Identifying Lethal Dependencies with HUGE Predictive Power
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Integration
2.2. Statistical Model
2.3. Comparison with the Project Score
2.4. Integration of the VICC Knowledgebase of Clinical Interpretations of Genomic Variants
2.5. Application to Acute Myeloid Leukemia (AML) as a Disease Model
3. Results
3.1. Gene Variants Associated with Multiple Essential Genes Increase the Power of Loss-of-Function Screens
3.2. LEDs Predicted by HUGE Have Better Validation Rates Than Standard Approaches
3.3. Applying HUGE Methodology to Acute Myeloid Leukemia Cell-Lines Discovers Potential Therapy Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lord, C.J.; Ashworth, A. PARP inhibitors: The first synthetic lethal targeted therapy. Science 2017, 355, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Garraway, L.A.; Ashworth, A.; Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 2020, 19, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Behan, F.M.; Iorio, F.; Picco, G.; Gonçalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019, 568, 511–516. [Google Scholar] [CrossRef]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Fill, S.; Harrington, W.F.; Pantel, S.; Krill-Bureger, J.M.; et al. Defining a cancer dependency map. Cell 2017, 170, 564–576.e16. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.D.; Tsherniak, A.; Gopal, S.; Weir, B.A.; Tamayo, P.; Stransky, N.; Schumacher, S.E.; Zack, T.I.; Beroukhim, R.; Garraway, L.A.; et al. ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 2013, 23, 665–678. [Google Scholar] [CrossRef] [Green Version]
- McDonald, E.R.; De Weck, A.; Schlabach, M.R.; Billy, E.; Mavrakis, K.J.; Hoffman, G.R.; Belur, D.; Castelletti, D.; Frias, E.; Gampa, K.; et al. Project DRIVE: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 2017, 170, 577–592.e10. [Google Scholar] [CrossRef] [Green Version]
- McFarland, J.M.; Ho, Z.V.; Kugener, G.; Dempster, J.M.; Montgomery, P.G.; Bryan, J.G.; Krill-Burger, J.M.; Green, T.M.; Vazquez, F.; Boehm, J.S.; et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 2018, 9, 4610. [Google Scholar] [CrossRef] [Green Version]
- Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015, 16, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.X.; Swanton, C. Tumour heterogeneity and drug resistance: Personalising cancer medicine through functional genomics. Biochem. Pharmacol. 2012, 83, 1013–1020. [Google Scholar] [CrossRef]
- Wilcox, R.R. ANOVA: A paradigm for low power and misleading measures of effect size. Rev. Educ. Res. 1995, 65, 51–77. [Google Scholar] [CrossRef]
- Ignatiadis, N.; Klaus, B.; Zaugg, J.B.; Huber, W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat. Methods 2016, 13, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Cowley, G.S.; Weir, B.A.; Vazquez, F.; Tamayo, P.; Scott, J.; Rusin, S.; East-Seletsky, A.; Ali, L.D.; Gerath, W.F.J.; Pantel, S.A.; et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 2014, 1, 140035. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef]
- Wagner, A.H.; Walsh, B.; Mayfield, G.; Tamborero, D.; Sonkin, D.; Krysiak, K.; Deu-Pons, J.; Duren, R.P.; Gao, J.; McMurry, J.; et al. A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat. Genet. 2020, 52, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Alterovitz, G.; Heale, B.; Jones, J.; Kreda, D.; Lin, F.; Liu, L.; Liu, X.; Mandl, K.D.; Poloway, D.W.; Ramoni, R.; et al. FHIR Genomics: Enabling standardization for precision medicine use cases. NPJ Genomic Med. 2020, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Kazi, J.U.; Rönnstrand, L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev. 2019, 99, 1433–1466. [Google Scholar] [CrossRef]
- López-Zabalza, M.J.; Martínez-Lausín, S.; Bengoechea-Alonso, M.T.; López-Moratalla, N.; González, A.; Santiago, E. Signaling pathway triggered by a short immunomodulating peptide on human monocytes. Arch. Biochem. Biophys. 1997, 338, 136–142. [Google Scholar] [CrossRef]
- Pratz, K.W.; Sato, T.; Murphy, K.M.; Stine, A.; Rajkhowa, T.; Levis, M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010, 115, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Metzelder, S.; Röllig, C. FLT3 inhibitors for the treatment of acute myeloid leukemia. Best Pract. Onkol. 2018, 13, 182–190. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Pattabiraman, D.R.; McGirr, C.; Shakhbazov, K.; Barbier, V.; Krishnan, K.; Mukhopadhyay, P.; Hawthorne, P.; Trezise, A.; Ding, J.; Grimmond, S.M.; et al. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 2014, 123, 2682–2690. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.L.; Cavenagh, J.D.; Lister, T.A.; Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N. Engl. J. Med. 2004, 351, 2403–2407. [Google Scholar] [CrossRef]
- Abbott, K.L.; Nyre, E.T.; Abrahante, J.; Ho, Y.Y.; Vogel, R.I.; Starr, T.K. The candidate cancer gene database: A database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 2015, 43, D844–D848. [Google Scholar] [CrossRef] [Green Version]
- Pacini, C.; Dempster, J.M.; Najgebauer, H.; Mcfarland, J.M.; Tsherniak, A.; Iorio, F. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 2021, 12, 1661. [Google Scholar] [CrossRef]
- Tatlow, P.J.; Piccolo, S.R. A cloud-based workflow to quantify transcript-expression levels in public cancer compendia. Sci. Rep. 2016, 6, 39259. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Empirical Bayes methods and false discovery rates for microarrays. Genet. Epidemiol. 2002, 23, 70–86. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, A.; Hersey, A.; Nowotka, M.L.; Patricia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Variant Biomarker | Essential Gene | Increment of Essentiality | t-Score | p-Value | Local FDR |
---|---|---|---|---|---|
Positive Lethal Dependencies | |||||
TGS1 | SNRPF | −7.87 | −4.05 | 6.69 × 10−4 | 3.36 × 10−1 |
CLTCL1 | UBR5 | −6.66 | −3.59 | 1.99 × 10−3 | 2.20 × 10−1 |
FLT3 | FLT3 | −6.36 | −4.53 | 2.28 × 10−4 | 2.00 × 10−1 |
CDK14 | CDK2 | −3.95 | −2.75 | 1.28 × 10−2 | 4.30 × 10−1 |
AURKC | ACTL6A | −3.26 | −3.89 | 9.55 × 10−4 | 4.99 × 10−1 |
Negative Lethal Dependencies | |||||
NPM1 | EEF2 | 3.81 | 3.34 | 3.39 × 10−3 | 5.96 × 10−1 |
PIK3C2G | CDK6 | 3.35 | 2.95 | 8.20 × 10−3 | 3.51 × 10−1 |
NCOA3 | EP300 | 3.04 | 2.75 | 1.25 × 10−2 | 4.94 × 10−1 |
CDK14 | CCND2 | 2.97 | 2.22 | 3.88 × 10−2 | 4.99 × 10−1 |
EPHB6 | ZNF266 | 2.53 | 2.77 | 1.22 × 10−2 | 3.42 × 10−1 |
ZFYVE9 | TOM1L2 | 2.14 | 2.35 | 2.96 × 10−2 | 5.12 × 10−1 |
Dual Lethal Dependencies | |||||
NRAS | NRAS | −6.83 | −8.71 | 4.67 × 10−8 | 1.38 × 10−4 |
NRAS | PTPN11 | 4.17 | 2.2 | 4.05 × 10−2 | 5.89 × 10−1 |
EP300 | PLK1 | −8.11 | −4.04 | 7.01 × 10−4 | 2.17 × 10−1 |
EP300 | KLF2 | 3.69 | 4.08 | 6.38 × 10−4 | 2.12 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimeno, M.; San José-Enériz, E.; Rubio, A.; Garate, L.; Miranda, E.; Castilla, C.; Agirre, X.; Prosper, F.; Carazo, F. Identifying Lethal Dependencies with HUGE Predictive Power. Cancers 2022, 14, 3251. https://doi.org/10.3390/cancers14133251
Gimeno M, San José-Enériz E, Rubio A, Garate L, Miranda E, Castilla C, Agirre X, Prosper F, Carazo F. Identifying Lethal Dependencies with HUGE Predictive Power. Cancers. 2022; 14(13):3251. https://doi.org/10.3390/cancers14133251
Chicago/Turabian StyleGimeno, Marian, Edurne San José-Enériz, Angel Rubio, Leire Garate, Estíbaliz Miranda, Carlos Castilla, Xabier Agirre, Felipe Prosper, and Fernando Carazo. 2022. "Identifying Lethal Dependencies with HUGE Predictive Power" Cancers 14, no. 13: 3251. https://doi.org/10.3390/cancers14133251
APA StyleGimeno, M., San José-Enériz, E., Rubio, A., Garate, L., Miranda, E., Castilla, C., Agirre, X., Prosper, F., & Carazo, F. (2022). Identifying Lethal Dependencies with HUGE Predictive Power. Cancers, 14(13), 3251. https://doi.org/10.3390/cancers14133251