Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Data and Treatment Planning
2.2. Structure Propagation
2.3. Adaptive Strategies
- Single-DIR adaptation:DIR-propagated structures were directly used for optimization without any manual corrections. Therefore, 3 different single-DIR adaptive plans were optimized on all replanning CTs, with structures deformed with Raystation, Plastimatch Demons, and Plastimatch B-spline.
- Multi-DIR adaptation:The same replanning CTs with the 3 different structure sets used for single-DIR adaptation described above were combined using the Raystation robust optimization function on multiple images and structure sets. This is the worst-case optimization [20], optimizing the plan using multiple images and structure sets in parallel.
- Conservative adaptation:Structures from the 3 different DIRs were combined. For pancreas and liver cancer patients, a stereotactic prescription was used, i.e., all organ constraints must be fulfilled, while target coverage is only the second priority. Therefore, for the conservative adaptation of these stereotactic prescriptions, the intersection of all propagated structures was used as the target structure, and the union for organs. In contrast, for HN patients with this prescription, the target coverage had a higher priority; therefore, the union of all propagated structures was used for the target and organs. The union and intersection of structures were calculated in Plastimatch and imported into Raystation for optimization.
- Probabilistic adaptation:Substructures were defined for each structure depending on how often a voxel was classified as part of the structure. If all 3 DIRs agreed that a voxel was a target, this voxel was included in the 100%-target substructure; if only two DIRs classified a voxel as a target, it belonged to the 67%-target substructure; if only one algorithm defined it as a target, it belonged to the 33%-target substructure. The 100%, 67%, and 33% substructures were calculated in Plastimatch and imported into Raystation. The optimization constraints of each structure were identical to those used for the planning CT, but the weights of these substructures varied according to the frequency that voxels were classified as a target or organ amongst the DIRs [21].
- Reference adaptation:All replanning CTs had “clinical” structures, manually contoured by a physician. These structures were directly used for the optimization of reference adaptive plans. These reference adaptive plans should result in the best possible treatment plan.
- No adaptation:To compare the effect to that of a non-adaptive approach, which can be seen as the worst case, treatment plans were recalculated on the replanning CTs without plan re-optimization.
2.4. Plan Quality Scoring
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paganetti, H.; Botas, P.; Sharp, G.C.; Winey, B. Adaptive Proton Therapy. Phys. Med. Biol. 2021, 66, 22TR01. [Google Scholar] [CrossRef] [PubMed]
- Albertini, F.; Matter, M.; Nenoff, L.; Zhang, Y.; Lomax, A. Online Daily Adaptive Proton Therapy. Br. J. Radiol. 2020, 92, 20190594. [Google Scholar] [CrossRef]
- Thorwarth, D.; Low, D.A. Technical Challenges of Real-Time Adaptive MR-Guided Radiotherapy. Front. Oncol. 2021, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Keall, P.J.; Brighi, C.; Glide-Hurst, C.; Liney, G.; Liu, P.Z.Y.; Lydiard, S.; Paganelli, C.; Pham, T.; Shan, S.; Tree, A.C.; et al. Integrated MRI-Guided Radiotherapy—Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2022, 19, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Moazzezi, M.; Rose, B.; Kisling, K.; Moore, K.L.; Ray, X. Prospects for Daily Online Adaptive Radiotherapy via Ethos for Prostate Cancer Patients without Nodal Involvement Using Unedited CBCT Auto-Segmentation. J. Appl. Clin. Med Phys. 2021, 22, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Nierer, L.; Eze, C.; da Silva Mendes, V.; Braun, J.; Thum, P.; von Bestenbostel, R.; Kurz, C.; Landry, G.; Reiner, M.; Niyazi, M.; et al. Dosimetric Benefit of MR-Guided Online Adaptive Radiotherapy in Different Tumor Entities: Liver, Lung, Abdominal Lymph Nodes, Pancreas and Prostate. Radiat. Oncol. 2022, 17, 53. [Google Scholar] [CrossRef]
- Al-Ward, S.; Wronski, M.; Ahmad, S.B.; Myrehaug, S.; Chu, W.; Sahgal, A.; Keller, B.M. The Radiobiological Impact of Motion Tracking of Liver, Pancreas and Kidney SBRT Tumors in a MR-Linac. Phys. Med. Biol. 2018, 63, 215022. [Google Scholar] [CrossRef] [PubMed]
- Winkel, D.; Bol, G.H.; Kiekebosch, I.H.; van Asselen, B.; Kroon, P.S.; Jürgenliemk-Schulz, I.M.; Raaymakers, B.W. Evaluation of Online Plan Adaptation Strategies for the 1.5T MR-Linac Based on “First-In-Man” Treatments. Cureus 2018, 10, e2431. [Google Scholar] [CrossRef]
- Henke, L.; Kashani, R.; Robinson, C.; Curcuru, A.; DeWees, T.; Bradley, J.; Green, O.; Michalski, J.; Mutic, S.; Parikh, P.; et al. Phase I Trial of Stereotactic MR-Guided Online Adaptive Radiation Therapy (SMART) for the Treatment of Oligometastatic or Unresectable Primary Malignancies of the Abdomen. Radiother. Oncol. 2018, 126, 519–526. [Google Scholar] [CrossRef]
- Lalonde, A.; Bobić, M.; Winey, B.; Verburg, J.; Sharp, G.C.; Paganetti, H. Anatomic Changes in Head and Neck Intensity-Modulated Proton Therapy: Comparison between Robust Optimization and Online Adaptation. Radiother. Oncol. 2021, 159, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bernatowicz, K.; Geets, X.; Barragan, A.; Janssens, G.; Souris, K.; Sterpin, E. Feasibility of Online IMPT Adaptation Using Fast, Automatic and Robust Dose Restoration. Phys. Med. Biol. 2018, 63, 085018. [Google Scholar] [CrossRef] [PubMed]
- Jagt, T.; Breedveld, S.; van Haveren, R.; Heijmen, B.; Hoogeman, M. An Automated Planning Strategy for near Real-Time Adaptive Proton Therapy in Prostate Cancer. Phys. Med. Biol. 2018, 63, 135017. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yang, D.; Lam, D.; Zhang, T.; Dvergsten, T.; Bradley, J.; Mutic, S.; Zhao, T. Toward Adaptive Proton Therapy Guided with a Mobile Helical CT Scanner. Radiother. Oncol. 2018, 129, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, L.; Matter, M.; Hedlund Lindmar, J.; Weber, D.C.; Lomax, A.J.; Albertini, F. Daily Adaptive Proton Therapy–the Key to Innovative Planning Approaches for Paranasal Cancer Treatments. Acta Oncol. 2019, 58, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, L.; Matter, M.; Charmillot, M.; Krier, S.; Uher, K.; Weber, D.C.; Lomax, A.J.; Albertini, F. Experimental Validation of Daily Adaptive Proton Therapy. Phys. Med. Biol. 2021, 66, 205010. [Google Scholar] [CrossRef] [PubMed]
- Bobić, M.; Lalonde, A.; Sharp, G.C.; Grassberger, C.; Verburg, J.M.; Winey, B.A.; Lomax, A.J.; Paganetti, H. Comparison of Weekly and Daily Online Adaptation for Head and Neck Intensity-Modulated Proton Therapy. Phys. Med. Biol. 2021, 66, 55023. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.; Yuen, J.; Jameson, M.; Schmidt, L.; Sykes, J.; Gray, A.; Hardcastle, N.; Choong, C.; Poder, J.; Walker, A.; et al. Deforming to Best Practice: Key Considerations for Deformable Image Registration in Radiotherapy. J. Med. Radiat. Sci. 2020, 67, 318. [Google Scholar] [CrossRef]
- Harrison, K.; Pullen, H.; Welsh, C.; Oktay, O.; Alvarez-Valle, J.; Jena, R. Machine Learning for Auto-Segmentation in Radiotherapy Planning. Clin. Oncol. 2022, 34, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, C.E.; Yang, J.; Anderson, B.M.; Court, L.E.; Brock, K.B. Advances in Auto-Segmentation. Semin. Radiat. Oncol. 2019, 29, 185–197. [Google Scholar] [CrossRef]
- Fredriksson, A.; Forsgren, A.; Hårdemark, B. Minimax Optimization for Handling Range and Setup Uncertainties in Proton Therapy. Med. Phys. 2011, 38, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Shusharina, N.; Craft, D.; Chen, Y.L.; Shih, H.; Bortfeld, T. The Clinical Target Distribution: A Probabilistic Alternative to the Clinical Target Volume. Phys. Med. Biol. 2018, 63, 155001. [Google Scholar] [CrossRef]
- Qiao, Y.; Jagt, T.; Hoogeman, M.; Lelieveldt, B.P.F.; Staring, M. Evaluation of an Open Source Registration Package for Automatic Contour Propagation in Online Adaptive Intensity-Modulated Proton Therapy of Prostate Cancer. Front. Oncol. 2019, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Elmahdy, M.S.; Jagt, T.; Zinkstok, R.T.; Qiao, Y.; Shahzad, R.; Sokooti, H.; Yousefi, S.; Incrocci, L.; Marijnen, C.A.M.; Hoogeman, M.; et al. Robust Contour Propagation Using Deep Learning and Image Registration for Online Adaptive Proton Therapy of Prostate Cancer. Med. Phys. 2019, 46, 3329–3343. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, L.; Matter, M.; Amaya, E.J.; Josipovic, M.; Knopf, A.; Lomax, A.J.; Persson, G.F.; Ribeiro, C.O.; Visser, S.; Walser, M.; et al. Dosimetric Influence of Deformable Image Registration Uncertainties on Propagated Structures for Online Daily Adaptive Proton Therapy of Lung Cancer Patients. Radiother. Oncol. 2021, 159, 136–143. [Google Scholar] [CrossRef]
- Colbert, L.E.; Rebueno, N.; Moningi, S.; Beddar, S.; Sawakuchi, G.O.; Herman, J.M.; Koong, A.C.; Das, P.; Holliday, E.B.; Koay, E.J.; et al. Dose Escalation for Locally Advanced Pancreatic Cancer: How High Can We Go? Adv. Radiat. Oncol. 2018, 3, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Kaus, M.R.; Brock, K.K.; Pekar, V.; Dawson, L.A.; Nichol, A.M.; Jaffray, D.A. Assessment of a Model-Based Deformable Image Registration Approach for Radiation Therapy Planning. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 572–580. [Google Scholar] [CrossRef]
- Wong, J.; Fong, A.; McVicar, N.; Smith, S.; Giambattista, J.; Wells, D.; Kolbeck, C.; Giambattista, J.; Gondara, L.; Alexander, A. Comparing Deep Learning-Based Auto-Segmentation of Organs at Risk and Clinical Target Volumes to Expert Inter-Observer Variability in Radiotherapy Planning. Radiother. Oncol. 2020, 144, 152–158. [Google Scholar] [CrossRef] [PubMed]
Pancreas CTV | Liver CTV | HN High-Risk CTV | HN Low-Risk CTV |
---|---|---|---|
63.3 (14.7–125.1) | 113.6 (20.7–340.1) | 105.1 (61.2–192.3) | 353.7 (243.3–469.2) |
Structure | Constraint | Importance | |
---|---|---|---|
Liver and pancreas | CTV | V47.5Gy > 95% | Soft constraint |
Stomach | V33Gy < 1 cc | Hard constraint | |
Small bowel | V33Gy < 1 cc | Hard constraint | |
Large bowel | V33Gy < 1 cc | Hard constraint | |
Duodenum | V33Gy < 1 cc | Hard constraint | |
Spinal Cord | V25 < 0.5 cc | Hard constraint | |
Kidneys | mean < 10Gy | Hard constraint | |
Liver (-GTV) | mean < 20Gy | Hard constraint | |
Vtot-V15 > 700 cc | Hard constraint | ||
HN | High-risk CTV | V66.5Gy > 95% | Hard constraint |
V74.9 < 1 cc | Hard constraint | ||
Low-risk CTV | V51.3 > 95% | Hard constraint | |
V57.8 < 1 cc | Soft constraint | ||
Brainstem | max < 54Gy | Hard constraint | |
Spinal cord | max < 45Gy | Hard constraint | |
Constrictors | mean < 42Gy | Hard constraint | |
Larynx | mean < 40Gy | Hard constraint | |
Parotids | mean < 26Gy | Hard constraint |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nenoff, L.; Buti, G.; Bobić, M.; Lalonde, A.; Nesteruk, K.P.; Winey, B.; Sharp, G.C.; Sudhyadhom, A.; Paganetti, H. Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans. Cancers 2022, 14, 3926. https://doi.org/10.3390/cancers14163926
Nenoff L, Buti G, Bobić M, Lalonde A, Nesteruk KP, Winey B, Sharp GC, Sudhyadhom A, Paganetti H. Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans. Cancers. 2022; 14(16):3926. https://doi.org/10.3390/cancers14163926
Chicago/Turabian StyleNenoff, Lena, Gregory Buti, Mislav Bobić, Arthur Lalonde, Konrad P. Nesteruk, Brian Winey, Gregory Charles Sharp, Atchar Sudhyadhom, and Harald Paganetti. 2022. "Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans" Cancers 14, no. 16: 3926. https://doi.org/10.3390/cancers14163926
APA StyleNenoff, L., Buti, G., Bobić, M., Lalonde, A., Nesteruk, K. P., Winey, B., Sharp, G. C., Sudhyadhom, A., & Paganetti, H. (2022). Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans. Cancers, 14(16), 3926. https://doi.org/10.3390/cancers14163926