An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Data
2.2. Decision Support Platform (DSP)
2.3. Technical Description of the CLARIFY Platform
2.4. DSP Functionalities
2.4.1. Descriptive Statistics
2.4.2. Survival Analysis
3. Results
3.1. Application of the CLARIFY DSP
3.2. Artificial Intelligence for Predicting Clinically Relevant Parameters in Survival
3.3. Artificial Intelligence for Predicting Disease Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2022, 126, 4–9. [Google Scholar] [CrossRef]
- Shapiro Charles, L. Cancer Survivorship. N. Engl. J. Med. 2018, 379, 2438–2450. [Google Scholar] [CrossRef]
- Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai, A.; et al. Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers 2020, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Bera, K.; Wang, X.; Prasanna, P.; Xu, J.; Janowczyk, A.; Beig, N.; Yang, M.; Fu, P.; Lewis, J.; et al. A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: A multicentre, retrospective study. Lancet Digit. Health 2020, 2, e594–e606. [Google Scholar] [CrossRef]
- Singla, N.; Singla, S. Harnessing Big Data with Machine Learning in Precision Oncology. Kidney Cancer J. 2020, 18, 83–84. [Google Scholar]
- Mu, W.; Jiang, L.; Zhang, J.; Shi, Y.; Gray, J.E.; Tunali, I.; Gao, C.; Sun, Y.; Tian, J.; Zhao, X.; et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat. Commun. 2020, 11, 5228. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Najafabadipour, M.; Zanin, M.; Rodríguez-González, A.; Torrente, M.; Nuñez García, B.; Cruz Bermudez, J.L.; Provencio, M.; Menasalvas, E. Reconstructing the patient’s natural history from electronic health records. Artif. Intell. Med. 2020, 105, 101860. [Google Scholar] [CrossRef] [PubMed]
- Sharpless, N.E.; Singer, D.S. Progress and potential: The Cancer Moonshot. Cancer Cell 2021, 39, 889–894. [Google Scholar] [CrossRef]
- Mullard, A. Half of top cancer studies fail high-profile reproducibility effort. Nature 2021, 600, 368–369. [Google Scholar] [CrossRef]
- Almaida-Pagan, P.F.; Torrente, M.; Campos, M.; Provencio, M.; Madrid, J.A.; Franco, F.; Morilla, B.R.; Cantos, B.; Sousa, P.A.; Madrid, M.J.M.; et al. Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock. Curr. Oncol. Rep. 2022, 24, 135–149. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S. Maximizing Cancer Data—The Future of Cancer Is Now. JAMA Oncol. 2022, 8, 1095–1096. [Google Scholar] [CrossRef]
- James, C.A.; Wachter, R.M.; Woolliscroft, J.O. Preparing Clinicians for a Clinical World Influenced by Artificial Intelligence. JAMA 2022, 327, 1333–1334. [Google Scholar] [CrossRef] [PubMed]
- Chua, I.S.; Gaziel-Yablowitz, M.; Korach, Z.T.; Kehl, K.L.; Levitan, N.A.; Arriaga, Y.E.; Jackson, G.P.; Bates, D.W.; Hassett, M. Artificial intelligence in oncology: Path to implementation. Cancer Med. 2021, 10, 4138–4149. [Google Scholar] [CrossRef]
- Xu, Y.; Ju, L.; Tong, J.; Zhou, C.-M.; Yang, J.-J. Machine learning algorithms for predicting the recurrence of stage IV colorectal cancer after tumor resection. Sci. Rep. 2020, 10, 2519. [Google Scholar] [CrossRef]
- Eminaga, O.; Shkolyar, E.; Breil, B.; Semjonow, A.; Boegemann, M.; Xing, L.; Tinay, I.; Liao, J.C. Artificial Intelligence-Based Prognostic Model for Urologic Cancers: A SEER-Based Study. Cancers 2022, 14, 3135. [Google Scholar] [CrossRef]
- Scurti, M.; Ruiz, E.M.; Vidal, M.E.; Torrente, M.; Vogiatzis, D.; Paliouras, G.; Provencio, M.; Rodríguez González, A. A Data-Driven Approach for Analyzing Healthcare Services Extracted from Clinical Records. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 193–196. [Google Scholar] [CrossRef]
- Mohamed, S.K.; Walsh, B.; Timilsina, M.; Torrente, M.; Franco, F.; Provencio, M.; Janik, A.; Costabello, L.; Minervini, P.; Stenetorp, P.; et al. On Predicting Recurrence in Early Stage Non-small Cell Lung Cancer. AMIA Annu. Symp. Proc. 2022, 21, 853–862. [Google Scholar]
- Torrente, M.; Mensalvas, E.; Franco, F.; Rodriguez-Gonzalez, A.; Calvo, V.; Brenes, M.A.; Paliouras, G.; Provencio-Pulla, M. Big data for supporting precision medicine in lung cancer patients. J. Clin. Oncol. 2018, 36, e20546. [Google Scholar] [CrossRef]
- Kehl, K.L.; Elmarakeby, H.; Nishino, M.; Van Allen, E.M.; Lepisto, E.M.; Hassett, M.J.; Johnson, B.E.; Schrag, D. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol. 2019, 5, 1421–1429. [Google Scholar] [CrossRef]
- Elfiky, A.A.; Pany, M.J.; Parikh, R.B.; Obermeyer, Z. Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapy. JAMA Netw. Open 2018, 1, e180926. [Google Scholar] [CrossRef] [Green Version]
- Christopherson, K.M.; Berlind, C.G.; Ahern, C.A.; Holmes, A.; Lindsay, W.D.; Smith, B.D.; Das, P.; Smith, G.L. Improving quality through A.I.: Applying machine learning to predict unplanned hospitalizations after radiation. J. Clin. Oncol. 2019, 37, 271. [Google Scholar] [CrossRef]
- Parikh, R.B.; Manz, C.; Chivers, C.; Regli, S.H.; Braun, J.; Draugelis, M.E.; Schuchter, L.M.; Shulman, L.N.; Navathe, A.S.; Patel, M.S.; et al. Machine learning approaches to predict 6-month mortality among patients with cancer. JAMA Netw. Open 2019, 2, e1915997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solarte Pabón, O.; Montenegro, O.; Torrente, M.; Rodríguez González, A.; Provencio, M.; Menasalvas, E. Negation and uncertainty detection in clinical texts written in Spanish: A deep learning-based approach. PeerJ Comput. Sci. 2022, 8, e913. [Google Scholar] [CrossRef]
- Schork, N.J. Artificial intelligence and personalized medicine. Cancer Treat. Res. 2019, 178, 265–283. [Google Scholar] [PubMed]
- Kann, B.H.; Hosny, A.; Aerts, H.J.W.L. Artificial intelligence for clinical oncology. Cancer Cell 2021, 39, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Huynh, E.; Hosny, A.; Guthier, C.; Bitterman, D.S.; Petit, S.F.; Haas-Kogan, D.A.; Kann, B.; Aerts, H.J.; Mak, R.H. Artificial intelligence in radiation oncology. Nat. Rev. Clin. Oncol. 2020, 17, 771–781. [Google Scholar] [CrossRef]
- Benzekry, S. Artificial intelligence and mechanistic modeling for clinical decision making in oncology. Clin. Pharmacol. Ther. 2020, 108, 471–486. [Google Scholar] [CrossRef]
- Jacob, T.; Shreve, M.D.; Sadia, A.; Khanani, M.D.; Tufia, C.; Haddad, M.D. Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 842–851. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrente, M.; Sousa, P.A.; Hernández, R.; Blanco, M.; Calvo, V.; Collazo, A.; Guerreiro, G.R.; Núñez, B.; Pimentao, J.; Sánchez, J.C.; et al. An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study. Cancers 2022, 14, 4041. https://doi.org/10.3390/cancers14164041
Torrente M, Sousa PA, Hernández R, Blanco M, Calvo V, Collazo A, Guerreiro GR, Núñez B, Pimentao J, Sánchez JC, et al. An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study. Cancers. 2022; 14(16):4041. https://doi.org/10.3390/cancers14164041
Chicago/Turabian StyleTorrente, María, Pedro A. Sousa, Roberto Hernández, Mariola Blanco, Virginia Calvo, Ana Collazo, Gracinda R. Guerreiro, Beatriz Núñez, Joao Pimentao, Juan Cristóbal Sánchez, and et al. 2022. "An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study" Cancers 14, no. 16: 4041. https://doi.org/10.3390/cancers14164041
APA StyleTorrente, M., Sousa, P. A., Hernández, R., Blanco, M., Calvo, V., Collazo, A., Guerreiro, G. R., Núñez, B., Pimentao, J., Sánchez, J. C., Campos, M., Costabello, L., Novacek, V., Menasalvas, E., Vidal, M. E., & Provencio, M. (2022). An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study. Cancers, 14(16), 4041. https://doi.org/10.3390/cancers14164041