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Simple Summary: The emergence of resistant cells remains a major obstacle for chemotherapy
treatment of metastatic colorectal cancers. Improvement of the therapeutic response requires a
thorough understanding of the mechanisms of resistance as well as informative biomarkers. In the
REVEAL study, we have systematically compared the mutational patterns and expression profiles
of primary tumor specimens before and after first-line chemotherapy treatment in the metastatic
situation. In addition, we analyzed liquid biopsies pre, during, and after treatment. Alterations in
gene expression appeared as the major drivers of chemotherapy resistance. We identified a gene
expression signature differentiating primary tumors and metastases and validated this signature in
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two independent patient cohorts. Moreover, we evaluated the expression of two signature genes,
SFRP2 and SPP1, as prognostic and potentially druggable biomarkers.

Abstract: Most metastatic colorectal cancer (mCRC) patients succumb to refractory disease due to
secondary chemotherapy resistance. To elucidate the molecular changes associated with secondary
resistance, we recruited 64 patients with mCRC and hepatic metastases before standard first-line
chemotherapy between 2014 and 2018. We subjected DNA from primary tumor specimens (P), hepatic
metastasis specimens after treatment (M), and liquid biopsies (L) taken prior to (pre), during (intra),
and after (post) treatment to next generation sequencing. We performed Nanostring expression
analysis in P and M specimens. Comparative bioinformatics and statistical analysis revealed typical
mutational patterns with frequent alterations in TP53, APC, and KRAS in P specimens (n = 48). P
and pre-L (n = 42), as well as matched P and M (n = 30), displayed a similar mutation spectrum. In
contrast, gene expression profiles classified P (n = 31) and M (n = 23), distinguishable by up-regulation
of immune/cytokine receptor and autophagy programs. Switching of consensus molecular subtypes
from P to M occurred in 58.3% of cases. M signature genes SFRP2 and SPP1 associated with inferior
survival, as validated in an independent cohort. Molecular changes during first-line treatment were
detectable by expression profiling rather than by mutational tumor and liquid biopsy analyses. SFRP2
and SPP1 may serve as biomarkers and/or actionable targets.

Keywords: metastatic colorectal cancer; next generation sequencing; gene expression signature;
biomarker; liquid biopsy; secondary resistance; therapeutic target

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer worldwide with 1.93 million
people affected globally, accounting for 10% of all cancer deaths [1]. The high mortality is
explained in part by the fact that nearly 20% of patients present with de novo metastatic
disease, and 25–30% of patients with stage II/III disease have a recurrence within five
years of a curative intended surgery [2]. A major obstacle in the treatment of metastatic
CRC (mCRC) is the development of drug resistance during systemic treatment [3]. Median
overall survival (OS) exceeding 30 months has been reached in selected patients [4–6]
following the introduction of modern chemotherapy in combination with monoclonal anti-
bodies such as bevacizumab, cetuximab and panitumumab targeting vascular endothelial
growth factor (VEGF) and epithelial growth factor receptor (EGFR), respectively. However,
a high mortality rate with a 5-year survival of only 12% indicates the need for further
understanding therapy resistance and metastatic mechanisms, as well as for identifying
novel prognostic biomarkers and potential therapeutic targets [7].

Previous studies have addressed the mutational landscape in primary and metastatic
CRCs and found that genomes of metastases are essentially not different from those of
primary tumors. [8,9]. Only a few studies investigated gene expression profiles in primary
tumors and metastases utilizing distinct comparative models to identify prognostic metas-
tasis signatures and biomarkers [8–11]. In these analyses, transcriptomic differences in
cellular programs, such as downmodulation of epithelial–mesenchymal transition (EMT)
and differential expression of a few single genes, were described [9–11]. However, most of
these investigations were performed on samples of primary tumors and metastases; as both
were obtained prior to any chemotherapeutic therapy, they thus do not reflect the massive
influence of cytotoxic agents on the expression levels of numerous genes in metastases.

Recently, circulating tumor DNA (ctDNA) has emerged not only as a promising nonin-
vasive biomarker but also as a clinical tool for therapeutic and relapse monitoring. Different
approaches of ctDNA analysis in pre- and post-operative specimens were investigated in
solid tumors including CRCs [12–17], and ctDNA analysis also detected minimal residual
disease and predicted recurrence in patients with stage I-III colon cancer [17,18]. Personal-
ized ctDNA deep sequencing of stage I to III CRCs showed the potential of ctDNA analysis
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to change post-operative management and early relapse detection [15]. The value of ctDNA
analysis in mCRCs, e.g., for RAS and BRAF typing, was investigated in only a few studies
so far [16,19].

Here, we report results from the prospective observational biomarker study REVEAL
(ReEVAluation of Liver metastasis) in patients with previously untreated mCRC. We inves-
tigated tumor and liquid biopsies before, during and after standard fist-line chemotherapy.
By next-generation sequencing (NGS) of 100 CRC-specific genes using a customized gene
panel [20], we explored the potential of ctDNA detection for tracking tumor mutations
under first-line treatment as well as compared mutational patterns in primary tumor before
and liver metastasis after first-line treatment. Furthermore, we explored the gene expres-
sion of 770 cancer-associated genes in untreated primary tumors and metastatic tissue after
first-line chemotherapy utilizing the Nanostring system.

2. Materials and Methods
2.1. Study Design, Patients and Samples

The REVEAL study (ReEVAluation of Liver metastases) is a prospective, multicenter,
observational biomarker study for the indication of mCRC. Patients were recruited from
hospitals and private practices in Germany (Table S1). Inclusion criteria: Age ≥ 18 y; ECOG
(Eastern Cooperative Oncology Group) performance status 0–1; stage IV, histologically
confirmed adenocarcinoma of the colon or rectum; presence of measurable liver metastases
according to RECIST (Response Evaluation Criteria in Solid Tumors) version 1.1; intention
to initiate standard mCRC chemotherapy according to physician’s choice; recruitment
irrespective of RAS or BRAF status; white blood cell count ≥ 3.0 × 109 cells/L; neutrophils
≥ 1.5 × 109 cells/L; platelets ≥ 100 × 109/L; hemoglobin ≥5.6 mmol/L (corresponding to
9.0 g/dL); serum bilirubin ≤ 1.5 × upper limit of normal (ULN); alanine aminotransferase
and aspartate aminotransferase ≤ 2.5 × ULN or ≤5 × ULN in the presence of liver
metastases; serum albumin ≥ 2.5 g/dL. Exclusion criteria: previous CRC chemotherapy,
excluding adjuvant therapy completed at least 6 mo before trial enrolment; severe bleeding
within past 6 mo and any severe coagulopathy; myocardial infarction within past 6 mo,
congestive heart failure (New York Heart Association classification > 2); serious non-healing
wounds and a history of secondary malignancy within the past 5 y.

Tissue specimens from primary tumor biopsied were obtained before study entry.
In case of progressive disease (PD) upon first-line chemotherapy, another biopsy of the
colorectal liver metastasis was intended according to informed consent to study procedures
before enrolment. Of course, refusal and study withdrawal by the patient was possible
at any time point. In case of secondary hepatic resection, tumor specimens of the hepatic
metastasis were retrieved. Before (pre-), during (intra-) and after (post-) first-line systemic
treatment, serial blood samples to evaluate ctDNA were taken (liquid biopsies). During
treatment, blood samples were taken every 4 weeks. Circulating free DNA (cfDNA) was
extracted from blood serum (2–6 mL). Serum was prepared 1–7 h after blood draw and
stored in polypropylene tubes at −20 ◦C until cfDNA extraction.

The trial was done in compliance with the Declaration of Helsinki. The protocol was
approved by local ethics committees of all participating centers.

2.2. Histopathological Samples

Histopathological diagnosis and classification was reviewed for every available tumor
specimen at the accredited Institute of Pathology of the University of Munich (Germany).
In all cases, histopathological grade was confirmed by an experienced pathologist. Sections
from formalin-fixed paraffin-embedded (FFPE) tissue samples were prepared followed by
hematoxylin–eosin staining of one slide. Areas with a minimum percentage of 50% tumor
cells were microdissected from subsequent unstained sections and used for DNA and RNA
preparation. Normal tissue samples were taken at a minimum distance of 0.5 cm from the
tumor site.
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2.3. DNA Extraction and NGS Analyses

Genomic DNA (gDNA) was isolated from FFPE tissue sections using the Generead
kit (Qiagen, Hilden, Germany), and cfDNA was extracted with the QIAmp Circulating
Nucleic Acid Kit (Qiagen) following the vendor’s recommendations and as described
previously [21]. The gDNA and cfDNA were used as template for targeted next-generation-
sequencing (NGS) using the customized CRC sequencing panel, covering 100 frequently
mutated genes with 784 amplicons (covering 21,000 COSMIC (Catalogue of Somatic Mu-
tations In Cancer) mutations) [20]. Libraries were prepared using 20 ng DNA with the
Ampliseq Library 2.0 kit and analyzed on the IonTorrent PGM (Personal Genome Machine;
gDNA) or Ion S5 (Ion GeneStudio S5 prime; cfDNA) platforms (both Thermo Fisher Scien-
tific, Darmstadt, Germany). The experimental procedures were conducted according to the
manufacturer’s manual. Briefly, DNA concentration was measured using the Qubit3 Fluo-
rimeter (Thermo Fisher Scientific). The concentration of amplifiable gDNA was quantified
using a TaqMan RNaseP Detection Reagents Kit (Thermo Fisher Scientific). The cutoff for
further processing was a minimum of 1 ng/µL RNaseP. Groups of two tumor samples or six
health control samples (gDNA) or eight (cfDNA) libraries were transferred into the IonChef
pipetting station for clonal amplification by emulsion PCR and Ion-316 Chip or Ion-550
Chip loading followed by sequencing on the PGM or S5, respectively. Sequencing data were
aligned to the human reference genome hg19 using Torrent Suite™ (v5.8). Analysis of the
NGS data was performed with SoFIA [22] (gDNA) or with Ion Reporter™ v5.10 (cfDNA)
software, the Integrated Genomics Viewer (IGV, Broad Institute), and an in-house calling
tool for the identification of tumor variants (SNV, single nucleotide variants; Insertions;
Deletions) and the tumor genetic evaluation of the identified alterations. The following
sequencing quality metrics were applied: 1) average base coverage depth gDNA ≥ 500 or
cfDNA ≥ 5000; 2) percent reads on target ≥ 70%; or 3) uniformity of base coverage gDNA
≥ 85% or cfDNA ≥ 70%. Sequencing quality metrics for each sample are presented in
Table S2. Patient-specific SNPs (single nucleotide polymorphisms) were utilized to confirm
identity of the matched samples and for removal of healthy tissue ‘normal’ SNPs. The
clinical relevance of the identified tumor variants was evaluated based on the ClinVar [23],
COSMIC [24], and Varsome [25] databases/tools. Only likely pathogenic, pathogenic, and
VUS (variant of unknown significance with a prediction trend of being likely pathogenic)
variants with allele frequencies ≥ 5% (gDNA) or ≥0.5% (cfDNA) were reported.

2.4. RNA Extraction and Expression Analysis (NanoString® nCounter Assay)

Total RNA was extracted from six to twelve sections of FFPE tissue sections using the
RNeasy FFPE Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
RNA yield and purity were assessed using the NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Rockland, ME, USA). A 260/280 optical density ratio within
1.7–2.3 and a minimal RNA concentration of 10 ng/µL were required for further processing.
The mRNA expression was measured with the NanoString nCounter FLEX Analysis System
(NanoString Technologies, Seattle, WA, USA) using 100 ng of total RNA and the pan cancer
pathway panel (770 genes). The nCounter CodeSet was hybridized to total RNA for 18 h at
65 ◦C and nCounter Prep Station loading, and expression quantification with the nCounter
Digital Analyzer was performed as recommended by the manufacturer.

2.5. RNA Expression Quality Control (QC) and Filtering of the Data

QC was performed with default nSolver v4.0 software settings and by analyzing the
positive/negative controls, reference genes, total counts, and binding densities in each
sample. Reference genes with an expression variation within all samples > 100% and
expression values below the limit of detection (positive control E) were excluded. Reference
genes for data normalization were AMMERCR1L, C10orf76, CNOT4, COG7, DDX50, DHX50,
DHX16, EDC3, EIF2B4, FCF1, FTSJ2, MRPS5, MTMR14, PIAS1, PIK3R4, SAP130, SF3A3,
SWLC4A1AP, TLK2, TMUB2, TTC31. nSolver as well as Box plot and similarity matrix
analysis (MKmisc package [26]) in R (Figure S1) were used for QC after normalization.
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Genes with an average expression within all tumor samples < 30 and the lowest varying
10% of genes were excluded from further analyses. Log2 expression levels of leftover genes
in all patient samples are presented in Table S3.

2.6. Statistical Analysis of the Filtered RNA Expression Data

The expression data were analyzed utilizing nSolver v4.0 (NanoString), R studio
3.5.3/4.0.2 [27], SPSS 22.0 (SPSS, Chicago, IL, USA), GraphPad PRISM 8 (GraphPad
Software, Inc., San Diego, CA, USA), Perseus [28], MR4Cancer [29], GSEA [30] (gene
set enrichment analysis), and STRING [31] (Search Tool for the Retrieval of Interacting
Genes/Proteins) software. Validation datasets were downloaded from GEO [32] (Gene
Expression Omnibus). Normal distribution of the datasets was confirmed by quantile–
quantile (q-q) plot in R (data not shown). Expression changes and differentially expressed
genes (DEGs) were identified by moderated t-test with limma (linear models for microarray)
in R [33]. Adjusted P values/false discovery rates (FDR) were calculated using Benjamini
and Hochberg correction [34]. Unsupervised hierarchical clustering/heat maps were per-
formed with the ComplexHeatmap [35] and volcano plots with EnhancedVolcano packages
in R. PCA (Principal Component Analysis) were generated in Perseus. GO (gene ontology)
analyses were performed with MR4Cancer (Colon adenocarcinoma), GSEA (Hallmark
and C1-C7 datasets) and STRING (FDR = stringency 5%; minimum required interaction
score: 0.4). CMS (consensus molecular subtype) classification/prediction (nearest template
prediction) was conducted with CMScaller R package [36].

Overall survival (OS) was defined as the time from start of chemotherapy to death
due to any cause. Distributions of this time-to-event variable was estimated with the
Kaplan–Meier method and compared with logrank test. The effect of molecular markers
was estimated with the Cox proportional hazards model. To identify an optimized threshold
value to discriminate high from low expression, the maximum of sensitivity and specificity
of logarithmic expression data was calculated using a receiver operator characteristic
(ROC) model (R package ggplot2, R version 4.0.2). Metastasis prediction was computed
by using multivariate logistic regression to obtain coefficients for each gene. Coefficients
were multiplied with the continuous expression values for the corresponding gene and
subsequently added. To determine how well the metastasis prediction model discriminates
primary tumor and metastasis, ROC analysis was performed. All p-values < 0.05 (two-
sided) were regarded significant.

3. Results
3.1. Study Design and Population Demographics

Between 2014 and 2018, altogether 64 patients from six centers in Germany were
recruited (Table S1). After centralized pathological review, 48 patients were identified with
histopathological diagnosis of adenocarcinoma of the colorectum and sufficient primary
tumor material for further evaluations. Metastatic tissue obtained after first-line chemother-
apy was available for NGS from 30 patients. Liquid biopsies taken before study enrollment
were available from 42 patients. Liquid biopsies taken during and after first-line treatment
were available from 44 patients. The study profile including sample numbers is depicted in
Figure 1. Baseline and treatment characteristics of the patients are summarized in Table 1.
The median duration of follow-up was 23.3 months.

3.2. Sequential Mutation Screening

Pre-therapeutic/primary tumor patient samples (P) from 48 out of 64 patients (75%)
and 30 post-therapeutic/liver metastasis samples (M, 47%) were available for NGS analyses
(Figure 1B, Tables S2 and S4). The analyses were successfully performed in 87.4% and 93.3%
of P and M samples, respectively. In addition, the potential of a less-invasive approach,
namely liquid (blood) biopsies, for molecular pathological characterization of untreated
mCRCs, as well as their ability for longitudinal mutation monitoring were investigated.
Therefore, 86 liquid biopsies, including 42 pre- (pre-L) and 44 intra-/post-therapeutic
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(i/p-L) liquid biopsies from 45 patients (70%) were successfully analyzed (100%) in a high-
sensitivity setting (avg. coverage of all samples 16,553, avg. uniformity 91.6%). Full sample
sets (P+pre-L+i/p L+M) were obtained from eight sets with all but M (P+pre-L+i/p L) from
fourteen and sets missing only P (pre L+i/p L+M) from six patients. Moreover, sequencing
data from six matched P and M as well as several single samples were analyzed. A detailed
summary of the NGS results of all patient samples is visualized in Table S4. A typical
mutational pattern of the colorectal carcinogenesis cascade [37] genes TP53 (mutation
frequency: 69%), APC (57.1%), and KRAS (40.5%) was observed in P samples (Figure S1A).
In addition, cancer-related mutations were found in P in 18 genes, including SMAD4
(11.9%), PIK3CA (11.9%), FBXW7 (9.5%), PTEN (7.1%), and BRAF (7.1%). These mutation
frequencies are comparable to the ones found in the TCGA cohort. Similar mutation
frequencies were detected in unmatched M tissue samples at 75.9% (TP53), 58.6% (APC),
and 41.4% (KRAS). Co-mutations of TP53, APC, or KRAS were found in 57% of all cases and
TP53+APC mutations showed the highest incidence (29.2%) (Figure S1B). Simultaneous
mutations in all three genes were determined in 15.4%. Additional co-mutations to either
one or more mutations in the three genes were detected in 22 genes, of which SMAD4
(13.8%), PIK3CA (13.8%), FBXW7 (10.8%), PTEN (7.7%), ATM (6.2%), and BRAF (6.2%) had
the highest occurrence (Figure S1C).
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Figure 1. Design (A) and workflow of the data analyses (B) of the REVEAL study (M, post-therapeutic
tissue, liver metastasis; N, normal tissue in the vicinity of the primary tumor; P, pre-therapeutic
primary tumor; i-L, intra-therapeutic liquid biopsy; i/p-L, intra/post-therapeutic liquid biopsy); GO,
gene ontology analysis; GSEA, gene set enrichment analysis; IGV, integrative genomics viewer; PCA,
principal component analysis; QC, quality control.

In matched P and M samples (n = 14), the same mutations were found in nine cases
(71.4%), whereas in four cases (28.6%), the identical mutational pattern as well as novel
mutations were found (ATM, case 089-008; TP53, 089-014; 3rd TP53 and 2nd POLE, 089-017;
PIK3CA, 089-019) (Figure 1A,B). In one case, none of the mutations present in P were
detected in M. Since the PIK3CA mutation (089-019) was also present in the initial liquid
biopsy at a low AF (3.9%) (Figure 2C), it probably does not reflect a resistance mechanism.
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Table 1. Patient and tumor baseline characteristics.

Characteristics N %

Age
Age-median 62 (range 20–87)

Sex
Male 38 59.4

Female 26 40.6

Performance status
ECOG 0–1 58 90.6
ECOG 2–3 2 3.1

NA 4 6.3

Primary tumor sidedness
Right-sided 13 20.3
Left-sided 49 76.6

NA 2 3.1

T-stage of primary
T1-2 13 20.3
T3-4 39 60.9
NA 12 18.8

N-stage of primary
N0 7 10.9
N1 9 14.1
N2 11 17.2
NA 22 57.8

Grading of primary
G1-2 44 68.8
G3 8 12.5
NA 12 18.8

Metastasis
synchronous 48 75

metachronous 16 25

Number of metastatic sites
1 site 25 39.1

≥2 sites 39 60.9

Chemotherapy
FOLFOXIRI 6 9.4

plus Bevacizumab 3 4.7
plus Panitumumab 3 4.7

FOLFOX 22 34.4
plus Panitumumab 2 3.1
plus Bevacizumab 11 17.2

plus Cetuximab 2 3.1
FOLFIRI 21 32.8

plus Bevacizumab 7 10.9
plus Cetuximab 9 14.1

Capecitabine 4 6.3
plus Irinotecan & Bevacizumab 1 1.6

plus Bevacizumab 2 3.1
Cetuximab mono 1 1.6

RAS mutation
no 37 57.8
yes 24 37.5
NA 3 4.7

BRAF mutation
no 54 84.4
yes 3 4.7
NA 7 10.9

total 64 100
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Figure 2. Pre-, intra-, and post-therapeutic mutational screening. (A) Mutations and frequencies (%)
in matched P and M (n = 14). (B) Comparison of P vs. M. (C) Mutations and frequencies in matched
P and pre-L (n = 30). (D) Comparison of P vs. pre-L. (E) Comparison of P/pre-L vs. i-L and P/pre-L
vs. post-L.
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The same mutation spectra were found in matched P and pre-L samples in 19 out of
23 (82.6%) patients confirming that at time points close to P resection, sufficient amounts
of ctDNA (circulating tumor DNA) were present in the blood to be detected by our high-
sensitivity sequencing approach (Figure 2C,D). The positive predictive value (PPV) and
negative predictive value (NPV) for KRAS mutation screening in pre-L were 1.0 and 0.94,
respectively. Additional mutations were found in eight cases (34.8%), probably due to the
higher sensitivity screening and lower AF limit (1% vs. 5%). In three patients (13%), no
mutations were detected.

In follow-up liquid biopsies (i-L), pre-treatment mutations were found only in 7 out
of 30 matched samples (P/pre-L vs. i-L) (23.3%), which can be interpreted as positive
therapeutic response and/or lack of detectable ctDNA (Figure 2E, Table S4). Additional
post-therapeutic liquids (p-L) were available from six patients. In two cases, a TP53 (AF
9.25%) and a KRAS (AF 2%) mutation were detected (Figure S1D,E), respectively, one to
two months before metastasis resection in p-L (Figure 2E and Table S2), indicating the
monitory capability of liquid biopsies.

In summary, we observed typical mutational patterns in the REVEAL patient cohort
and confirmed the potential of liquid biopsy NGS analyses for mutation typing (e.g.,
RAS status) and for monitoring tumor progression or therapeutic response. However,
mutational screening based on the customized 100-gene panel did not uncover any novel
resistance mechanism.

3.3. Identification of a Post-Therapeutic Liver Metastasis CRC Expression Signature

In order to identify novel potential post-therapeutic biomarkers and mechanisms
distinctly regulated by therapy in CRCs, we performed a comparative multiplex expres-
sion analysis utilizing pre-therapeutic primary tumor (P), pre-therapeutic normal tumor
adjacent (N), and post-therapeutic liver metastasis (M) tissue. The mRNA expression of
770 cancer-related genes was measured in available tissues (P, n = 31; N, n = 31; M, n
= 23), including matched P and M samples of 12 patients. After normalization, quality
control, and data filtering, 26 N, 29 P, 22 M samples (Table S3), and 443 genes were chosen
for further comparative analyses (Figures 1 and S2A,B). Subsequent GSEA of P vs. M
showed enrichment of the Hallmark_Epithelial_Mesenchymal_Transition gene set (N (n =
26) vs. P (n = 29); false discovery rate (FDR), 0.21; nominal p-value (nom-P), 0.11; and of
the Hallmark_KRAS_Signaling_up gene set (P KRAS wildtype (WT) (n = 17) vs. P KRAS
mutated (mut) (n = 8); FDR = 0.36; nom-P, 0.04) (Figure S2C,D). In addition, a normal CMS
(consensus molecular subtype) group distribution was observed in P (n = 29; CMS1, 10.4%;
CMS2, 37.9%; CMS3, 13.8%; CMS4, 37.9%) (Figures 2A and S2E; Table S4). These results
demonstrated the plausibility of the REVEAL patient cohort and dataset. Next, we aimed
to identify differentially expressed genes (DEGs) in P vs. M in unmatched (P, n = 29; M, n
= 22) and paired (from the same patient: P and M, n = 12) samples. Thirteen DEGs were
identified in the unmatched (DEG signature A (DEG-A)) and sixteen DEGs in the paired
(DEG signature B (DEG-B)) analyses (Table 2, Figure 3A,B). Ten DEGs were common in
both signatures, whereas three and six DEGs were exclusive to DEG-A or DEG-B, respec-
tively (Figure 3C). The majority of the DEGs were downregulated in the post-therapeutic
metastatic setting (DEG-A 9/13; DEG-B 13/16). In both signatures, the strongest sig-
nificant downmodulation (-) was observed for SFRP2 and THBS4, whereas the greatest
expression increase (+) was found for CREB3L3. Seventeen out of the nineteen DEGs
identified in both analyses were associated with 1) EMT/MET/Wnt regulation/signaling
(SFRP2 (−), WNT5A (−), WNT2B (−), FZD8 (−), SPP1/OPN (+)), 2) extracellular matrix
(ECM) modulation (MMP3 (−), COL11A1 (-), FLNC (−), FGF7 (−), COL1A1 (−), COL1A2
(−)), 3) endoplasmic reticulum (ER) stress/apoptosis (THBS4 (−), CACNA1H (−), BNIP3
(+), CREB3L3 (+)), and 4) NOTCH signaling/metabolism (PCK1 (+), LIF (−)). Moreover,
IL1RAP, related to oncogenic signaling and NGFR, displaying an ambivalent role in tumor
progression, were upregulated in M.
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Table 2. Significant DEGs identified in all samples (DEG A) and paired samples (DEG B).

Gene DEG Log2 FC Avg Expr p Value Padj FC %Change Program/Pathway/
Function

SFRP2
A −3.46 5.81 1.77 × 10−5 0.0016 0.09 −90.91

EMT/MET/WNTB −4.33 4.94 5.85 × 10−6 0.00065 0.05 −95.03

THBS4 A −3.44 4.55 3.98 × 10−7 8.81 × 10−5 0.09 −90.79 ER stress, tumor
suppressor CRCB −4.52 4.05 7.26 × 10−7 0.00016 0.04 −95.64

MMP3
A −2.94 4.24 6.56 × 10−7 9.69 × 10−5 0.13 −86.97 ECM

modulating/relatedB −4.11 3.76 1.99 × 10−6 0.00029 0.06 −94.21

COL11A1
A −1.84 5.89 0.00012 0.0065 0.28 −72.07 ECM

modulating/relatedB −2.17 5.73 2.21 × 10−5 0.002 0.22 −77.78

WNT5A
A −1.53 5.66 1.28 × 10−5 0.0014 0.35 −65.37

EMT/MET/WNTB −1.97 5.41 0.00022 0.0098 0.26 −74.47

FLNC
A −1.33 5.90 9.01 × 10−5 0.0065 0.40 −60.22 ECM

modulating/relatedB −1.85 5.73 5.75 × 10−5 0.0042 0.28 −72.26

WNT2B
A −1.17 3.93 0.00022 0.011 0.44 −55.56

EMT/MET/WNTB −1.24 3.61 7.2 × 10−5 0.0046 0.42 −57.66

CACNA1H
A −1.05 5.80 0.00011 0.0065 0.48 −51.70 ER stress, inh. of

proliferationB −1.32 5.66 0.0013 0.038 0.40 −59.95

FZD8
A −0.98 4.53 0.00071 0.031 0.51 −49.30

EMT/MET/WNTB −1.62 4.30 0.00022 0.0098 0.33 −67.47

FGF7 B −1.65 4.00 0.00067 0.025 0.32 −68.14 ECM
modulating/related

COL1A1 B −1.07 11.31 0.00093 0.032 0.48 −52.37 ECM
modulating/related

COL1A2 B −1.04 8.57 0.0017 0.047 0.49 −51.37 ECM
modulating/related

LIF B −0.75 6.01 0.0013 0.038 0.59 −40.54 NOTCH inihibition

IL1RAP A 0.61 4.78 0.0012 0.042 1.53 52.63 Oncogenic signaling

BNIP3 B 1.41 5.32 0.00038 0.015 2.66 165.74 ER stress, apoptosis,
autophagy

NGFR A 1.45 4.98 0.0012 0.042 2.73 173.21 Ambivalent, tumor
suppressor CRC

PCK1 A 1.6 4.37 0.00092 0.037 3.03 203.14 NOTCH,
metabolism

SPP1/OPN B 1.76 9.70 0.00021 0.0098 3.39 238.70 EMT/MET/WNT

CREB3L3
A 2.16 2.13 3.33 × 10−8 1.48 × 10−5 4.47 346.91 ER stress,

transcription factorB 2.78 2.54 5.23 × 10−10 2.32 × 10−7 6.87 586.85

Avg expr, average expression (log2); ECM, extracellular matrix; EMT, epithelial to mesenchymal transition; ER,
endoplasmic reticulum; FC, fold change; MET, mesenchymal to epithelial transition. Padj, adjusted p value. Genes
found in DEG A and B are highlighted in bold.

3.4. Association of the Expression Profile with Cellular Programs and Pathways

To further elucidate the biological differences in primary tumor and post-therapeutic
metastatic specimens, we performed gene ontology (GO) analysis, GSEA, and CMS clas-
sification utilizing the complete 443 gene expression data. When comparing P vs. M (all
unmatched samples), typical CRC gene sets such as EMT/Wnt/stem cell/NOTCH-related
were significantly enriched in P (Figure S3). In contrast, EMT/Wnt (FDR = 0.0452) and
stem cell proliferation (FDR = 0.0382) displayed negative associations in M (Figure 4A).
Moreover, a negative correlation of the ECM (FDR = 0.00357) and positive enrichment of
the inflammatory response (FDR = 0.0474), receptor complex (FDR = 0.0461), and ER lumen
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(FDR = 0.0461) gene sets was observed. Analyses of the paired sample expression sets
revealed enrichment of the immune receptor activity (FDR = 0.221) and cytokine receptor
activity (FDR = 0.242) as well as of two autophagy associated (FDR = 0.143 and 0.197) gene
sets in M (Figure 4A).Cancers 2022, 14, 3631 11 of 25 

 

 

 
Figure 3. Identification of a post-therapeutic liver metastasis CRC expression signature. (A,B) Ex-
pression comparison in P and M tumor tissues in unmatched/all samples ((A) P, n = 29; M, n = 22) 
and paired samples ((B) P, n = 12; M, n = 12). Data were generated by moderated t-test with limma 
(padj, padjusted) and displayed by volcano plots. Differentially expressed genes (DEGs) are indi-
cated by red dots. FC, fold change; n.s., not significant. padj, p adjusted. (C) Venn diagram indicating 
the number of overlapping genes in DEG signatures A (unmatched) and B (paired). 

Figure 3. Identification of a post-therapeutic liver metastasis CRC expression signature.
(A,B) Expression comparison in P and M tumor tissues in unmatched/all samples ((A) P, n = 29;
M, n = 22) and paired samples ((B) P, n = 12; M, n = 12). Data were generated by moderated t-test
with limma (padj, padjusted) and displayed by volcano plots. Differentially expressed genes (DEGs)
are indicated by red dots. FC, fold change; n.s., not significant. padj, p adjusted. (C) Venn diagram
indicating the number of overlapping genes in DEG signatures A (unmatched) and B (paired).
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(C) STRING analysis based on the fold change of the 19 identified signature genes in M. Known and
predicted interactions as well as examples of significantly enriched cancer related pathways are shown.

A similar trend was also determined in the unmatched setting (Figure S3). Consistent
with EMT/ECM downmodulation, in 4 (33.3%) of the 12 paired P+M samples, a change
from CMS4 (‘mesenchymal’) in P to CMS2 (‘canonical’) or CMS3 (‘metabolic’) (2 patients
each) in M was observed. However, in two patients (16.7%), a switch from CMS2 (P) to
CMS4 (M) was found (Figure 4B). A change from CMS3 to CMS1 (‘MSI, immune’) was
noticed in one patient (8.3%), whereas no change in CMS classification was observed in
five (41.7%) patients. In addition, a STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) investigation based on the fold change of the 19 signature genes revealed
amongst others (Table S5) a significant enrichment of the interaction datasets related
to cellular metabolic process (12 genes, FDR = 0.00013), endoplasmic reticulum (8 genes,
FDR = 0.0016), extracellular region (13 genes, FDR = 2.26 × 10−6), MAPK signaling pathway
(4 genes, FDR = 0.0009), PI3K/AKT signaling pathway (8 genes, FDR = 2.73 × 10−8) and
WNT signaling pathway (4 genes, FDR = 0.00011) (Figure 4C). Furthermore, we found
43 GO sets, including at least 10 out of the 19 signature genes significantly enriched within
the large biological process section. Ten of the sets were related to response to stimuli/stress,
and eight of them were associated with metabolic processes (Table S5). These results further
support a downmodulation of EMT/Wnt signaling and ECM regulation in post-therapeutic
metastatic CRCs. Moreover, immune and autophagy related mechanisms and metabolic
processes seemed to be altered in this setting.
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3.5. The Expression Pattern of the Post-Therapeutic Signature Genes Classifies Primary Tumor and
Liver Metastasis of CRCs

After identification of the post-therapeutic signature genes and associated cellular
programs, we investigated whether the expression pattern of these genes can correctly
distinguish primary tumors and progression/metastatic samples of CRCs. As expected,
we obtained a perfect separation by unsupervised hierarchical clustering and principal
component analysis (PCA) of the paired samples when using the paired signature DEG-B
(Figure 5B,D). By clustering of all samples utilizing the unmatched DEG-A genes, a perfect
classification of the primary tumors (positive predictive value (PPV) = 1) was observed,
whereas five metastases were wrongly classified (negative predictive value (NPV) = 0.85)
(Figures 5A,C and S5E). Application of the paired DEG-B signature to all samples resulted
in a PPV of 0.81 and a NPV of 0.91 (Figure S4B,D,E). To confirm the capability of the
REVEAL signature genes in classifying primary tumors and metastatic colorectal tissue, we
performed PCAs with two independent datasets (GSE131418: P, n = 333; M (liver), n = 137
and GSE81582: P, n = 23; M, n = 19) with the DEG-A and B genes (Figures 4E,F and S4F,G).
Application of both signatures resulted in a clear separation of the primary tumors and
metastatic samples. However, a better prediction (GSE131418) was obtained with DEG-A
(area under the curve (AUC) = 0.964) compared with DEG-B (AUC = 0.693). These results
indicate that the expression pattern of the DEG-A and B genes can classify primary tumors
and (post-therapeutic) metastatic colorectal tissue.

3.6. Markers for the Sidedness of CRCs

Patients with CRCs originating on the right side of the colon have a worse prognosis
than patients with left-sided CRCs [38,39]. To find sidedness markers in the REVEAL
cohort the expression pattern in left-sided primary tumors (L, n = 18) was compared with
right-sided cancers (R, n = 8) (Figure 6). Seven genes displayed a significantly differential
expression including the left–right asymmetry determination marker LEFTY1 [40]. The
expression pattern of three additional genes was confirmed in an independent dataset
GSE14333 (Dukes’ D; L, n = 36; R, n = 23) (Figure 6C). Namely, expression of EFNA2
(p = 0.0039) and, interestingly, of one of our signature genes PCK1 (p = 0.0117) were associ-
ated with left whereas DKK4 (p = 0.0235) with right-sidedness. This association was also
observed in only sigmoid colon-derived cancers (n = 11) but not in cancers of rectal origin
(n = 6) in the REVEAL cohort, supporting distinct molecular characteristics of sigmoid
colon and rectal cancer [41].

3.7. Identification of Potential Biomarkers for Post-Therapeutic Metastatic CRCs

To search for genes with potential biomarker function, we initially analyzed the
expression trend of the signature genes in two independent CRC gene expression datasets
containing expression analyses of primary tumors and metastases (Figure 7). The expression
pattern determined in our patient cohort was confirmed in the datasets GSE131418 and
GSE81582 in 11 out of 19 genes, namely genes involved in (1) EMT/MET/Wnt FZD8, SFRP2,
SPP1, WNT2B, WNT5A, (2) ECM modulation COL11A1, COL1A1, (3) ER-stress CACNA1H,
CREB3L3, (4) NOTCH/metabolism PCK1 and NGFR (Figure 7, Table S6). Moreover,
expression of the majority of the genes (CACNA1H, COL1A1, COL11A1, FZD8, NGFR,
SFRP2, WNT2B, and WNT5A) was associated with the ‘mesenchymal’ CMS group 4 in the
TCGA (The Cancer Genome Atlas) Colorectal Adenocarcinoma dataset [42] (Figure S5).
SPP1 was correlated with CMS1 and CMS4, whereas no clear association was observed
for PCK1 and CREB3L3. All of the CMS4-associated genes except NGFR and SPP1 were
downregulated in the metastases of the REVEAL cohort and functionally associated with
EMT/WNT or ECM modulation, further supporting a reversion of the mesenchymal/EMT
phenotype. These findings confirm and further characterize the identified 11 signature genes
and suggest that they may represent potential biomarkers for progressive/metastatic CRCs.
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Figure 7. Expression of signature genes that showed the same significant trend (up/down regulation
in M) in the REVEAL, GSE131418 and GSE81582 data sets. Associated cellular programs/pathways
for each gene are indicated. Significance levels were calculated by moderated t-test with limma.
*, padj < 0.05; **, padj < 0.01; ***, padj < 0.001; ns, not significant.

3.8. Clinical Association of the Identified Signature Genes

Next, we investigated the clinical importance and potential prognostic association by
survival analyses in relation to the expression levels of the signature genes in primary tumors.
An impact on overall survival was estimated only for SFRP2 (secreted frizzled-related pro-
tein 2) and SPP1/OPN (secreted phosphoprotein 1/osteopontin) with SFRP2low (low, n = 8,
OS = 12.62m; high, n = 21, OS = 36.47m; HR = 0.363; 95% CI = 0.103–1.277; p = 0.114) and
SPP1high (low, n = 9, OS = 47.86m; high n = 20, OS = 25.14; HR = 4.268; 95% CI = 0.953–19.121;
p = 0.040) (Figure 8A,B). To validate the survival in a larger patient cohort, the prognostic
relevance of the identified 11 signature genes was analyzed in the FIRE-3 trial [43] expression
dataset (ALMAC’s Xcel™ gene-expression array, n = 403). This trial investigated standard first
line chemotherapy with FOLFIRI in conjunction with either cetuximab or bevacizumab. Sig-
nificant overall survival associations were observed for SFRP2low (low, n = 208, OS = 23.66m;
high, n = 195, OS = 26.25m; HR = 0.81; 95% CI = 0.659–0.997; p = 0.047) and SPP1high (low,
n = 92, OS = 31.67; high, n = 311, OS = 23.62m; HR = 1.417; 95% CI = 1.104–1.819; p = 0.006)
(Figure 8C,D).
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Since high SPP1 expression in primary CRC tumors was previously associated with
poor prognosis [44] and SFRP2 promoter methylation resulting in reduced SFRP2 expres-
sion was considered a CRC biomarker [45], the expression during the course of cancer
progression was analyzed in paired normal (N), P and M samples of the REVEAL study
(n = 9) (Figure 8E,F). A continuous increase in SPP1 from N to P (p < 0.01) to M (p < 0.05) was
observed in seven patients (77.77%), whereas a decrease from N to P (n.s.) to M (p < 0.01)
was measured for SFRP2 in six patients (66.66%). These results further support the roles of
SFRP2 and SPP1 as CRC biomarkers.

4. Discussion

Here we report results from the prospective observational biomarker study REVEAL
(ReEVAluation of Liver metastasis). This study aimed to identify molecular alterations
and resistance mechanisms acquired during standard first-line treatment against mCRC in
primary tumor and post-treatment metastatic tissues. Furthermore, we used circulating
tumor DNA (ctDNA) prepared from liquid biopsies to monitor treatment response and
emerging alterations conferring resistance against systemic treatment.

Analyses of genetic alterations in primary tumor samples before treatment (P) revealed
a typical mCRC mutational pattern as previously observed in other studies [8,9,20]. Com-
parative analyses of matched P and tumor specimens from liver metastases after standard
first-line treatment (M) showed the same mutations in 71.4% of the patients, whereas in
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28.6%, metastasis private mutations were found in M. Of note, these additional mutations
in the ATM, TP53, POLE genes do not reflect typical resistance mutations in solid tumors.
Other studies described a similar mutational pattern in primary tumors and metastases of
colorectal origin as well [8,9]. Notably, most of these studies compared untreated primary
tumors and metastases. Nevertheless, our study confirms that standard treatment does not
mainly change the metastatic genome.

By utilization of a high sensitivity massive parallel sequencing (MPS) approach, we
also investigated pre-, intra-, and post-therapeutic liquid biopsies (L). The same mutation
spectra were observed in 83% of matched P and pre-L samples, reflecting the results of an-
other study in mCRC [19]. This confirms the feasibility of liquid biopsy screening with high-
sensitivity MPS analyses. In addition, our results support the still-understudied value of
blood-based RAS typing for guiding anti-EGFR therapy in metastatic CRC patients [16,19].
The PPV (1.0) and NPV (0.94) for KRAS mutations utilizing our approach were comparable
to the values reported by Schmiegel et al. [19,46]. In addition, we measured therapeutic
responses in intra- and post-therapeutic liquid biopsies as indicated by lack of mutation
detection in those samples. However, this may also be mediated by decreased shedding of
genomic DNA fragments from tumor cells during treatment and inadequate sensitivity of
the used approach: all well-known limitations of ctDNA monitoring [46].

We could not determine novel candidate resistance mechanisms to standard treat-
ment of mCRC based on mutational analysis. Therefore, we subsequently analyzed tran-
scriptional changes in 770 cancer-associated genes in the remaining primary tumor and
metastatic tissue samples with sufficient material for RNA analyses. The analyses of all
available and matched pair samples revealed, in total, 19 significantly differentially ex-
pressed genes (DEGs) between P and M. The DEGs are known to be associated with extracel-
lular matrix (ECM) modulation, epithelial–mesenchymal transition (EMT)/mesenchymal–
epithelial transition (MET) regulation, endoplasmic reticulum (ER) stress, and metabolism
regulation, as well as oncogenic signaling via MAPK-, NOTCH-, PI3K/AKT- and WNT-
pathways. We observed a negative enrichment of the EMT gene set and altered expression
of five DEGs involved in EMT/Wnt signaling in M, corroborating previous findings of
EMT reversion in metastases [10,47]. This was further supported by the downmodulation
of ECM-regulating factors in the REVEAL cohort and other studies [47]. Moreover, we
observed a positive correlation of immune/cytokine receptor, inflammatory response, and
autophagy gene sets in the M group. In the past decade, the involvement of the microenvi-
ronment and especially the role of the immune system and inflammation triggering aggres-
siveness, metastasis, and therapy response of cancer cells have been highlighted [48–50].
Recent metastases expression profiling studies utilized multiple design approaches and
further underlined the importance of immune signatures and even further differentiation
of metastatic subtypes. Comparison of metastatic and non-metastatic primary tumors
established a 115 gene metastatic expression signature and emphasized the importance of
Wnt and TGFβ signaling [51]. Another study identified several coding and non-coding
genes differentially expressed in primary tumors and cytotoxic therapy-naïve metastases
associated with endocytosis, cell cycle, PI3K/AKT, and TGFβ signaling [11]. Kamal et al.
identified two mCRC metastasis subtypes characterized by an EMT/inflammatory and
a proliferative signature in a comprehensive analysis of two large patient cohorts [10].
Currently, the prognostic and therapeutic value of immune signatures for various tumors
is being investigated in clinical trials. Our results further support the need for diagnostic
surveillance of tumor samples during the course of systemic treatment for changes in the
immune/inflammatory response to potentially support clinical decision making.

Recently, multiple studies addressed the prognostic impact of consensus molecu-
lar subtypes (CMS) and their predictive effects on different combinatorial treatments of
mCRCs [43,52,53]. In contrast to the clinical association of CMS groups previously re-
ported in early-stage cohorts [54] in mCRCs, CMS2 and CMS3 predicted best overall
survival [43,52,53]. The REVEAL patient cohort showed a similar CMS group distribution
in primary tumors compared with other studies [54]. Interestingly, a switch to a different
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CMS group was observed from P to M in 58.3% of the matched samples. Molecular subtype
shifting was also reported in metastases [10] and in the budding/EMT region of primary
tumors [55]. Additionally, it is well-known that chemotherapy and targeted approaches
significantly affect gene expression and thus the molecular classification of CRCs [10,49,56].
This suggests that CMS groups are adaptable according to the stage of the tumor cells
(primary tumor/EMT/MET/metastasis) and are influenced by standard treatment. Thus,
a re-evaluation of CMS groups during/after treatment may be taken into consideration in
future clinical trials.

We evaluated the clinical relevance of identified DEGs between P and M by correlating
gene expression with patient survival. Within the REVEAL cohort, a trend was observed
for SFRP2 (secreted frizzled-related protein 2) and a significant correlation for SPP1/OPN
(secreted phosphoprotein 1/osteopontin). Due to the restricted number of patients, we
expanded the survival analyses to the larger FIRE-3 patient cohort. The FIRE-3 study
compared standard first-line chemotherapy with either cetuximab or bevacizumab, as
previously described [4]. In agreement with the second-strongest downregulation of SFRP2
in metastases in the REVEAL trial, low SFRP2 expression was significantly correlated with
a reduced OS. SFRP2 is a secreted key inhibitor of non-canonical Wnt signaling and is
considered a tumor suppressor gene depending on the organ/cellular context [57]. SFRP2
expression is downregulated in cancer cells by promoter hypermethylation. Therefore,
SFRP2 methylation may also represent a promising biomarker for CRC in blood and stool
samples [57]. Although SFRP2 was shown to act as tumor suppressor in CRC cell lines
and SFRP2 methylation is a hallmark of CRC tumor cells, the clinical prognosis of SFRP2
methylation is contradictory. Some studies estimated a poor and other studies a favorable
clinical outcome in CRCs with hyper-methylated SFRP2 [57]. This difference may be due
to variable SFRP2 secretion from stroma cells [58]. We observed a continuous reduction
from normal to primary tumor to metastatic tissues in the majority of our matched samples
and a worse prognosis in patients of the FIRE 3 cohort with low SFRP2 expression. These
findings support the importance of SFRP2 as a tumor-suppressing biomarker, the loss of
which leads to poor prognosis. However, the influence of the tumor microenvironment
should also be considered in future studies, as well as a predictive relevance regarding
targeted therapy.

Moreover, higher SPP1 expression was associated with poor survival. Similar obser-
vations were made in other trials based on investigations of primary tumors and blood
plasma [44,59]. Interestingly, we determined a continuous upregulation of SPP1 from
normal tissue to primary tumors and ultimately to metastases, which helps to explain the
association of SPP1 plasma levels with post-operative metastasis [59]. SPP1/OPN encodes
a secreted integrin- and CD44-binding factor that mediates PI3K/AKT, NF-κB, and MAPK
signaling and thus drives CRC progression and chemoresistance [60]. Therefore, our study
further emphasizes the role of SPP1 not only as a prognostic factor that can be quantified
from body fluids but also as a potentially druggable target, supporting the development of
inhibitors targeting the SPP1/integrin axis.

The prospective multicentric REVEAL study has limitations. A restricted number of
patient samples was available for mutational and gene expression analyses. Especially, the
number of whole sets of matched samples was limited partly due to material restrictions
(sufficient tissue for DNA and RNA preparation was required) and patient’s rejection of
additional liver biopsies in case of progression during first-line treatment. To compensate
for inequal recruitment, we analyzed matched as well as unmatched tumor samples and
validated our results in two independent datasets and in the large phase III trial FIRE-3.
However, the power of statistical analyses was limited and further sub-grouping by e.g.,
different treatment regimens or mutational subtypes was not possible.

5. Conclusions

The REVEAL study indicates that serial mutational and gene expression analysis is
feasible and a promising approach to elucidate metastatic progression, treatment effects,
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and drug resistance. Consequently, future studies should examine larger cohorts of matched
samples. Particularly, the analysis of metastases during and after first-line treatment,
including CMS classification, might be a promising approach for guiding second-line
therapies. Moreover, the detection of immune/inflammatory expression signatures and
the potential of SFRP2 as prognostic biomarker and SPP1 as potentially druggable target
warrants future studies with larger cohorts.
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