Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Process
2.3. Data Extraction
2.4. Estimation of Clinically Relevant Concentrations
3. Results
3.1. Neurotoxicity Assessment of Various Chemotherapeutic Agents Using iPSC-Derived PNS Models
3.1.1. Taxanes
3.1.2. Vinca Alkaloids
3.1.3. Platinum-Based Agents
3.1.4. Proteasome Inhibitor
3.1.5. Anti-Angiogenic Agents
3.1.6. Non-CIPN Causing Agents
3.2. Differential Chemotherapy Susceptibility among Donors
3.3. Identification of Clinically Relevant Concentrations for In Vitro Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maddams, J.; Utley, M.; Møller, H. Projections of cancer prevalence in the United Kingdom, 2010–2040. Br. J. Cancer 2012, 107, 1195–1202. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012, 291, 1–9. [Google Scholar] [CrossRef]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef]
- Cavaletti, G.; Alberti, P.; Frigeni, B.; Piatti, M.; Susani, E. Chemotherapy-induced neuropathy. Curr. Treat. Options Neurol. 2011, 13, 180–190. [Google Scholar] [CrossRef]
- Eldridge, S.; Guo, L.; Hamre, J. A Comparative Review of Chemotherapy-Induced Peripheral Neuropathy (CIPN) in In Vivo and In Vitro Models. Toxicol. Pathol. 2020, 48, 190–201. [Google Scholar] [CrossRef]
- Fukuda, Y.; Li, Y.; Segal, R.A. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front. Neurosci. 2017, 11, 481. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef]
- Cascella, M. Chemotherapy-induced peripheral neuropathy: Limitations in current prophylactic strategies and directions for future research. Curr. Med. Res. Opin. 2017, 33, 981–984. [Google Scholar] [CrossRef]
- Chan, A.; Hertz, D.L.; Morales, M.; Adams, E.J.; Gordon, S.; Tan, C.J.; Staff, N.P.; Kamath, J.; Oh, J.; Shinde, S.; et al. Biological Predictors of Chemotherapy Induced Peripheral Neuropathy (CIPN): MASCC Neurological Complications Working Group Overview. Support. Care Cancer 2019, 27, 3729–3737. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy (CIPN): Where are we now? Pain 2019, 160 (Suppl. S1), S1–S10. [Google Scholar] [CrossRef]
- Baldwin, R.M.; Owzar, K.; Zembutsu, H.; Chhibber, A.; Kubo, M.; Jiang, C.; Watson, D.; Eclov, R.J.; Mefford, J.; McLeod, H.L.; et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 2012, 18, 5099–5109. [Google Scholar] [CrossRef]
- Huehnchen, P.; Schinke, C.; Bangemann, N.; Dordevic, A.D.; Kern, J.; Maierhof, S.K.; Hew, L.; Nolte, L.; Körtvelyessy, P.; Göpfert, J.C.; et al. Neurofilament proteins as potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022, 7, e154395. [Google Scholar] [CrossRef]
- Kim, S.-H.; Choi, M.K.; Park, N.Y.; Hyun, J.-W.; Lee, M.Y.; Kim, H.J.; Jung, S.K.; Cha, Y. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci. Rep. 2020, 10, 7995. [Google Scholar] [CrossRef]
- Karteri, S.; Bruna, J.; Argyriou, A.A.; Mariotto, S.; Velasco, R.; Alemany, M.; Kalofonou, F.; Alberti, P.; Dinoto, A.; Velissaris, D.; et al. Prospectively assessing serum neurofilament light chain levels as a biomarker of paclitaxel-induced peripheral neurotoxicity in breast cancer patients. J. Peripher. Nerv. Syst. 2022. [Google Scholar] [CrossRef]
- Sałat, K. Chemotherapy-induced peripheral neuropathy: Part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol. Rep. 2020, 72, 486–507. [Google Scholar] [CrossRef]
- Chambers, S.M.; Qi, Y.; Mica, Y.; Lee, G.; Zhang, X.-J.; Niu, L.; Bilsland, J.; Cao, L.; Stevens, E.; Whiting, P.; et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 2012, 30, 715–720. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, J.; Lee, D.Y.; Kim, Y.-D.; Kim, J.Y.; Lim, H.J.; Lim, S.; Cho, Y.S. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair. Stem Cell Rep. 2017, 8, 1714–1726. [Google Scholar] [CrossRef]
- Bianchi, F.; Malboubi, M.; Li, Y.; George, J.H.; Jerusalem, A.; Szele, F.; Thompson, M.S.; Ye, H. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res. 2018, 32, 126–134. [Google Scholar] [CrossRef]
- Xiong, C.; Chua, K.C.; Stage, T.B.; Priotti, J.; Kim, J.; Altman-Merino, A.; Chan, D.; Saraf, K.; Canato Ferracini, A.; Fattahi, F.; et al. Human Induced Pluripotent Stem Cell Derived Sensory Neurons are Sensitive to the Neurotoxic Effects of Paclitaxel. Clin. Transl. Sci. 2021, 14, 568–581. [Google Scholar] [CrossRef]
- Schinke, C.; Vallone, V.F.; Ivanov, A.; Peng, Y.; Körtvelyessy, P.; Nolte, L.; Huehnchen, P.; Beule, D.; Stachelscheid, H.; Boehmerle, W.; et al. Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC)-derived sensory neurons. Neurobiol. Dis. 2021, 155, 105391. [Google Scholar] [CrossRef]
- Cunningham, G.M.; Shen, F.; Wu, X.; Cantor, E.L.; Gardner, L.; Philips, S.; Jiang, G.; Bales, C.L.; Tan, Z.; Liu, Y.; et al. The impact of SBF2 on taxane-induced peripheral neuropathy. PLoS Genet. 2022, 18, e1009968. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Tsui, A.Y.P.; Li, Z.; Zhang, Y.; Zhao, Q.; Xing, H.; Wang, X. Mechanisms of peripheral neurotoxicity associated with four chemotherapy drugs using human induced pluripotent stem cell-derived peripheral neurons. Toxicol. Vitr. 2021, 77, 105233. [Google Scholar] [CrossRef]
- Vojnits, K.; Mahammad, S.; Collins, T.J.; Bhatia, M. Chemotherapy-Induced Neuropathy and Drug Discovery Platform Using Human Sensory Neurons Converted Directly from Adult Peripheral Blood. Stem. Cells Transl. Med. 2019, 8, 1180–1191. [Google Scholar] [CrossRef]
- Rana, P.; Luerman, G.; Hess, D.; Rubitski, E.; Adkins, K.; Somps, C. Utilization of iPSC-derived human neurons for high-throughput drug-induced peripheral neuropathy screening. Toxicol. Vitr. 2017, 45 Pt 1, 111–118. [Google Scholar] [CrossRef]
- Wing, C.; Komatsu, M.; Delaney, S.M.; Krause, M.; Wheeler, H.E.; Dolan, M.E. Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res. 2017, 22, 79–88. [Google Scholar] [CrossRef]
- Wheeler, H.E.; Wing, C.; Delaney, S.M.; Komatsu, M.; Dolan, M.E. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS ONE 2015, 10, e0118020. [Google Scholar] [CrossRef]
- Snyder, C.; Yu, L.; Ngo, T.; Sheinson, D.; Zhu, Y.; Tseng, M.; Misner, D.; Staflin, K. In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol. Vitr. 2018, 50, 109–123. [Google Scholar] [CrossRef]
- Stage, T.B.; Bergmann, T.K.; Kroetz, D.L. Clinical Pharmacokinetics of Paclitaxel Monotherapy: An Updated Literature Review. Clin. Pharm. 2018, 57, 7–19. [Google Scholar] [CrossRef]
- Sparreboom, A.; van Zuylen, L.; Brouwer, E.; Loos, W.J.; de Bruijn, P.; Gelderblom, H.; Pillay, M.; Nooter, K.; Stoter, G.; Verweij, J. Cremophor EL-mediated Alteration of Paclitaxel Distribution in Human Blood: Clinical Pharmacokinetic Implications. Cancer Res. 1999, 59, 1454–1457. [Google Scholar]
- Borgå, O.; Lilienberg, E.; Bjermo, H.; Hansson, F.; Heldring, N.; Dediu, R. Pharmacokinetics of Total and Unbound Paclitaxel After Administration of Paclitaxel Micellar or Nab-Paclitaxel: An Open, Randomized, Cross-Over, Explorative Study in Breast Cancer Patients. Adv. Ther. 2019, 36, 2825–2837. [Google Scholar] [CrossRef]
- Baker, S.D.; Zhao, M.; Lee, C.K.K.; Verweij, J.; Zabelina, Y.; Brahmer, J.R.; Wolff, A.C.; Sparreboom, A.; Carducci, M.A. Comparative Pharmacokinetics of Weekly and Every-Three-Weeks Docetaxel. Clin. Cancer Res. 2004, 10, 1976–1983. [Google Scholar] [CrossRef]
- Plummer, R.; Woll, P.; Fyfe, D.; Boddy, A.V.; Griffin, M.; Hewitt, P.; Carmichael, J.; Namouni, F.; Cohen, M.; Verrill, M. A phase I and pharmacokinetic study of ixabepilone in combination with Carboplatin in patients with advanced solid malignancies. Clin. Cancer Res. 2008, 14, 8288–8294. [Google Scholar] [CrossRef]
- van de Velde, M.E.; Panetta, J.C.; Wilhelm, A.J.; van den Berg, M.H.; van der Sluis, I.M.; van den Bos, C.; Abbink, F.C.H.; van den Heuvel-Eibrink, M.M.; Segers, H.; Chantrain, C.; et al. Population Pharmacokinetics of Vincristine Related to Infusion Duration and Peripheral Neuropathy in Pediatric Oncology Patients. Cancers 2020, 12, 1789. [Google Scholar] [CrossRef]
- Shah, N.N.; Merchant, M.S.; Cole, D.E.; Jayaprakash, N.; Bernstein, D.; Delbrook, C.; Richards, K.; Widemann, B.C.; Wayne, A.S. Vincristine Sulfate Liposomes Injection (VSLI, Marqibo®): Results from a Phase I Study in Children, Adolescents, and Young Adults With Refractory Solid Tumors or Leukemias. Pediatr. Blood Cancer 2016, 63, 997–1005. [Google Scholar] [CrossRef]
- Ikeda, K.; Terashima, M.; Kawamura, H.; Takiyama, I.; Koeda, K.; Takagane, A.; Sato, N.; Ishida, K.; Iwaya, T.; Maesawa, C.; et al. Pharmacokinetics of cisplatin in combined cisplatin and 5-fluorouracil therapy: A comparative study of three different schedules of cisplatin administration. Jpn. J. Clin. Oncol. 1998, 28, 168–175. [Google Scholar] [CrossRef]
- Graham, M.A.; Lockwood, G.F.; Greenslade, D.; Brienza, S.; Bayssas, M.; Gamelin, E. Clinical pharmacokinetics of oxaliplatin: A critical review. Clin. Cancer Res. 2000, 6, 1205–1218. [Google Scholar]
- Gaver, R.C.; Colombo, N.; Green, M.D.; George, A.M.; Deeb, G.; Morris, A.D.; Canetta, R.M.; Speyer, J.L.; Farmen, R.H.; Muggia, F.M. The disposition of carboplatin in ovarian cancer patients. Cancer Chemother. Pharm. 1988, 22, 263–270. [Google Scholar] [CrossRef]
- Quinn, D.I.; Nemunaitis, J.; Fuloria, J.; Britten, C.D.; Gabrail, N.; Yee, L.; Acharya, M.; Chan, K.; Cohen, N.; Dudov, A. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma. Clin. Pharm. 2009, 48, 199–209. [Google Scholar] [CrossRef]
- Teo, S.K.; Colburn, W.A.; Tracewell, W.G.; Kook, K.A.; Stirling, D.I.; Jaworsky, M.S.; Scheffler, M.A.; Thomas, S.D.; Laskin, O.L. Clinical pharmacokinetics of thalidomide. Clin. Pharm. 2004, 43, 311–327. [Google Scholar] [CrossRef]
- Casale, F.; Canaparo, R.; Serpe, L.; Muntoni, E.; Pepa, C.D.; Costa, M.; Mairone, L.; Zara, G.P.; Fornari, G.; Eandi, M. Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacol. Res. 2004, 50, 173–179. [Google Scholar] [CrossRef]
- Rodriguez, G.I.; Kuhn, J.G.; Weiss, G.R.; Hilsenbeck, S.G.; Eckardt, J.R.; Thurman, A.; Rinaldi, D.A.; Hodges, S.; Von Hoff, D.D.; Rowinsky, E.K. A bioavailability and pharmacokinetic study of oral and intravenous hydroxyurea. Blood 1998, 91, 1533–1541. [Google Scholar]
- Walker, A.L.; Lancaster, C.S.; Finkelstein, D.; Ware, R.E.; Sparreboom, A. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics. Am. J. Physiol. Cell Physiol. 2013, 305, C1223–C1229. [Google Scholar] [CrossRef]
- Fan, Y.; Lin, N.; Luo, L.; Fang, L.; Huang, Z.; Yu, H.; Wu, F. Pharmacodynamic and pharmacokinetic study of pegylated liposomal doxorubicin combination (CCOP) chemotherapy in patients with peripheral T-cell lymphomas. Acta Pharmacol. Sin. 2011, 32, 408–414. [Google Scholar] [CrossRef]
- Holzer, A.-K.; Karreman, C.; Suciu, I.; Furmanowsky, L.-S.; Wohlfarth, H.; Loser, D.; Dirks, W.G.; González, E.P.; Leist, M. Generation of human nociceptor-enriched sensory neurons for the study of pain-related dysfunctions. bioRxiv 2022, 7, 727–741. [Google Scholar] [CrossRef]
- Park, S.B.; Lin, C.S.Y.; Krishnan, A.V.; Goldstein, D.; Friedlander, M.L.; Kiernan, M.C. Long-Term Neuropathy after Oxaliplatin Treatment: Challenging the Dictum of Reversibility. Oncologist 2011, 16, 708–716. [Google Scholar] [CrossRef]
- Namer, B.; Schmidt, D.; Eberhardt, E.; Maroni, M.; Dorfmeister, E.; Kleggetveit, I.P.; Kaluza, L.; Meents, J.; Gerlach, A.; Lin, Z.; et al. Pain relief in a neuropathy patient by lacosamide: Proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine 2019, 39, 401–408. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Foskolou, S.; Kilpinen, H.; Rodrigues, J.; Alasoo, K.; Knights, A.J.; Patel, M.; Goncalves, A.; Ferreira, R.; Benn, C.L.; et al. Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet. 2018, 50, 54–61. [Google Scholar] [CrossRef]
- van Zuylen, L.; Karlsson, M.O.; Verweij, J.; Brouwer, E.; de Bruijn, P.; Nooter, K.; Stoter, G.; Sparreboom, A. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother. Pharmacol. 2001, 47, 309–318. [Google Scholar] [CrossRef]
- Courtemanche, H.; Magot, A.; Ollivier, Y.; Rialland, F.; Leclair-Visonneau, L.; Fayet, G.; Camdessanché, J.-P.; Péréon, Y. Vincristine-induced neuropathy: Atypical electrophysiological patterns in children. Muscle Nerve 2015, 52, 981–985. [Google Scholar] [CrossRef]
- Rattanakrong, N.; Siriphorn, A.; Boonyong, S. Incidence density and factors associated with peripheral neuropathy among women with breast cancer during taxane-based chemotherapy. Sci. Rep. 2022, 12, 10632. [Google Scholar] [CrossRef]
- Malheiro, A.; Harichandan, A.; Bernardi, J.; Seijas-Gamardo, A.; Konings, G.F.; Volders, P.G.A.; Romano, A.; Mota, C.; Wieringa, P.; Moroni, L. 3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modeling and tissue innervation. Biofabrication 2021, 14, 014105. [Google Scholar] [CrossRef]
- Sharma, A.D.; McCoy, L.; Jacobs, E.; Willey, H.; Behn, J.Q.; Nguyen, H.; Bolon, B.; Curley, J.L.; Moore, M.J. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci. Rep. 2019, 9, 8921. [Google Scholar] [CrossRef]
- Ray, P.R.; Wangzhou, A.; Ghneim, N.; Yousuf, M.S.; Paige, C.; Tavares-Ferreira, D.; Mwirigi, J.M.; Shiers, S.; Sankaranarayanan, I.; McFarland, A.J.; et al. A pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction. Brain Behav. Immun. 2020, 89, 559–568. [Google Scholar] [CrossRef]
- Belair, D.G.; Sudak, K.; Connelly, K.; Kopytek, S.J.; Kolaja, K.L.; Collins, N.D. Investigation Into the Role of ERK in Tyrosine Kinase Inhibitor-Induced Neuropathy. Toxicol. Sci. 2021, 181, 160–174. [Google Scholar] [CrossRef]
- Diouf, B.; Wing, C.; Panetta, J.C.; Eddins, D.; Lin, V.; Yang, W.; Fan, Y.; Pei, D.; Cheng, C.; Shannon, M.; et al. Identification of small molecules that mitigate vincristine-induced neurotoxicity while sensitizing leukemia cells to vincristine. Clin. Transl. Sci. 2021, 14, 1490–1504. [Google Scholar] [CrossRef]
- Diouf, B.; Crews, K.R.; Lew, G.; Pei, D.; Cheng, C.; Bao, J.; Zheng, J.J.; Yang, W.; Fan, Y.; Wheeler, E.H.; et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 2015, 313, 815–823. [Google Scholar] [CrossRef]
- Odawara, A.; Shibata, M.; Ishibashi, Y.; Nagafuku, N.; Matsuda, N.; Suzuki, T. In Vitro Pain Assay Using Human iPSC-Derived Sensory Neurons and Microelectrode Array. Toxicol. Sci. 2022, 188, 131–141. [Google Scholar] [CrossRef]
- Donigian, D.W.; Owellen, R.J. Interaction of vinblastine, vincristine and colchicine with serum proteins. Biochem. Pharmacol. 1973, 22, 2113–2119. [Google Scholar] [CrossRef]
- Urien, S.; Barré, J.; Morin, C.; Paccaly , A.; Montay, G.; Tillement, J.P. Docetaxel serum protein binding with high affinity to alpha 1-acid glycoprotein. Investig. New Drugs. 1996, 14, 147–151. [Google Scholar] [CrossRef]
Cell Type | Number of Donors | Chemotherapeutic Agents | Concentrations Applied | IC50 | Analysis | Reference | |
---|---|---|---|---|---|---|---|
Neurite Network Analysis | Cell Viability | ||||||
Human iPSC-derived sensory neurons (iPSC-SNs) | 4–6 | Paclitaxel | 0.1–1 µM | 0.1 µM (48 h) | >1 µM (48 h) | Single-cell sequencing, neurite network analysis, cell viability, siRNA transfection, electrophysiology | [23] |
Human iPSC-derived peripheralneurons | 1 | Vincristine | 1 nM–100 µM | ~0.4 µM (24 h) | ~75 µM (24 h) | Cell viability, apoptosis, neurite network analysis, qRT-PCR, ELISA | [24] |
Ixabepilone | 1 nM–100 µM | ~0.45 µM (24 h) | >100 µM (24 h) | ||||
Cisplatin | 1 nM–100 µM | ~65 µM (24 h) | ~100 µM (24 h) | ||||
Bortezomib | 1 nM–100 µM | ~100 µM (24 h) | >100 µM (24 h) | ||||
Pomalidomide | 1 nM–100 µM | ~95 µM (24 h) | >100 µM (24 h) | ||||
iPSC-SNs | 2 | Paclitaxel | 100 pM–10 µM | - | 290 nM (24 h) 99.1 nM (72 h) | Bulk RNA sequencing, electrophysiology, calcium imaging, immunocytochemistry (ICC), bright field microscopy, cell viability | [22] |
Vincristine | 100 pM–10 µM | - | 66.3 nM (24 h) | ||||
Cisplatin | 1 nM–100 µM | - | 11.7 µM (24 h) | ||||
Bortezomib | 100 pM–10 µM | - | 3.8 nM (24 h) | ||||
Negative controls: | |||||||
Doxorubicin | 100 pM–10 µM | - | 408.8 µM (24 h) | ||||
5-Fluorouracil | 100 pM–10 µM | - | >10 µM (24 h, 72 h) | ||||
iPSC-SNs | 1 | Paclitaxel | 1 nM–50 µM | 1.4 µM (48 h) 0.6 µM (72 h) | 38.1 µM (48 h) 9.3 µM (72 h) | Neurite network analysis, qRT-PCR, calcium imaging, viability, apoptosis, mitochondrial measurements | [21] |
Docetaxel | 0.1–1 µM | ~1 µM (72 h) | - | ||||
Vincristine | 10 nM–1 µM | ~0.01 µM (72 h) | - | ||||
Bortezomib | 0.1–1 µM | ~1 µM (72 h) | - | ||||
Negative control: | |||||||
Hydroxyurea | 0.1–1 µM | >1 µM (72 h) | - | ||||
iPSC-SNs | 2 | Paclitaxel | 10 nM–10 µM | 5 nM (48 h) | 7.4 µM (48 h) | Neurite network analysis, calcium imaging, cell viability | [25] |
Vincristine | 10 nM–10 µM | 63 nM (48 h) | 0.6 µM (48 h) | ||||
Cisplatin | 10 nM–10 µM | 5 nM (48 h) | 3.1 µM (48 h) | ||||
Bortezomib | 10 nM–10 µM | 4.2 µM (48 h) | 1 µM (48 h) | ||||
Etoposide | 10 nM–10 µM | 19 nM (48 h) | 3.2 µM (48 h) | ||||
Peri.4U neurons | 1 | Paclitaxel | 130 pM–10 µM | 5.6 nM (24 h) | >10 µM (24 h) | Electrophysiology, cell viability, ICC | [26] |
Docetaxel | 130 pM–10 µM | 0.7 nM (24 h) | >10 µM (24 h) | ||||
Vincristine | 10 pM–1 µM | 5.5 nM (24 h) | >1 µM (24 h) | ||||
Ixabepilone | 130 pM–10 µM | 4.3 nM (24 h) | >10 µM (24 h) | ||||
Cisplatin | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Oxaliplatin | 1.3 nM–100 µM | 74.1 µM (24 h) | >100 µM (24 h) | ||||
Carboplatin | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Bortezomib | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Thalidomide | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Lenalidomide | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Pomalidomide | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Negative control: | |||||||
Hydroxyurea | 1.3 nM–100 µM | >100 µM (24 h) | >100 µM (24 h) | ||||
Commercial human iPSC-derived neurons (iCell)Peri.4U neurons | 1 | Paclitaxel | iCell neurons: 1 nM–100 µMPeri.4U neurons: 0.01 nM–100 µM | iCell neurons: | Electrophysiology, neurite network analysis, cell viability, apoptosis | [27] | |
~10 µM (72 h) | ~100 µM (72 h) | ||||||
Peri.4U neurons: | |||||||
~1 µM (72 h) | >10 µM (72 h) | ||||||
Nab-paclitaxel | iCell neurons: | ||||||
~10 µM (72 h) | >100 µM (72 h) | ||||||
Docetaxel | iCell neurons: | ||||||
~10 µM (72 h) | >100 µM (72 h) | ||||||
Vincristine | iCell neurons: | ||||||
~0.1 µM (72 h) | >10 µM (72 h) | ||||||
Peri.4U neurons: | |||||||
<1 nM (72 h) | ~40 nM (72 h) | ||||||
Cisplatin | iCell neurons: | ||||||
~10 µM (72 h) | ~7.94 µM (72 h) | ||||||
Peri.4U neurons: | |||||||
~7.94 µM (72 h) | ~3.16 µM (72 h) | ||||||
Oxaliplatin | iCell neurons: | ||||||
~31.6 µM (72 h) | ~20 µM (72 h) | ||||||
Carboplatin | iCell neurons: | ||||||
~63.1 µM (72 h) | ~39.8 µM (72 h) | ||||||
Bortezomib | iCell neurons: | ||||||
~32 nM (72 h) | ~6 nM (72 h) | ||||||
Peri.4U neurons: | |||||||
~3 nM (72 h) | ~40 nM (72 h) | ||||||
Thalidomide | iCell neurons: | ||||||
>100 µM (72 h) | >100 µM (72 h) | ||||||
Negative controls: | |||||||
5-Fluorouracil | iCell neurons: | ||||||
>100 µM (72 h) | >100 µM (72 h) | ||||||
iCell neurons | 1 | Paclitaxel | 1 nM–100 µM | ~20 µM (72 h) | - | Transfection, cell viability and apoptosis, neurite network analysis, time-lapse microscopy | [28] |
Vincristine | 1 nM–100 µM | ~0.04 µM (72 h) | - | ||||
Cisplatin | 1 nM–100 µM | ~10 µM (72 h) | - | ||||
Negative controls: | |||||||
Hydroxyurea | 0.001–100 µM | >100 µM (72 h) | - |
Generic Name | Brand Name | Dose | Route | Infusion | Maximum Plasma Concentration | Plasma Protein Binding | Free Drug in Plasma | Reference |
---|---|---|---|---|---|---|---|---|
Taxanes | ||||||||
Paclitaxel | Taxol | 175 mg/m2 | IV | 3 h | 5.1 µM + | 89–98% | 0.1–0.4 µM * | [30,31] |
Nab-paclitaxel | Abraxane | 260 mg/m2 | IV | 1 h | 9.5 µM # | 0.5 µM * | [32] | |
Docetaxel | Taxotere | 100 mg/m2 | IV | 1 h | 5.1 µM # | 98% | 0.1 µM | [33] |
Ixabepilone | Ixempra | 30 mg/m2 | IV | 1 h | 0.7 µM | 67–77% | 0.2 µM | [34] |
Vinca alkaloids | ||||||||
Vincristine | Vincasar PFS | 1.5–2 mg/m2 | IV | Bolus or 1 h | 36–88 nM + | 75% | 9.1–22 nM | [35] |
Vincristine (liposomal) | Marqibo | 2.25 mg/m2 | IV | 1 h | 2.6 µM + | n.d. | [36] | |
Platinum-based agents | ||||||||
Cisplatin | Platinol | 80 mg/m2 | IV | 2 h | 11 µM # | 90% | 1.1 µM | [37] |
Oxaliplatin | Eloxatin | 130 mg/m2 | IV | 2 h | 6.5–8.1 µM # | 90% | 0.7–0.8 µM | [38] |
Carboplatin | Paraplatin | 400 mg/m2 | IV | 0.5 h | 134.7 µM # | 0% | 134.7 µM | [39] |
Proteasome inhibitors | ||||||||
Bortezomib | Velcade | 1.3 mg/m2 | IV | Bolus | 0.3 µM # | 83% | 53.1 nM | [40] |
Anti-angiogenic agents | ||||||||
Thalidomide | Thalomid | 200 mg | PO | - | 3.9–7.7 µM | 55% (R)-(+) 65% (S)-(−) | 1.7–3.5 µM 1.4–2.7 µM | [41] |
Non-CIPN causing agents (negative controls) | ||||||||
5-Fluorouracil | Adrucil | 400 mg/m2 | IV | Bolus | 426 µM + | 10% | 383.6 µM | [42] |
Hydroxyurea | Droxia | 2000 mg | PO | - | 794 µM # | 25% | 595 µM | [43,44] |
Doxorubicin (liposomal) | Caelyx | 30 mg/m2 | IV | 1 h | 18.3 µM # | 70% | 5.5 µM | [45] |
Model | Subject | Chemotherapeutic Agents | Concentrations Applied | IC50 | Reference | |
---|---|---|---|---|---|---|
Neurite Network Analysis | Cell Viability | |||||
iPSC-SNs | Donor 1 | Vincristine | 100 pM–10 µM | - | 87.6 nM (24 h) | [22] |
Cisplatin | 1 nM–100 µM | - | 14.7 µM (24 h) | |||
Bortezomib | 100 pM–0.1 µM | - | 5.3 nM (24 h) | |||
Donor 2 | Vincristine | 100 pM–10 µM | - | 35.8 nM (24 h) | ||
Cisplatin | 1 nM–100 µM | - | 6.9 µM (24 h) | |||
Bortezomib | 100 pM–0.1 µM | - | 1.3 nM (24 h) | |||
Human iPSC-derived neurons (MyCell) | Donor 1 | Paclitaxel | 0.001–100 µM | 0.7 µM (72 h) | - | [28] |
Donor 2 | 60 µM (72 h) | - | ||||
Donor 3 | 2 µM (72 h) | - | ||||
Donor 4 | 15 µM (72 h) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortensen, C.; Andersen, N.E.; Stage, T.B. Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling. Cancers 2022, 14, 3939. https://doi.org/10.3390/cancers14163939
Mortensen C, Andersen NE, Stage TB. Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling. Cancers. 2022; 14(16):3939. https://doi.org/10.3390/cancers14163939
Chicago/Turabian StyleMortensen, Christina, Nanna Elman Andersen, and Tore Bjerregaard Stage. 2022. "Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling" Cancers 14, no. 16: 3939. https://doi.org/10.3390/cancers14163939
APA StyleMortensen, C., Andersen, N. E., & Stage, T. B. (2022). Bridging the Translational Gap in Chemotherapy-Induced Peripheral Neuropathy with iPSC-Based Modeling. Cancers, 14(16), 3939. https://doi.org/10.3390/cancers14163939