Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview on Tumor Resistance Mechanisms
3. The Electrochemotherapy History
4. The Principles of Electroporation and the Effect on Tumor Cells
5. Clinical Applications
6. Clinical Trials
7. Treatment of Solid Tumors with ECT
7.1. Head and Neck Squamous Cell Carcinoma (HNSCC)
7.2. Breast Cancer
7.3. Gynecological Cancer
7.4. Colorectal Cancer
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nozhat, Z.; Heydarzadeh, S.; Memariani, Z.; Ahmadi, A. Chemoprotective and Chemosensitizing Effects of Apigenin on Cancer Therapy. Cancer Cell Int. 2021, 21, 574. [Google Scholar] [CrossRef]
- Rodriguez-Devora, J.I.; Ambure, S.; Shi, Z.-D.; Yuan, Y.; Sun, W.; Xu, T. Physically Facilitating Drug-Delivery Systems. Ther. Deliv. 2012, 3, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Baldi, A. Electroporation in Laboratory and Clinical Investigations; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Meschini, S.; Condello, M.; Lista, P.; Vincenzi, B.; Baldi, A.; Citro, G.; Arancia, G.; Spugnini, E.P. Electroporation Adopting Trains of Biphasic Pulses Enhances in Vitro and in Vivo the Cytotoxic Effect of Doxorubicin on Multidrug Resistant Colon Adenocarcinoma Cells (LoVo). Eur. J. Cancer 2012, 48, 2236–2243. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. IJMS 2020, 21, 3233. [Google Scholar] [CrossRef]
- Broxterman, H.J.; Giaccone, G.; Lankelma, J. Multidrug Resistance Proteins and Other Drug Transport-Related Resistance to Natural Product Agents. Curr. Opin. Oncol. 1995, 7, 532–540. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Ramón y Cajal, S.; Sesé, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical Implications of Intratumor Heterogeneity: Challenges and Opportunities. J. Mol. Med. 2020, 98, 161–177. [Google Scholar] [CrossRef]
- Duan, M.; Ulibarri, J.; Liu, K.J.; Mao, P. Role of Nucleotide Excision Repair in Cisplatin Resistance. IJMS 2020, 21, 9248. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.-W.; Gao, P. SPIN1, Negatively Regulated by MiR-148/152, Enhances Adriamycin Resistance via Upregulating Drug Metabolizing Enzymes and Transporter in Breast Cancer. J. Exp. Clin. Cancer Res. 2018, 37, 100. [Google Scholar] [CrossRef]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. IJMS 2020, 21, 1102. [Google Scholar] [CrossRef] [Green Version]
- Cordani, M.; Donadelli, M.; Strippoli, R.; Bazhin, A.V.; Sánchez-Álvarez, M. Interplay between ROS and Autophagy in Cancer and Aging: From Molecular Mechanisms to Novel Therapeutic Approaches. Oxidative Med. Cell. Longev. 2019, 2019, 8794612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.-H.; Cao, Y.-T.; Zhang, L.-L.; Huang, F.; Yi, C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front. Cell Dev. Biol. 2020, 8, 413. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Cucci, M.A.; Grattarola, M.; Dianzani, C.; Muzio, G.; Pizzimenti, S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Deng, C.-X. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int. J. Biol. Sci. 2018, 14, 2083–2093. [Google Scholar] [CrossRef]
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The Hypoxic Tumour Microenvironment. Oncogenesis 2018, 7, 10. [Google Scholar] [CrossRef]
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Sanz, L.; Muñoz, P. Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenviron. 2019, 12, 119–132. [Google Scholar] [CrossRef]
- Garcia-Mayea, Y.; Mir, C.; Masson, F.; Paciucci, R.; LLeonart, M.E. Insights into New Mechanisms and Models of Cancer Stem Cell Multidrug Resistance. Semin. Cancer Biol. 2020, 60, 166–180. [Google Scholar] [CrossRef]
- Eguchi, T.; Taha, E.A.; Calderwood, S.K.; Ono, K. A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. Biology 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Steinbichler, T.B.; Dudás, J.; Skvortsov, S.; Ganswindt, U.; Riechelmann, H.; Skvortsova, I.-I. Therapy Resistance Mediated by Exosomes. Mol. Cancer 2019, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Fais, S. Exosomes: A Source for New and Old Biomarkers in Cancer. Cancers 2020, 12, 2566. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Passaniti, A.; Lapidus, R.G.; Liu, X.; Cullen, K.J.; Dan, H.C. A Positive Feedback Loop Involving EGFR/Akt/MTORC1 and IKK/NF-ΚB Regulates Head and Neck Squamous Cell Carcinoma Proliferation. Oncotarget 2016, 7, 31892–31906. [Google Scholar] [CrossRef]
- Robinson, K.; Tiriveedhi, V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front. Oncol. 2020, 10, 265. [Google Scholar] [CrossRef]
- Flory, S.; Männle, R.; Frank, J. The Inhibitory Activity of Curcumin on P-Glycoprotein and Its Uptake by and Efflux from LS180 Cells Is Not Affected by Its Galenic Formulation. Antioxidants 2021, 10, 1826. [Google Scholar] [CrossRef]
- Cagliero, E.; Ferracini, R.; Morello, E.; Scotlandi, K.; Manara, M.; Buracco, P.; Comandone, A.; Baroetto Parisi, R.; Baldini, N. Reversal of Multidrug-Resistance Using Valspodar® (PSC 833) and Doxorubicin in Osteosarcoma. Oncol. Rep. 2004, 12, 1023–1031. [Google Scholar] [CrossRef]
- Wang, C.; Li, F.; Zhang, T.; Yu, M.; Sun, Y. Recent Advances in Anti-Multidrug Resistance for Nano-Drug Delivery System. Drug Deliv. 2022, 29, 1684–1697. [Google Scholar] [CrossRef]
- Condello, M.; Mancini, G.; Meschini, S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front. Pharmacol. 2020, 11, 787. [Google Scholar] [CrossRef]
- Drąg-Zalesińska, M.; Saczko, J.; Choromańska, A.; Szewczyk, A.; Rembiałkowska, N.; Kulbacka, J.; Rzechonek, A. Cisplatin and Vinorelbine -Mediated Electrochemotherapeutic Approach Against Multidrug Resistant Small Cell Lung Cancer (H69AR) In Vitro. Anticancer Res. 2019, 39, 3711–3718. [Google Scholar] [CrossRef]
- Perrone, A.M.; Ravegnini, G.; Miglietta, S.; Argnani, L.; Ferioli, M.; De Crescenzo, E.; Tesei, M.; Di Stanislao, M.; Girolimetti, G.; Gasparre, G.; et al. Electrochemotherapy in Vulvar Cancer and Cisplatin Combined with Electroporation. Systematic Review and In Vitro Studies. Cancers 2021, 13, 1993. [Google Scholar] [CrossRef] [PubMed]
- Condello, M.; D’Avack, G.; Vona, R.; Spugnini, E.P.; Scacco, L.; Meschini, S. Electrochemotherapy with Mitomycin C Potentiates Apoptosis Death by Inhibiting Autophagy in Squamous Carcinoma Cells. Cancers 2021, 13, 3867. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Siani, C.; Pace, U.; Costanzo, R.; di Giacomo, R. Debulking Mastectomy with Electrochemotherapy: A Case Report of No Surgery Approach to Recurrent Breast Cancer. Transl. Cancer Res. TCR 2021, 10, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Men, P.; Xu, X.; Zhai, S.; Cui, X. Antiemetic Regimen with Aprepitant in the Prevention of Chemotherapy-Induced Nausea and Vomiting: An Updated Systematic Review and Meta-Analysis. Medicine 2020, 99, e21559. [Google Scholar] [CrossRef]
- Thomas, R.; Howard, S.A.; Laferriere, S.L.; Braschi-Amirfarzan, M. A Review of the Mechanisms and Clinical Implications of Precision Cancer Therapy–Related Toxicity: A Primer for the Radiologist. Am. J. Roentgenol. 2020, 215, 770–780. [Google Scholar] [CrossRef]
- Crowley, J.M. Electrical Breakdown of Bimolecular Lipid Membranes as an Electromechanical Instability. Biophys. J. 1973, 13, 711–724. [Google Scholar] [CrossRef]
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields. EMBO J. 1982, 1, 841–845. [Google Scholar]
- Okino, M.; Tomie, H.; Kanesada, H.; Marumoto, M.; Esato, K.; Suzuki, H. Optimal Electric Conditions in Electrical Impulse Chemotherapy. Jpn. J. Cancer Res. 1992, 83, 1095–1101. [Google Scholar] [CrossRef]
- Miklavcic, D.; Towhidi, L. Numerical Study of the Electroporation Pulse Shape Effect on Molecular Uptake of Biological Cells. Radiol. Oncol. 2010, 44, 34–41. [Google Scholar] [CrossRef]
- Belehradek, M.; Domenge, C.; Luboinski, B.; Orlowski, S.; Belehradek, J.; Mir, L.M. Electrochemotherapy, a New Antitumor Treatment. First Clinical Phase I–II Trial. Cancer 1993, 72, 3694–3700. [Google Scholar] [CrossRef]
- Daskalov, I.; Mudrov, N.; Peycheva, E. Exploring New Instrumentation Parameters for Electrochemotherapy. Attacking Tumors with Bursts of Biphasic Pulses Instead of Single Pulses. IEEE Eng. Med. Biol. Mag. 1999, 18, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Melillo, A.; Quagliuolo, L.; Boccellino, M.; Vincenzi, B.; Pasquali, P.; Baldi, A. Definition of Novel Electrochemotherapy Parameters and Validation of Their In Vitro and In Vivo Effectiveness: New Electrochemotherapy Parameters. J. Cell. Physiol. 2014, 229, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Polajžer, T.; Dermol–Černe, J.; Reberšek, M.; O’Connor, R.; Miklavčič, D. Cancellation Effect Is Present in High-Frequency Reversible and Irreversible Electroporation. Bioelectrochemistry 2020, 132, 107442. [Google Scholar] [CrossRef]
- Pichi, B.; Pellini, R.; De Virgilio, A.; Spriano, G. Electrochemotherapy: A Well-Accepted Palliative Treatment by Patients with Head and Neck Tumours. Acta Otorhinolaryngol. Ital. 2018, 38, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Biroccio, A.; De Mori, R.; Scarsella, M.; D’Angelo, C.; Baldi, A.; Leonetti, C. Electroporation Increases Antitumoral Efficacy of the Bcl-2 Antisense G3139 and Chemotherapy in a Human Melanoma Xenograft. J. Transl. Med. 2011, 9, 125. [Google Scholar] [CrossRef]
- Hibino, M.; Shigemori, M.; Itoh, H.; Nagayama, K.; Kinosita, K. Membrane Conductance of an Electroporated Cell Analyzed by Submicrosecond Imaging of Transmembrane Potential. Biophys. J. 1991, 59, 209–220. [Google Scholar] [CrossRef]
- Salford, L.G.; Persson, B.R.R.; Brun, A.; Ceberg, C.P.; Kongstad, P.C.; Mir, L.M. A New Brain Tumor Therapy Combining Bleomycin with in Vivo Electropermeabilization. Biochem. Biophys. Res. Commun. 1993, 194, 938–943. [Google Scholar]
- Glogauer, M.; McCulloch, C.A.G. Introduction of Large Molecules into Viable Fibroblasts by Electroporation: Optimization of Loading and Identification of Labeled Cellular Compartments. Exp. Cell Res. 1992, 200, 227–234. [Google Scholar] [CrossRef]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. In Site-Specific Protein Labeling; Gautier, A., Hinner, M.J., Eds.; Springer: New York, NY, USA, 2015; Volume 1266, pp. 29–53. [Google Scholar] [CrossRef]
- Michel, O.; Kulbacka, J.; Saczko, J.; Mączyńska, J.; Błasiak, P.; Rossowska, J.; Rzechonek, A. Electroporation with Cisplatin against Metastatic Pancreatic Cancer: In Vitro Study on Human Primary Cell Culture. BioMed Res. Int. 2018, 2018, 7364539. [Google Scholar] [CrossRef]
- Gissel, H.; Lee, R.C.; Gehl, J. Electroporation and Cellular Physiology. In Clinical Aspects of Electroporation; Kee, S.T., Gehl, J., Lee, E.W., Eds.; Springer: New York, NY, USA, 2011; pp. 9–17. [Google Scholar] [CrossRef]
- Klein, N.; Guenther, E.; Mikus, P.; Stehling, M.K.; Rubinsky, B. Single Exponential Decay Waveform; a Synergistic Combination of Electroporation and Electrolysis (E2) for Tissue Ablation. PeerJ 2017, 5, e3190. [Google Scholar] [CrossRef] [Green Version]
- Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and Oxidative Stress in Neurodegenerative Diseases. JAD 2014, 42, S125–S152. [Google Scholar] [CrossRef] [PubMed]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, A.; Gehl, J.; Daczewska, M.; Saczko, J.; Frandsen, S.K.; Kulbacka, J. Calcium Electroporation for Treatment of Sarcoma in Preclinical Studies. Oncotarget 2018, 9, 11604–11618. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Arancia, G.; Porrello, A.; Colone, M.; Formisano, G.; Stringaro, A.; Citro, G.; Molinari, A. Ultrastructural Modifications of Cell Membranes Induced by “Electroporation” on Melanoma Xenografts. Microsc. Res. Tech. 2007, 70, 1041–1050. [Google Scholar] [CrossRef]
- Tait, S.W.G.; Green, D.R. Mitochondria and Cell Death: Outer Membrane Permeabilization and Beyond. Nat. Rev. Mol. Cell Biol. 2010, 11, 621–632. [Google Scholar] [CrossRef]
- Breton, M.; Mir, L.M. Investigation of the Chemical Mechanisms Involved in the Electropulsation of Membranes at the Molecular Level. Bioelectrochemistry 2018, 119, 76–83. [Google Scholar] [CrossRef]
- Batista Napotnik, T.; Miklavčič, D. In Vitro Electroporation Detection Methods—An Overview. Bioelectrochemistry 2018, 120, 166–182. [Google Scholar] [CrossRef]
- Rols, M.-P.; Delteil, C.; Golzio, M.; Teissie, J. Control by ATP and ADP of Voltage-Induced Mammalian-Cell-Membrane Permeabilization, Gene Transfer and Resulting Expression. Eur. J. Biochem. 1998, 254, 382–388. [Google Scholar] [CrossRef]
- Lipskaia, L.; Chemaly, E.R.; Hadri, L.; Lompre, A.-M.; Hajjar, R.J. Sarcoplasmic Reticulum Ca2+ ATPase as a Therapeutic Target for Heart Failure. Expert Opin. Biol. Ther. 2010, 10, 29–41. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Kassis, S.; Ve, H.; Grondin, M.; Averill-Bates, D.A. Inhibition of Autophagy Sensitises Cells to Hydrogen Peroxide-Induced Apoptosis: Protective Effect of Mild Thermotolerance Acquired at 40 °C. Biochim. Biophys. Acta 2016, 1863, 3050–3064. [Google Scholar] [CrossRef] [PubMed]
- Mittal, L.; Aryal, U.K.; Camarillo, I.G.; Ferreira, R.M.; Sundararajan, R. Quantitative Proteomic Analysis of Enhanced Cellular Effects of Electrochemotherapy with Cisplatin in Triple-Negative Breast Cancer Cells. Sci. Rep. 2019, 9, 13916. [Google Scholar] [CrossRef]
- Calvet, C.Y.; Famin, D.; André, F.M.; Mir, L.M. Electrochemotherapy with Bleomycin Induces Hallmarks of Immunogenic Cell Death in Murine Colon Cancer Cells. OncoImmunology 2014, 3, e28131. [Google Scholar] [CrossRef] [PubMed]
- Longo, F.; Perri, F.; Caponigro, F.; Della Vittoria Scarpati, G.; Guida, A.; Pavone, E.; Aversa, C.; Muto, P.; Giuliano, M.; Ionna, F.; et al. Boosting the Immune Response with the Combination of Electrochemotherapy and Immunotherapy: A New Weapon for Squamous Cell Carcinoma of the Head and Neck? Cancers 2020, 12, 2781. [Google Scholar] [CrossRef] [PubMed]
- Analysis of Pathways in Triple-Negative Breast Cancer Cells Treated with the Combination of Electrochemotherapy and Cisplatin. Biointerface Res. Appl. Chem. 2021, 11, 13453–13464. [CrossRef]
- Volberg, C.; Gschnell, M. Narkoseführung bei Elektrochemotherapie. Anästhesiol. Intensivmed. Notf. Schmerzther. 2020, 55, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Edhemovic, I.; Soden, D.; Perrone, A.M.; Scarpa, M.; Campanacci, L.; Cemazar, M.; Valpione, S.; Miklavčič, D.; Mocellin, S.; et al. Electrochemotherapy—Emerging Applications Technical Advances, New Indications, Combined Approaches, and Multi-Institutional Collaboration. Eur. J. Surg. Oncol. 2019, 45, 92–102. [Google Scholar] [CrossRef]
- Falk Hansen, H.; Bourke, M.; Stigaard, T.; Clover, J.; Buckley, M.; O’Riordain, M.; Winter, D.C.; Hjorth Johannesen, H.; Hansen, R.H.; Heebøll, H.; et al. Electrochemotherapy for Colorectal Cancer Using Endoscopic Electroporation: A Phase 1 Clinical Study. Endosc. Int. Open 2020, 8, E124–E132. [Google Scholar] [CrossRef]
- Esmaeili, N.; Friebe, M. Electrochemotherapy: A Review of Current Status, Alternative IGP Approaches, and Future Perspectives. J. Healthc. Eng. 2019, 2019, 2784516. [Google Scholar] [CrossRef]
- Testori, A.; Tosti, G.; Martinoli, C.; Spadola, G.; Cataldo, F.; Verrecchia, F.; Baldini, F.; Mosconi, M.; Soteldo, J.; Tedeschi, I.; et al. Electrochemotherapy for Cutaneous and Subcutaneous Tumor Lesions: A Novel Therapeutic Approach: ECT for Skin Tumors. Dermatol. Ther. 2010, 23, 651–661. [Google Scholar] [CrossRef]
- Maglietti, F.; Tellado, M.; Olaiz, N.; Michinski, S.; Marshall, G. Minimally Invasive Electrochemotherapy Procedure for Treating Nasal Duct Tumors in Dogs Using a Single Needle Electrode. Radiol. Oncol. 2017, 51, 422–430. [Google Scholar] [CrossRef]
- Spugnini, E.P.; Menicagli, F.; Pettorali, M.; Baldi, A. Ultrasound Guided Electrochemotherapy for the Treatment of a Clear Cell Thymoma in a Cat. Open Vet. J. 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Kranjc, M.; Miklavčič, D. Electric Field Distribution and Electroporation Threshold. In Handbook of Electroporation; Miklavčič, D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1043–1058. [Google Scholar] [CrossRef]
- Ongaro, A.; Campana, L.G.; De Mattei, M.; Di Barba, P.; Dughiero, F.; Forzan, M.; Mognaschi, M.E.; Pellati, A.; Rossi, C.R.; Bernardello, C.; et al. Effect of Electrode Distance in Grid Electrode: Numerical Models and In Vitro Tests. Technol. Cancer Res. Treat. 2018, 17, 153303381876449. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Baldi, A. Electrochemotherapy in Veterinary Oncology. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Mir, L.M.; Belehradek, M.; Domenge, C.; Orlowski, S.; Poddevin, B.; Belehradek, J.; Schwaab, G.; Luboinski, B.; Paoletti, C. Electrochemotherapy, a new antitumor treatment: First clinical trial. C. R. Acad. Sci. III 1991, 313, 613–618. [Google Scholar] [PubMed]
- Mir, L.M.; Gehl, J.; Sersa, G.; Collins, C.G.; Garbay, J.-R.; Billard, V.; Geertsen, P.F.; Rudolf, Z.; O’Sullivan, G.C.; Marty, M. Standard Operating Procedures of the Electrochemotherapy: Instructions for the Use of Bleomycin or Cisplatin Administered Either Systemically or Locally and Electric Pulses Delivered by the CliniporatorTM by Means of Invasive or Non-Invasive Electrodes. Eur. J. Cancer Suppl. 2006, 4, 14–25. [Google Scholar] [CrossRef]
- Rodríguez-Cuevas, S.; Barroso-Bravo, S.; Almanza-Estrada, J.; Cristóbal-Martínez, L.; González-Rodríguez, E. Electrochemotherapy in Primary and Metastatic Skin Tumors: Phase II Trial Using Intralesional Bleomycin. Arch. Med. Res. 2001, 32, 273–276. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and Neck Squamous Cell Carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Miranda-Galvis, M.; Loveless, R.; Kowalski, L.P.; Teng, Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021, 10, 389. [Google Scholar] [CrossRef]
- Enokida, T.; Tahara, M. Electrochemotherapy in the Treatment of Head and Neck Cancer: Current Conditions and Future Directions. Cancers 2021, 13, 1418. [Google Scholar] [CrossRef]
- Strojan, P.; Grošelj, A.; Serša, G.; Plaschke, C.C.; Vermorken, J.B.; Nuyts, S.; de Bree, R.; Eisbruch, A.; Mendenhall, W.M.; Smee, R.; et al. Electrochemotherapy in Mucosal Cancer of the Head and Neck: A Systematic Review. Cancers 2021, 13, 1254. [Google Scholar] [CrossRef]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological Characteristics of and Risk Factors for Breast Cancer in the World. Breast Cancer 2019, 11, 151–164. [Google Scholar] [CrossRef]
- Cserni, G. Histological Type and Typing of Breast Carcinomas and the WHO Classification Changes over Time. Pathologica 2020, 112, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Luque-Bolivar, A.; Pérez-Mora, E.; Villegas, V.E.; Rondón-Lagos, M. Resistance and Overcoming Resistance in Breast Cancer. Breast Cancer 2020, 12, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, J.; Weng, Z.; Li, Q.; Zhao, L.; Yu, N.; Deng, L.; Xu, W.; Yang, Y.; Zhu, Z.; et al. A New Anti-HER2 Antibody That Enhances the Anti-Tumor Efficacy of Trastuzumab and Pertuzumab with a Distinct Mechanism of Action. Mol. Immunol. 2020, 119, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Juen, L.; Baltus, C.B.; Gély, C.; Kervarrec, T.; Feuillâtre, O.; Desgranges, A.; Viaud-Massuard, M.-C.; Martin, C. Therapeutic Potential of MF-TTZ-MMAE, a Site-Specifically Conjugated Antibody-Drug Conjugate, for the Treatment of HER2-Overexpressing Breast Cancer. Bioconjug. Chem. 2022, 33, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Bosnjak, M.; Jesenko, T.; Markelc, B.; Janzic, L.; Cemazar, M.; Sersa, G. PARP Inhibitor Olaparib Has a Potential to Increase the Effectiveness of Electrochemotherapy in BRCA1 Mutated Breast Cancer in Mice. Bioelectrochemistry 2021, 140, 107832. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical Cancer: Epidemiology, Risk Factors and Screening. Chin. J. Cancer Res. 2020, 32, 720–728. [Google Scholar] [CrossRef]
- Pietragalla, A.; Arcieri, M.; Marchetti, C.; Scambia, G.; Fagotti, A. Ovarian Cancer Predisposition beyond BRCA1 and BRCA2 Genes. Int. J. Gynecol. Cancer 2020, 30, 1803–1810. [Google Scholar] [CrossRef]
- McMullen, M.; Karakasis, K.; Rottapel, R.; Oza, A.M. Advances in Ovarian Cancer, from Biology to Treatment. Nat. Cancer 2021, 2, 6–8. [Google Scholar] [CrossRef]
- Merlo, S.; Vivod, G.; Bebar, S.; Bošnjak, M.; Čemažar, M.; Serša, G.; Brezar, S.K.; Kovačević, N. Literature Review and Our Experience With Bleomycin-Based Electrochemotherapy for Cutaneous Vulvar Metastases From Endometrial Cancer. Technol. Cancer Res. Treat. 2021, 20. [Google Scholar] [CrossRef]
- Łapińska, Z.; Dębiński, M.; Szewczyk, A.; Choromańska, A.; Kulbacka, J.; Saczko, J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2020, 13, E19. [Google Scholar] [CrossRef]
- Monahan, K.J.; Bradshaw, N.; Dolwani, S.; Desouza, B.; Dunlop, M.G.; East, J.E.; Ilyas, M.; Kaur, A.; Lalloo, F.; Latchford, A.; et al. Guidelines for the Management of Hereditary Colorectal Cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut 2020, 69, 411–444. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-H.; Chen, Y.-X.; Fang, J.-Y. Comprehensive Review of Targeted Therapy for Colorectal Cancer. Signal Transduct. Target 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Golshani, G.; Zhang, Y. Advances in Immunotherapy for Colorectal Cancer: A Review. Ther. Adv. Gastroenterol. 2020, 13, 1756284820917527. [Google Scholar] [CrossRef]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small Molecules in Targeted Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal Transduct. Target 2021, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, B.; Semkova, S.; Tsoneva, I.; Stoyanova, E.; Lefterov, P.; Lazarova, D.; Zhelev, Z.; Aoki, I.; Higashi, T.; Bakalova, R. Redox-Related Molecular Mechanism of Sensitizing Colon Cancer Cells to Camptothecin Analog SN38. Anticancer Res. 2020, 40, 5159–5170. [Google Scholar] [CrossRef]
- Kuriyama, S.; Matsumoto, M.; Mitoro, A.; Tsujinoue, H.; Nakatani, T.; Fukui, H.; Tsujii, T. Electrochemotherapy for Colorectal Cancer with Commonly Used Chemotherapeutic Agents in a Mouse Model. Dig. Dis. Sci. 2000, 45, 1568–1577. [Google Scholar] [CrossRef]
- Miklavčič, D.; Mali, B.; Kos, B.; Heller, R.; Serša, G. Electrochemotherapy: From the Drawing Board into Medical Practice. BioMed. Eng. OnLine 2014, 13, 29. [Google Scholar] [CrossRef] [Green Version]
Study Title | Phase | Interventions | Clinical Trials.gov Identifiers |
---|---|---|---|
Endoscopic-assisted Electrochemotherapy in addition to Neoadijuvant Treatment of Locally Advanced Rectal Cancer | II | Electrochemotherapy with bleomycin Device: EndoVE | NCT03040180 |
Electrochemotherapy for Non-curable Gastric Cancer | I | Electrochemotherapy with bleomycin | NCT0413907 |
Electrochemotherapy on Head and Neck Cancer | II | Electrochemotherapy with bleomycin Device: Cliniporator | NCT02549742 |
Electrochemotherapy of Posterior Resection Surface for Lowering Disease Recurrence Rate in Pancreatic Cancer (PanECT Study) | I/II | Electrochemotherapy with bleomycin Device: Cliniporator Vitae | NCT04281290 |
Electrochemotherapy of Gynecological Cancer (GynECT) | II | Electrochemotherapy with bleomycin or cisplatin | NCT04760327 |
Treatment of Primary Liver Tumors with Electrochemotherapy (ECT-HCC) | I/II | Electrochemotherapy with bleomycin Device: Cliniporator Vitae | NCT02291133 |
TMS Electrochemotherapy Glioblastoma Multiforme | II | Electrochemotherapy with temozolomide Device: TMS (Transcranial Magnetic Stimulation) | NCT02283944 |
Study of Folfirinox Electrochemotherapy in the Treatment of Pancreatic Adenocarcinoma | I | Electrochemotherapy with Folfirinox | NCT02592395 |
Electrochemotherapy for Chest Wall Recurrence of Breast Cancer: Present Challenges and Future Prospects | II | Electrochemotherapy with bleomycin Device: Cliniporator | NCT0744653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condello, M.; D’Avack, G.; Spugnini, E.P.; Meschini, S. Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers 2022, 14, 4341. https://doi.org/10.3390/cancers14174341
Condello M, D’Avack G, Spugnini EP, Meschini S. Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers. 2022; 14(17):4341. https://doi.org/10.3390/cancers14174341
Chicago/Turabian StyleCondello, Maria, Gloria D’Avack, Enrico Pierluigi Spugnini, and Stefania Meschini. 2022. "Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors" Cancers 14, no. 17: 4341. https://doi.org/10.3390/cancers14174341
APA StyleCondello, M., D’Avack, G., Spugnini, E. P., & Meschini, S. (2022). Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers, 14(17), 4341. https://doi.org/10.3390/cancers14174341