivariate analyses, whereas pre-HSCT WT1high was independently associated with worse OS (p = 0.02, hazard ratio (HR) = 1.81, (95% confidence interval (CI) 1.09–3.02)), RFS (p = 0.005, HR = 1.92, (95% CI 1.21–3.03)), and higher risk of CIR (p < 0.001, HR = 4.22, (95% CI 2.43–7.81)) after transplantation. Regarding NRM, age ≥ 55 years (p = 0.002, HR = 3.90, (95% CI 1.66–9.15)) and ELN ADV risk (p = 0.02, HR = 0.39, (95% CI 0.17–0.86)) were significantly related to higher and lower risk of NRM in multivariate analysis.




3.3. Incorporation of ELN 2017 Risk Classification and WT1 Level before Allogeneic HSCT


To identify the incorporated prognostic impact of pre-treatment ELN 2017 risk and post-chemotherapy WT1 levels on clinical outcomes after transplantation, we further divided the patients into the following four subgroups: INTWT1low (n = 82), INTWT1high (n = 26), ADVWT1low (n = 44), and ADVWT1high (n = 22; Figure 3). For patients with WT1low and WT1high in the INT risk group, the 2 year OS rates were 66.9% vs. 58.70% (p = 0.162), RFS rates were 59.5% vs. 21.6% (p = 0.009), CIR rates were 12.0% vs. 67.3% (p < 0.001), and NRM rates were 32.1% vs. 18.4% (p = 0.084), respectively. For those with WT1low and WT1high in the ADV risk group, the 2 year OS rates were 66.9% vs. 58.7% (p = 0.325), RFS rates were 58.9% vs. 43.4% (p = 0.189), CIR rates were 19.2% vs. 51.9% (p = 0.031), and NRM rates were 13.4% vs. 5.6% (p = 0.295), respectively. The importance of high WT1 transcript levels was more prominent in the INT risk group, showing significant differences in both RFS and CIR between the INTWT1low and INTWT1High (Figure 3). Overall, patients with a high WT1 level at transplant showed worse post-HSCT outcomes in the context of RFS (p = 0.017) and CIR (p < 0.001) as compared to WT1low patients of either the INT or ADV risk group (Supplementary Figure S1).




3.4. Subdivision of ELN Risk Groups: Negative Impact of Mutated FLT3-ITD on Post-HSCT Outcomes Regardless of Allelic Burden or NPM1 Co-Mutation Status


To determine which components constituting the ELN 2017 risk stratification influenced the post-HSCT prognosis the most, we conducted an analysis with these components as variables, where we identified that the presence of the FLT3-ITD mutation at diagnosis had an independent negative impact on post-HSCT OS, RFS, and CIR (Supplementary Table S1). Next, we focused on the FLT3-ITD-mutated group only and performed a detailed analysis according to FLT3-ITD allelic burden (FLT3-ITDhigh, low) and NPM1 mutation status (NPM1wt, mut), in which we revealed that the subgroup analysis based on these factors did not follow the known ELN 2017 risk outcomes (Figure 4). For the FLT3-ITDhigh/NPM1mut (n = 13), FLT3-ITDlow/NPM1wt (n = 9), and FLT3-ITDhigh/NPM1wt AML (n = 8) groups, the OS and RFS at 2 years after HSCT did not significantly differ (46.2%, 44.4%, and 50% for OS (p = 0.795, Figure 4A) and 30.0%, 33.3%, and 36.4% for RFS (p = 0.9, Figure 4B), respectively). Moreover, these subpopulations all showed worse OS and RFS when compared to the remaining FLT3-ITD-negative patients, belonging to ELN 2017 INT or ADV risk groups.




3.5. Association between FLT3-ITD Mutation and Pre-HSCT WT1 Expression Level


The WT1 expression levels at pre-HSCT were higher in patients with FLT3-ITD mutation than in those with wildtype (mean 0.174 versus 0.067, p = 0.028). We evaluated the role of WT1 expression by applying the WT1 level within a FLT3-ITD mutated subgroup (n = 30), where we found that 10 WT1high patients showed significantly poor outcomes in OS, RFS, and CIR (p = 0.008, p = 0.01, and p = 0.004, respectively) (Figure 5). Among the 30 patients with FLT3-ITD mutation at baseline, 24 patients were tested for pre-HSCT FLT3-ITD mutational status using the aforementioned method (PCR for fragment analysis). When receiver operating characteristics (ROC) analysis was used to determine the optimal threshold value of WT1 level to predict FLT3-ITD MRD positivity, the area under the curve (AUC) was 0.7 at the cutoff WT1 level of 250 copies/104 ABL, with an accuracy of 0.75 in the pre-HSCT samples (Supplementary Figure S2).





4. Discussion


Owing to the recent advances in genomic technologies, AML has been identified as a heterogeneous group of diseases according to cytogenetics and molecular aberrations. This led to substantial changes in the classification and prognostication of AML over the years, and the ELN 2017 classification is the latest updated version of the risk model at present, which can distinguish between significantly different overall survival groups, mainly for those who received chemotherapy-based consolidation.



In this study, we examined the prognostic ability of ELN 2017 risk stratification for post-HSCT outcomes and analyzed a total of 174 AML patients who underwent first allogeneic HSCT as consolidation therapy following myeloablative (79.3%) or reduced-intensity conditioning (20.7%). As allogeneic HSCT was primarily considered for patients in INT or ADV risk groups, we paid particular attention to AML patients in these risk groups, and all the analyzed patients were allocated to either the INT or ADV risk group by ELN 2017, on the basis of their cytogenetic and molecular aberrations at diagnosis. After HSCT, OS at 2 years for the INT and ADV risk groups was 58.6% and 64.4% (p = 0.299), respectively, which was not significantly different between the groups. Similarly, the ELN risk at diagnosis was not significantly correlated with post-HSCT outcomes in the context of RFS and CIR. This finding may represent the fact that ELN 2017 risk could not effectively segregate the post-HSCT outcomes of INT risk patients from ADV risk patients. However, it may also suggest that the treatment decision to undergo allogeneic HSCT according to the ELN risk stratification at diagnosis allows for the poor outcomes in patients of the ADV risk group to be overcome.



Our findings conflict with the results of previous reports. A German study [8] and a CIBMTR analysis [42] confirmed that the ELN 2017 classification is applicable to patients receiving HSCT, effectively distinguishing three risk groups with significantly distinct post-HSCT outcomes. When compared to our study, these studies included patients of favorable (FAV) risk in addition to INT or ADV risk groups and focused on the post-transplant outcomes of the whole population rather than focusing only on the INT and ADV risk groups, who are the common candidates for HSCT. In addition, in the German study [8], the distribution of patients at risk was quite disproportional, and the number of INT risk patients was too small to compare with other risk groups; only 30 out of 234 patients (12.8%) were grouped as being INT risk, and the majority were classified as either FAV (n = 93, 39.7%) or ADV (n = 111, 47.4%). Consequently, the statistical significance was largely due to the difference in outcomes between the FAV and ADV risk groups. Regarding CIBMTR analysis [42], the authors used adapted ELN genetic risk stratification (aELN) for the validation of HSCT outcomes in transplant recipients in AML CR1. In this operational genetic classification, the FLT3-ITD allelic ratio and CEBPA mono/biallelic status were not used for risk stratification due to a lack of data, and patients with the FLT3-ITD mutation were all grouped as ADV risk if the NPM1 mutation was negative. This potentially led to risk group shifts in patients with FLT3-ITD with low allelic mutations; risk groups were changed from FAV (ELN 2017) to INT (aELN) for FLT3-ITDlow/NPM1mut cases and from INT (ELN 2017) to ADV (aELN) for FLT3-ITDlow/NPM1wt cases, respectively. This is of particular importance given that the decision of whether to undergo HSCT remains a matter of debate in AML with FLT3-ITD mutations with a low allelic ratio or concomitant NPM1 mutation [43,44].



Before the introduction of ELN 2017, the prognostic impact of the ELN 2010 classification for patients receiving allogeneic HSCT was validated by US researchers, where the authors found that ELN ADV and INT1 risk had significantly decreased survival due to an increased risk of post-HSCT relapse [45]. It was notable that the best outcomes in the context of OS and event-free survival (EFS) were in patients with FAV and INT2 risk; INT1 compared to INT2 showed even worse outcomes, with a threefold higher hazard ratio for death. The authors attributed this to the higher percentage of FLT3-ITD abnormalities in their INT1 cohort (72%) when compared to the ELN 2010 cohort (20%). The results from this analysis were based on an old version of ELN [4] and, thus, could not provide a detailed prognosis for patients with the FLT3-ITD mutation according to the allelic ratio or NPM1 status. Nevertheless, this may reflect the importance of the FLT3-ITD mutation itself for post-HSCT outcomes in AML patients. In line with this result, we confirmed that the FLT3-ITD mutation had the greatest impact on post-HSCT outcomes compared to any factor constituting the current ELN 2017 risk stratification. These findings could be the rationale for applying an FLT3 inhibitor as a maintenance therapy for HSCT patients [46,47,48,49,50,51], and we are awaiting the results of recent clinical trials to determine who would benefit the most from treatment with FLT3 inhibitors in this setting [52,53].



To identify the significance of the allelic ratio and NPM1 status in FLT3-ITD-mutated AML, the post-HSCT outcomes for patients of different combinations of FLT3-ITDhigh or low/NPM1wt or mut, belonging to INT and ADV risk by ELN 2017, were separately analyzed in this study. As a result, we observed that the outcomes of FLT3-ITD-mutated subgroups—FLT3-ITDhigh and NPM1mut (n = 13), FLT3-ITDlow, and NPM1wt (n = 9), and FLT3-ITDhigh and NPM1wt AML (n = 8)—did not significantly differ after transplantation. Moreover, FLT3-ITD-mutated subgroups all showed worse post-transplant outcomes when compared to the rest of the patients with INT and ADV risk. Although the number of patients in each group was too small to draw a definitive conclusion, the ELN 2017 classification did not distinguish between different risk groups within FLT3-mutated patients, and mutated FLT3-ITD regardless of the allelic ratio, or NPM status tended to greatly affect post-HSCT outcomes. For treatment decisions for FLT3-ITD-mutated patients of different subgroups, our study has a limitation because we did not perform a comparison between patients receiving allogeneic HSCT and those receiving chemotherapy alone. However, a study from the MD Anderson Cancer Center showed that allogeneic HSCT reduced the risk of relapse and improved both RFS and OS, regardless of the FLT3 allelic ratio and NPM1 status, as compared to the non-transplant group among the 227 FLT3-mutated AML patients [54]. We believe that this finding further emphasizes that FLT3-ITD alone could work as an important biologic prognostic factor, even if the adverse impact of this mutation in AML may have some variations depending on other biologic features.



In addition to pretreatment risk stratification, assessment of MRD is also a well-known prognostic factor for AML outcomes. Although the WT1 transcript level used in this study is less specific and, therefore, has a low priority for MRD assessment in AML, it could effectively discriminate between two groups with different risks of relapse and survival. Of interest, the prognostic impact of the pre-HSCT WT1 transcript level remained significant even after adjusting for the ELN 2017 classification, while the ELN 2017 risk failed to prove its prognostic significance in both univariate and multivariate analysis. Notably, the pre-HSCT WT1 level had a more prominent value for outcome prediction in the INT risk group as compared to the ADV risk group. These findings imply that the kinetics and depth of treatment response are just as important as biologic markers at AML diagnosis, and MRD assessment with available assays should be utilized to improve the transplant outcomes by providing a possible guide to determine ideal conditioning intensity [15] or post-HSCT management, such as the rapid tapering of immunosuppression for patients at higher risk of relapse [55].



There are several limitations to the current study. One is the retrospective nature of the study, in addition to the relatively small sample size, including only a few patients in each subgroup for comparison, and the absence of an independent validation cohort, which make it hard to confirm our findings in general. Furthermore, our cohort only included patients who reached CR(i) before transplant. Consequently, adverse risk patients included in this study were highly selected from the beginning and cannot be considered representative of the entire adverse risk group. In addition, although the patients in this study were recruited from November 2017 to November 2020, when the RATIFY [56] and ADMIRAL-trial [57] were already published and midostaurin and gilteritinib became available soon afterward in many countries, it was only much later that these FLT3 inhibitors became available in Korea. Consequently, no patient included in this study received any of the FLT3 inhibitors, and we could not evaluate the impact of pre-transplantation treatment with/without FLT3 inhibitors on post-HSCT outcomes. Lastly, we cannot exclude the possibility that the prognostic value of ELN 2017 in an HSCT setting might be obscured in this study by most patients undergoing MAC transplants. Moreover, the high frequency of haplo-allo-HSCT in this study (up to 43.7%) is likely a unique situation worldwide. Therefore, our findings lack generalizability, and further analysis in a larger cohort is necessary to confirm them.




5. Conclusions


In summary, the ELN 2017 risk classification did not effectively predict post-HSCT outcomes in patients in INT and ADV risk groups. The pre-HSCT WT1 level, rather than ELN 2017, was superior in predicting post-HSCT relapse, and it had a more prominent prognostic value in the ELN INT risk group than the ADV risk group. The FLT3-ITD mutation had the greatest impact on post-HSCT outcomes among the components constituting ELN 2017 risk stratification, while FLT3-ITD-mutated subgroups showed the worst post-HSCT outcomes regardless of allelic ratio or NPM1 status when compared to the other patients at INT and ADV risk.








Supplementary Materials


The following are available online at www.mdpi.com/article/10.3390/cancers14133199/s1, Table S1. Univariate and multivariate analysis for survival outcomes related to ELN 2017 components; Supplementary Figure S1. Prognostic significance of WT1 level in patients with AML who undergo allogeneic HSCT. Application to the two risk groups according to WT1 level-predicted OS (A), RFS (B), CIR (C), and NRM (D); Supplementary Figure S2, Receiver operating characteristic (ROC) analysis with WT1 cutoff level and FLT3-ITD MRD positivity pre HSCT.





Author Contributions


Collecting and analyzing the data and writing, T.-Y.K., S.P., D.K. and J.-H.L.; providing patients and materials and reviewing the manuscript, D.K., Y.-W.J., J.L., G.-J.M., S.-H.S., S.-A.Y., J.-H.Y. and B.-S.C.; providing the materials and reviewing the manuscript, D.K., J.-H.L., J.L., S.-S.P., S.-E.L., K.-S.E. and C.-K.M.; reviewing the manuscript and analyzing the data, Y.-J.K., S.L., S.-G.C. and J.-W.L.; designing the study, providing patients and materials, analyzing the data, and supervising the writing, H.-J.K. All authors read and agreed to the published version of the manuscript.




Funding


This research was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (HA17C0042).




Institutional Review Board Statement


This study was conducted in accordance with the guidelines of the Declaration of Helsinki. The Institutional Review Board and Ethics Committee of the Catholic Medical Center in South Korea (KC21RISI0572, 3 October 2021) approved this study.




Informed Consent Statement


Patient consent was not required because of the retrospective nature of the study.




Data Availability Statement


The data presented in this study are available on request from the corresponding author. The data are not publicly available owing to privacy and ethical reasons.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Juliusson, G.; Antunovic, P.; Derolf, A.; Lehmann, S.; Mollgard, L.; Stockelberg, D.; Tidefelt, U.; Wahlin, A.; Hoglund, M. Age and acute myeloid leukemia: Real world data on decision to treat and outcomes from the Swedish acute leukemia registry. Blood 2009, 113, 4179–4187. [Google Scholar] [CrossRef] [PubMed]

	



Oran, B.; Weisdorf, D.J. Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 2012, 97, 1916–1924. [Google Scholar] [CrossRef] [PubMed]

	



Park, S.; Cho, B.S.; Kim, H.J. New agents in acute myeloid leukemia (AML). Blood Res. 2020, 55, S14–S18. [Google Scholar] [CrossRef] [PubMed]

	



Dohner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [PubMed]

	



Mrozek, K.; Marcucci, G.; Nicolet, D.; Maharry, K.S.; Becker, H.; Whitman, S.P.; Metzeler, K.H.; Schwind, S.; Wu, Y.Z.; Kohlschmidt, J.; et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 4515–4523. [Google Scholar] [CrossRef] [PubMed]

	



Rollig, C.; Bornhauser, M.; Thiede, C.; Taube, F.; Kramer, M.; Mohr, B.; Aulitzky, W.; Bodenstein, H.; Tischler, H.J.; Stuhlmann, R.; et al. Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: Evaluation of the proposed reporting system. J. Clin. Oncol. 2011, 29, 2758–2765. [Google Scholar] [CrossRef] [PubMed]

	



Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]

	



Grimm, J.; Jentzsch, M.; Bill, M.; Goldmann, K.; Schulz, J.; Niederwieser, D.; Platzbecker, U.; Schwind, S. Prognostic impact of the ELN 2017 risk classification in patients with AML receiving allogeneic transplantation. Blood Adv. 2020, 4, 3864–3874. [Google Scholar] [CrossRef] [PubMed]

	



Lee, C.J.; Bipin, N.S.; Mohamad, M.; Myriam, L.; Annalisa, R.; Christoph, S.; Frédéric, B.; Jordi, E.; Norbert, C.G.; Sebastian, G.; et al. Haploidentical Hematopoietic Cell Transplantation for Adult Acute Myeloid Leukemia: A Position Statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017, 102, 1810–1822. [Google Scholar] [CrossRef]

	



Niederwieser, D. The Chinese Hct Survey: A Non-Manipulated Haploidentical Transplantation Procedure Makes a Novel Contribution to Data Sharing within the Regional and Global Transplant Registries and to Worldwide Knowledge. Bone Marrow Transplant. 2021, 56, 1229–1231. [Google Scholar] [CrossRef] [PubMed]

	



Shah, M.V.; Jorgensen, J.L.; Saliba, R.M.; Wang, S.A.; Alousi, A.M.; Andersson, B.S.; Bashir, Q.; Ciurea, S.O.; Kebriaei, P.; Marin, D.; et al. Early post-transplant minimal residual disease assessment improves risk stratification in acute myeloid leukemia. Biol. Blood Marrow Transplant. 2018, 24, 1514–1520. [Google Scholar] [CrossRef] [PubMed]

	



Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef] [PubMed]

	



Kim, T.; Moon, J.H.; Ahn, J.S.; Kim, Y.K.; Lee, S.S.; Ahn, S.Y.; Jung, S.H.; Yang, D.H.; Lee, J.J.; Choi, S.H.; et al. Next-generation sequencing-based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood 2018, 132, 1604–1613. [Google Scholar] [CrossRef] [PubMed]

	



Thol, F.; Gabdoulline, R.; Liebich, A.; Klement, P.; Schiller, J.; Kandziora, C.; Hambach, L.; Stadler, M.; Koenecke, C.; Flintrop, M.; et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018, 132, 1703–1713. [Google Scholar] [CrossRef] [PubMed]

	



Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]

	



Grimm, J.; Bill, M.; Jentzsch, M.; Beinicke, S.; Hantschel, J.; Goldmann, K.; Schulz, J.; Cross, M.; Franke, G.N.; Behre, G.; et al. Clinical impact of clonal hematopoiesis in acute myeloid leukemia patients receiving allogeneic transplantation. Bone Marrow Transplant. 2019, 54, 1189–1197. [Google Scholar] [CrossRef] [PubMed]

	



Kim, H.J.; Kim, Y.; Kang, D.; Kim, H.S.; Lee, J.M.; Kim, M.; Cho, B.S. Prognostic value of measurable residual disease monitoring by next-generation sequencing before and after allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Blood Cancer J. 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]

	



Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Bene, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD working party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef]

	



Aitken, M.J.L.; Ravandi, F.; Patel, K.P.; Short, N.J. Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J. Hematol. Oncol. 2021, 14, 137. [Google Scholar] [CrossRef] [PubMed]

	



Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Bene, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]

	



Cilloni, D.; Renneville, A.; Hermitte, F.; Hills, R.K.; Daly, S.; Jovanovic, J.V.; Gottardi, E.; Fava, M.; Schnittger, S.; Weiss, T.; et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European LeukemiaNet study. J. Clin. Oncol. 2009, 27, 5195–5201. [Google Scholar] [CrossRef] [PubMed]

	



Dejjuy, D.; Dechsukhum, C.; Pattanapanyasat, K.; Noulsri, E.; Dissen, G.A.; Leeanansaksiri, W. Novel WT1 Target Genes: IL-2, IL-2RB, and IL-2RG Discovered During WT1 Silencing Using Lentiviral-Based RNAi in Myeloid Leukemia Cells. Biomed Res. Int. 2020, 2020, 7851414. [Google Scholar] [CrossRef]

	



Pozzi, S.; Geroldi, S.; Tedone, E.; Luchetti, S.; Grasso, R.; Colombo, N.; Grazia, C.D.; Lamparelli, T.; Gualandi, F.; Ibatici, A.; et al. Leukaemia Relapse after Allogeneic Transplants for Acute Myeloid Leukaemia: Predictive Role of WT1 Expression. Br. J. Haematol. 2013, 160, 503–509. [Google Scholar] [CrossRef]

	



Israyelyan, A.; Goldstein, L.; Tsai, W.; Aquino, L.; Forman, S.J.; Nakamura, R.; Diamond, D.J. Real-Time Assessment of Relapse Risk Based on the WT1 Marker in Acute Leukemia and Myelodysplastic Syndrome Patients after Hematopoietic Cell Transplantation. Bone Marrow Transplant. 2015, 50, 26–33. [Google Scholar] [CrossRef]

	



Di Grazia, C.; Pozzi, S.; Geroldi, S.; Grasso, R.; Miglino, M.; Colombo, N.; Tedone, E.; Luchetti, S.; Lamparelli, T.; Gualandi, F.; et al. Wilms Tumor 1 Expression and Pre-Emptive Immunotherapy in Patients with Acute Myeloid Leukemia Undergoing an Allogeneic Hemopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 1242–1246. [Google Scholar] [CrossRef]

	



Candoni, A.; De Marchi, F.; Zanini, F.; Zannier, M.E.; Simeone, E.; Toffoletti, E.; Chiarvesio, A.; Cerno, M.; Fili, C.; Patriarca, F.; et al. Predictive Value of Pretransplantation Molecular Minimal Residual Disease Assessment by WT1 Gene Expression in FLT3-Positive Acute Myeloid Leukemia. Exp. Hematol. 2017, 49, 25–33. [Google Scholar] [CrossRef]

	



Candoni, A.; De Marchi, F.; Zannier, M.E.; Lazzarotto, D.; Fili, C.; Dubbini, M.V.; Rabassi, N.; Toffoletti, E.; Lau, B.W.; Fanin, R. High Prognostic Value of Pre-Allogeneic Stem Cell Transplantation Minimal Residual Disease Detection by WT1 Gene Expression in AML Transplanted in Cytologic Complete Remission. Leuk. Res. 2017, 63, 22–27. [Google Scholar] [CrossRef]

	



Dulery, R.; Nibourel, O.; Gauthier, J.; Elsermans, V.; Behal, H.; Coiteux, V.; Magro, L.; Renneville, A.; Marceau, A.; Boyer, T.; et al. Impact of Wilms’ Tumor 1 Expression on Outcome of Patients Undergoing Allogeneic Stem Cell Transplantation for AML. Bone Marrow Transplant. 2017, 52, 539–543. [Google Scholar] [CrossRef]

	



Frairia, C.; Aydin, S.; Audisio, E.; Riera, L.; Aliberti, S.; Allione, B.; Busca, A.; D’Ardia, S.; Dellacasa, C.M.; Demurtas, A.; et al. Post-Remissional and Pre-Transplant Role of Minimal Residual Disease Detected by WT1 in Acute Myeloid Leukemia: A Retrospective Cohort Study. Leuk. Res. 2017, 61, 10–17. [Google Scholar] [CrossRef]

	



Nomdedeu, J.F.; Esquirol, A.; Carricondo, M.; Pratcorona, M.; Hoyos, M.; Garrido, A.; Rubio, M.; Bussaglia, E.; Garcia-Cadenas, I.; Estivill, C.; et al. Bone Marrow WT1 Levels in Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myelogenous Leukemia and Myelodysplasia: Clinically Relevant Time Points and 100 Copies Threshold Value. Biol. Blood Marrow Transplant. 2018, 24, 55–63. [Google Scholar] [CrossRef]

	



Yoon, J.H.; Kim, H.J.; Shin, S.H.; Yahng, S.A.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; Lee, S.; Min, C.K.; et al. Serial measurement of WT1 expression and decrement ratio until hematopoietic cell transplantation as a marker of residual disease in patients with cytogenetically normal acute myelogenous leukemia. Biol Blood Marrow Transplant. 2013, 19, 958–966. [Google Scholar] [CrossRef]

	



Yoon, J.H.; Kim, H.J.; Shin, S.H.; Yahng, S.A.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; Lee, S.; Min, C.K.; et al. BAALC and WT1 expressions from diagnosis to hematopoietic stem cell transplantation: Consecutive monitoring in adult patients with core-binding-factor-positive AML. Eur. J. Haematol. 2013, 91, 112–121. [Google Scholar] [CrossRef] [PubMed]

	



Yoon, J.H.; Jeon, Y.W.; Yahng, S.A.; Shin, S.H.; Lee, S.E.; Cho, B.S.; Lee, D.G.; Eom, K.S.; Kim, H.J.; Lee, S.; et al. Wilms tumor gene 1 expression as a predictive marker for relapse and survival after hematopoietic stem cell transplantation for myelodysplastic syndromes. Biol. Blood Marrow Transplant. 2015, 21, 460–467. [Google Scholar] [CrossRef]

	



Yoon, J.H.; Kim, H.J.; Kwak, D.H.; Park, S.S.; Jeon, Y.W.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; Lee, S.; et al. High WT1 expression is an early predictor for relapse in patients with acute promyelocytic leukemia in first remission with negative PML-RARa after anthracycline-based chemotherapy: A single-center cohort study. J. Hematol. Oncol. 2017, 10, 30. [Google Scholar] [CrossRef] [PubMed]

	



Cho, B.S.; Min, G.J.; Park, S.S.; Shin, S.H.; Yahng, S.A.; Jeon, Y.W.; Yoon, J.H.; Lee, S.E.; Eom, K.S.; Kim, Y.J.; et al. WT1 measurable residual disease assay in patients with acute myeloid leukemia who underwent allogeneic hematopoietic stem cell transplantation: Optimal time points, thresholds, and candidates. Biol. Blood Marrow Transplant. 2019, 25, 1925–1932. [Google Scholar] [CrossRef] [PubMed]

	



Kim, H.J.; Sohn, H.J.; Hong, J.A.; Lee, H.J.; Sohn, D.H.; Shin, C.A.; Cho, H.I.; Min, W.S.; Kim, T.G. Post-transplant immunotherapy with WT1-specific CTLs for high-risk acute myelogenous leukemia: A prospective clinical phase I/II trial. Bone Marrow Transplant. 2019, 54, 903–906. [Google Scholar] [CrossRef]

	



Park, S.; Min, G.J.; Park, S.S.; Yahng, S.A.; Jeon, Y.W.; Shin, S.H.; Yoon, J.H.; Lee, S.E.; Cho, B.S.; Eom, K.S.; et al. Comparison of myeloablative (CyTBI, BuCy) versus reduced-intensity (FluBu2TBI400) peripheral blood stem cell transplantation in acute myeloid leukemia patients with pretransplant low WT1 expression. Biol. Blood Marrow Transplant. 2020, 26, 2018–2026. [Google Scholar] [CrossRef]

	



Kim, Y.; Lee, G.D.; Park, J.; Yoon, J.H.; Kim, H.J.; Min, W.S.; Kim, M. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015, 5, e336. [Google Scholar] [CrossRef]

	



Yoon, J.H.; Kim, H.J.; Park, S.S.; Jeon, Y.W.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; Lee, S.; Min, C.K.; et al. Long-term clinical outcomes of hematopoietic cell transplantation for intermediate-to-poor-risk acute myeloid leukemia during first remission according to available donor types. Oncotarget 2017, 8, 41590–41604. [Google Scholar] [CrossRef]

	



Zwaan, C.M.; Meshinchi, S.; Radich, J.P.; Veerman, A.J.; Huismans, D.R.; Munske, L.; Podleschny, M.; Hahlen, K.; Pieters, R.; Zimmermann, M.; et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: Prognostic significance and relation to cellular drug resistance. Blood 2003, 102, 2387–2394. [Google Scholar] [CrossRef]

	



Lee, G.; Kim, J.; Lee, S.; Jang, W.; Park, J.; Chae, H.; Kim, M.; Kim, Y. Fragment analysis for detection of the FLT3-internal tandem duplication: Comparison with conventional PCR and Sanger sequencing. Lab. Med. Online 2017, 7, 13–19. [Google Scholar] [CrossRef]

	



Jimenez, A.M.J.; De Lima, M.; Komanduri, K.V.; Wang, T.P.; Zhang, M.J.; Chen, K.; Abdel-Azim, H.; Abid, M.B.; Aljurf, M.; Alkhateeb, H.; et al. An adapted European LeukemiaNet genetic risk stratification for acute myeloid leukemia patients undergoing allogeneic hematopoietic cell transplant. a CIBMTR analysis. Bone Marrow Transplant. 2021, 56, 3068–3077. [Google Scholar] [CrossRef]

	



Bazarbachi, A.H.; Hamed, R.A.; Malard, F.; Mohty, M.; Bazarbachi, A. Allogeneic transplant for FLT3-ITD mutated AML: A focus on FLT3 inhibitors before, during, and after transplant. Ther. Adv. Hematol. 2019, 10, 2040620719882666. [Google Scholar] [CrossRef]

	



Ciurea, S.O. Allogeneic stem cell transplantation for FLT3 mutated acute myeloid leukemia in first complete remission: Does age really matter? Haematologica 2018, 103, 191–193. [Google Scholar] [CrossRef]

	



Medeiros, B.C.; Tian, L.; Robenson, S.; Laport, G.G.; Johnston, L.J.; Shizuru, J.A.; Miklos, D.B.; Arai, S.; Benjamin, J.E.; Weng, W.K.; et al. European LeukemiaNet classification intermediate risk-1 cohort is associated with poor outcomes in adults with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Blood Cancer J. 2014, 4, e216. [Google Scholar] [CrossRef]

	



Levis, M.J.; Chen, Y.B.; Hamadani, M.; Horowitz, M.M.; Jones, R.J.; Blood and Network Marrow Transplant Clinical Trials. FLT3 Inhibitor Maintenance after Allogeneic Transplantation: Is a Placebo-Controlled, Randomized Trial Ethical? J. Clin. Oncol. 2019, 37, 1604–1607. [Google Scholar] [CrossRef]

	



Bazarbachi, A.; Bug, G.; Baron, F.; Brissot, E.; Ciceri, F.; Dalle, I.A.; Dohner, H.; Esteve, J.; Floisand, Y.; Giebel, S.; et al. Clinical Practice Recommendation on Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia Patients with FLT3-Internal Tandem Duplication: A Position Statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2020, 105, 1507–1516. [Google Scholar]

	



Burchert, A.; Bug, G.; Fritz, L.V.; Finke, J.; Stelljes, M.; Rollig, C.; Wollmer, E.; Wasch, R.; Bornhauser, M.; Berg, T.; et al. Sorafenib Maintenance after Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia with FLT3-Internal Tandem Duplication Mutation (Sormain). J. Clin. Oncol. 2020, 38, 2993–3002. [Google Scholar] [CrossRef]

	



Xuan, L.; Wang, Y.; Huang, F.; Fan, Z.; Xu, Y.; Sun, J.; Xu, N.; Deng, L.; Li, X.; Liang, X.; et al. Sorafenib Maintenance in Patients with FLT3-ITD Acute Myeloid Leukaemia Undergoing Allogeneic Haematopoietic Stem-Cell Transplantation: An Open-Label, Multicentre, Randomised Phase 3 Trial. Lancet Oncol. 2020, 21, 1201–1212. [Google Scholar] [CrossRef]

	



Gagelmann, N.; Wolschke, C.; Klyuchnikov, E.; Christopeit, M.; Ayuk, F.; Kroger, N. TKI Maintenance after Stem-Cell Transplantation for FLT3-ITD Positive Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 630429. [Google Scholar] [CrossRef]

	



Griffin, J.D.; Song, Y.; Yang, H.; Freimark, J.; Shah, M.V. Post-Transplant Maintenance Therapy in Patients with FLT3-Mutated Acute Myeloid Leukemia: Real-World Treatment Patterns and Outcomes. Eur. J. Haematol. 2021, 107, 553–565. [Google Scholar] [CrossRef] [PubMed]

	



Kennedy, V.E.; Smith, C.C. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front. Oncol. 2020, 10, 612880. [Google Scholar] [CrossRef] [PubMed]

	



Ragon, B.K. FLT3-ITDos and FLT3-ITDon’ts: Navigating Maintenance Therapy in FLT3-ITD-Positive Acute Myeloid Leukemia Following Stem Cell Transplantation. Bone Marrow Transplant. 2021, 56, 1774–1776. [Google Scholar] [CrossRef]

	



Oran, B.; Cortes, J.; Beitinjaneh, A.; Chen, H.C.; de Lima, M.; Patel, K.; Ravandi, F.; Wang, X.; Brandt, M.; Andersson, B.S.; et al. Allogeneic transplantation in first remission improves outcomes irrespective of FLT3-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol. Blood Marrow Transplant. 2016, 22, 1218–1226. [Google Scholar] [CrossRef]

	



Ngai, L.L.; Kelder, A.; Janssen, J.J.W.M.; Ossenkoppele, G.J.; Cloos, J. MRD tailored therapy in AML: What we have learned so far. Front. Oncol. 2020, 10, 603636. [Google Scholar] [CrossRef]

	



Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Dohner, K.; Marcucci, G.; et al. Midostaurin Plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]

	



Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]








[image: Cancers 14 03199 g001 550] 





Figure 1. CONSORT flow diagram for patient selection. 
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Figure 2. Prognostic significance of the European Leukemia Net (ELN) 2017 risk classification in acute myeloid leukemia patients who had undergone allogeneic hematopoietic stem-cell transplantations. The ELN 2017 classification predicted the (A) overall survival (OS), (B) relapse-free survival (RFS), (C) cumulative incidence of relapse (CIR), and (D) non-relapse mortality (NRM) of patients belonging to the two risk groups. 
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Figure 3. Prognostic significance of Wilms tumor gene 1 (WT1) transcript levels for post-transplantation outcomes in terms of the European Leukemia Net 2017 classification components: (A) overall survival (OS); (B) relapse-free survival (RFS); (C) cumulative incidence of relapse (CIR); (D) non-relapse mortality (NRM). WT1low + INT, intermediate risk patients with low WT1 levels; WT1low + ADV, adverse risk patients with low WT1 levels; WT1high + INT, intermediate risk patients with high WT1 levels; WT1high + ADV, adverse risk patients with high WT1 levels. 
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Figure 4. Comparison of (A) overall survival (OS), (B) relapse-free survival (RFS), (C) cumulative incidence of relapse (CIR), and (D) non-relapse mortality (NRM) in acute myeloid leukemia patients with FMS-like tyrosine kinase 3 internal tandem duplication mutation, sub-grouped as per the European Leukemia Net (ELN) 2017 classification. ELN Adverse, adverse risk patients; ELN Intermediate, intermediate risk patients; FLT3high/NPM1mut, patients with high FLT3 levels and mutated NPM1; FLT3high/NPM1wt, patients with high FLT3 levels and wildtype NPM1; FLT3low/NPM1wt, patients with low FLT3 levels and wildtype NPM1. 
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Figure 5. Comparison of (A) overall survival (OS), (B) relapse-free survival (RFS), (C) cumulative incidence of relapse (CIR), and (D) non-relapse mortality (NRM) in acute myeloid leukemia patients with the FLT3-ITD mutation, divided by pre-HSCT WT1high and WT1low. 
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Table 1. Baseline demographic and clinical characteristics of the study cohort (n = 174).






Table 1. Baseline demographic and clinical characteristics of the study cohort (n = 174).












	Characteristics, Number of Patients (%)
	All Patients
	Intermediate-Risk Patients (n = 108)
	Adverse-Risk Patients (n = 66)
	p-Value





	Age at diagnosis, years and range
	54 (18–72)
	54 (18–74)
	53 (20–72)
	0.759



	<55 years
	91 (52.3%)
	55 (50.9%)
	36 (54.5%)
	



	≥55 years
	83 (47.7%)
	53 (49.1%)
	30 (45.5%)
	



	Gender
	
	
	
	0.480



	Male
	85 (48.9%)
	50 (46.3%)
	35 (53.0%)
	



	Female
	89 (51.1%)
	58 (53.7%)
	31 (47.0%)
	



	HCT-CI
	
	
	
	0.621



	0–2
	108 (62.1%)
	65 (60.2%)
	43 (65.2%)
	



	≥3
	66 (37.9%)
	43 (39.8%)
	23 (34.8%)
	



	Disease type
	
	
	
	0.642



	De novo AML †
	160 (92.0%)
	98 (90.7%)
	62 (93.9%)
	



	Secondary AML
	14 (8.0%)
	10 (9.3%)
	4 (6.1%)
	



	Conditioning intensity
	
	
	
	0.047



	Myeloablative
	138 (79.3%)
	80 (74.1%)
	58 (87.9%)
	



	Reduced Intensity
	36 (20.7%)
	28 (25.9%)
	8 (12.1%)
	



	Donor type
	
	
	
	0.962



	MSD
	45 (25.9%)
	28 (25.9%)
	17 (25.8%)
	



	MUD
	46 (26.4%)
	28 (25.9%)
	18 (27.3%)
	



	HID
	76 (43.7%)
	47 (43.5%)
	29 (43.9%)
	



	Others

(UCB or MMUD)
	7 (4.0%)
	5 (4.6%)
	2 (3.0%)
	



	Complete remission
	
	
	
	0.848



	CR1
	168 (96.6%)
	105 (97.2%)
	63 (95.5%)
	



	CR2
	6 (3.4%)
	3 (2.8%)
	3 (4.5%)
	



	WT1 level § at pre-HSCT
	
	
	
	0.250



	Low
	126 (72.4%)
	82 (75.9%)
	44 (66.7%)
	



	High
	48 (27.6%)
	26 (24.1%)
	22 (33.3%)
	







AML, acute myeloid leukemia; MSD, matched sibling donor; MUD, matched unrelated donor; MMUD, mismatched unrelated donor; HID, haploidentical donor; UCB, umbilical cord blood; ELN, European Leukemia Net; HCT-CI, hematopoietic stem-cell transplantation-specific comorbidity index; HSCT, hematopoietic stem-cell transplantation; † de novo AML encompasses no clinical history of prior myelodysplastic syndrome (MDS), myeloproliferative disorder, or exposure to potentially leukemogenic therapies or agents; § WT1 cutoff level of 250 copies per 104 ABL to determine WT1high and WT1low.
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Table 2. Univariate and multivariate analyses of the survival outcomes.
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Univariate

	

	
Multivariate

	




	
End Point and Variable I (Total n = 174)

	
N

	
HR (95% CI)

	
p-Values

	
HR (95% CI)

	
p-Values






	
OS

	

	

	

	

	




	
Age ≥55 years

	
60

	
1.65 (1.02–2.65)

	
0.039

	
1.60 (0.97–2.63)

	
0.065




	
ELN adverse risk group

	
66

	
0.77 (0.47–1.27)

	
0.299

	
0.70 (0.43–1.16)

	
0.171




	
Secondary AML

	
14

	
0.66(0.24, 1.81)

	
0.388

	

	




	
Conditioning intensity, RIC

	
36

	
1.11 (0.63–1.96)

	
0.727

	

	




	
Donor type, HID

	
76

	
1.69 (1.05–2.75)

	
0.029

	
1.62(0.99–2.64)

	
0.055




	
CR2

	
6

	
2.22 (0.81–6.11)

	
0.121

	

	




	
High WT1 levels

	
48

	
1.51 (0.92–2.48)

	
0.110

	
1.81(1.09–3.02)

	
0.022




	
RFS

	

	

	

	

	




	
Age ≥55 years

	
60

	
1.29 (0.84–1.98)

	
0.249

	

	




	
ELN adverse risk group

	
66

	
0.87 (0.56–1.36)

	
0.533

	
0.79 (0.50–1.23)

	
0.296




	
Secondary AML

	
14

	
1.01 (0.46–2.19)

	
0.984

	

	




	
Conditioning intensity, RIC

	
36

	
1.04 (0.61–1.78)

	
0.881

	

	




	
Donor type, HID

	
76

	
1.41 (0.92–2.17)

	
0.118

	

	




	
CR2

	
6

	
2.40 (0.97–5.93)

	
0.058

	
1.84 (0.73–4.64)

	
0.198




	
High WT1 levels

	
48

	
2.06 (0.83–5.10)

	
0.003

	
1.92 (1.21–3.03)

	
0.005




	
CIR

	

	

	

	

	




	
Age ≥55 years

	
60

	
0.46 (0.25–0.84)

	
0.012

	

	




	
ELN adverse risk group

	
66

	
1.71 (0.98–3.01)

	
0.060

	
1.32 (0.73–2.36)

	
0.360




	
Secondary AML

	
14

	
1.38 (0.56–3.42)

	
0.488

	

	




	
Conditioning intensity, RIC

	
36

	
0.64 (0.28–1.46)

	
0.291

	

	




	
Donor type, HID

	
76

	
0.8 (0.45–1.41)

	
0.440

	

	




	
CR2

	
6

	
5.27 (2.20–12.6)

	
0.005

	
2.67 (1.20–5.94)

	
0.016




	
High WT1 level

	
48

	
4.85 (2.74–8.59)

	
<0.001

	
4.22 (2.28–7.81)

	
<0.001




	
NRM

	

	

	

	

	




	
Age ≥55 years

	
60

	
1.62 (2.19–11.6)

	
<0.001

	
3.90 (1.66–9.15)

	
0.002




	
ELN adverse risk group

	
66

	
0.36 (0.16–0.82)

	
0.015

	
0.39 (0.17–0.86)

	
0.020




	
Secondary AML

	
14

	
0.66 (0.16–2.70)

	
0.564

	

	




	
Conditioning intensity, RIC

	
36

	
1.61 (0.78–3.34)

	
0.196

	

	




	
Donor type, HID

	
76

	
2.45 (1.25–4.83)

	
0.009

	
1.76 (0.92–3.39)

	
0.090




	
CR2

	
6

	
-

	
>0.999

	

	




	
High WT1 levels

	
48

	
0.31 (0.11–0.89)

	
0.030

	
0.46 (0.15–1.40)

	
0.174








ELN, European Leukemia Net; AML, acute myeloid leukemia; CI, confidence interval; RFS, relapse-free survival; HR, hazard ratio; OS, overall survival; TRM, treatment-related mortality; CIR, cumulative incidence of relapse; NRM, non-relapse mortality; HID, haploidentical donor; RIC, reduced-intensity conditioning; N, number of patients.
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