Appropriate Lymph Node Dissection Sites for Cancer in the Body and Tail of the Pancreas: A Multicenter Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Selection
2.2. Operation Procedure
2.3. The Definition of Tumor Location
2.4. The Efficacy Index Assessment for Each Nodal Station
2.5. Multidisciplinary Treatment
2.6. Follow-Up and Recurrent Data
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Entire Population
3.2. The Pattern of LN Metastasis According to Tumor Site
3.3. Long-Term Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Uesaka, K.; Boku, N.; Fukutomi, A.; Okamura, Y.; Konishi, M.; Matsumoto, I.; Kaneoka, Y.; Shimizu, Y.; Nakamori, S.; Sakamoto, H.; et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: A phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 2016, 388, 248–257. [Google Scholar] [CrossRef]
- Motoi, F.; Kosuge, T.; Ueno, H.; Yamaue, H.; Satoi, S.; Sho, M.; Honda, G.; Matsumoto, I.; Wada, K.; Furuse, J.; et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Jpn. J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Torrance, H.D.; Pearse, R.M.; O’Dwyer, M.J. Does major surgery induce immune suppression and increase the risk of postoperative infection? Curr. Opin. Anaesthesiol. 2016, 29, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Livingston, E.H.; Myers, B.; Hines, O.J. The Effect of Perioperative Blood Transfusion on Long-Term Survival Outcomes After Surgery for Pancreatic Ductal Adenocarcinoma: A Systematic Review. Pancreas 2021, 50, 648–656. [Google Scholar] [CrossRef]
- Japan Pancreas Society. Classification of Pancreatic Carcinoma, 4th ed.; Kanehara: Tokyo, Japan, 2016. [Google Scholar]
- Tol, J.A.M.G.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andrén-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Büchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef]
- Pedrazzoli, S.; DiCarlo, V.; Dionigi, R.; Mosca, F.; Pederzoli, P.; Pasquali, C.; Klöppel, G.; Dhaene, K.; Michelassi, F. Standard versus extended lymphadenectomy associated with pancreatoduodenectomy in the surgical treatment of adenocarcinoma of the head of the pancreas: A multicenter, prospective, randomized study. Lymphadenectomy Study Group. Ann. Surg. 1998, 228, 508–517. [Google Scholar] [CrossRef]
- Yeo, C.J.; Cameron, J.L.; Lillemoe, K.D.; Sohn, T.A.; Campbell, K.A.; Sauter, P.K.; Coleman, J.; Abrams, R.A.; Hruban, R.H. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: Randomized controlled trial evaluating survival, morbidity, and mortality. Ann. Surg. 2002, 236, 355–368. [Google Scholar] [CrossRef]
- Farnell, M.B.; Pearson, R.K.; Sarr, M.G.; DiMagno, E.P.; Burgart, L.J.; Dahl, T.R.; Foster, N.; Sargent, D.J.; Pancreas Cancer Working Group. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery 2005, 138, 618–628, discussion 628–630. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kang, M.J.; Heo, J.S.; Choi, S.H.; Choi, D.W.; Park, S.J.; Han, S.S.; Yoon, D.S.; Yu, H.C.; Kang, K.J.; et al. A prospective randomized controlled study comparing outcomes of standard resection and extended resection, including dissection of the nerve plexus and various lymph nodes, in patients with pancreatic head cancer. Ann. Surg. 2014, 259, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Nimura, Y.; Nagino, M.; Takao, S.; Takada, T.; Miyazaki, K.; Kawarada, Y.; Miyagawa, S.; Yamaguchi, A.; Ishiyama, S.; Takeda, Y.; et al. Standard versus extended lymphadenectomy in radical pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas: Long-term results of a Japanese multicenter randomized controlled trial. J. Hepato-Biliary-Pancreat. Sci. 2012, 19, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nakamura, T.; Asano, T.; Nakanishi, Y.; Noji, T.; Tsuchikawa, T.; Okamura, K.; Shichinohe, T.; Hirano, S. Pancreatic body and tail cancer and favorable metastatic lymph node behavior on the left edge of the aorta. Pancreatology 2020, 20, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Hirano, S.; Noji, T.; Asano, T.; Okamura, K.; Tsuchikawa, T.; Murakami, S.; Kurashima, Y.; Ebihara, Y.; Nakanishi, Y.; et al. Distal pancreatectomy with en bloc celiac axis resection (modified appleby procedure) for locally advanced pancreatic body cancer: A single-center review of 80 consecutive patients. Ann. Surg. Oncol. 2016, 23 (Suppl. S5), 969–975. [Google Scholar] [CrossRef]
- Hirano, S.; Kondo, S.; Hara, T.; Ambo, Y.; Tanaka, E.; Shichinohe, T.; Suzuki, O.; Hazama, K. Distal pancreatectomy with en bloc celiac axis resection for locally advanced pancreatic body cancer: Long-term results. Ann. Surg. 2007, 246, 46–51. [Google Scholar] [CrossRef]
- Japan Pancreas Society. Classification of Pancreatic Carcinoma, 3rd ed.; Kanehara & Co., Ltd.: Tokyo, Japan, 2011. [Google Scholar]
- Sasako, M.; McCulloch, P.; Kinoshita, T.; Maruyama, K. New method to evaluate the therapeutic value of lymph node dissection for gastric cancer. Br. J. Surg. 1995, 82, 346–351. [Google Scholar] [CrossRef]
- Schwarz, R.E.; Smith, D.D. Extent of lymph node retrieval and pancreatic cancer survival: Information from a large US population database. Ann. Surg. Oncol. 2006, 13, 1189–1200. [Google Scholar] [CrossRef]
- Riediger, H.; Keck, T.; Wellner, U.; Hausen, A.Z.; Adam, U.; Hopt, U.T.; Makowiec, F. The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer. J. Gastrointest. Surg. 2009, 13, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Hirano, S.; Nakamura, T.; Tanaka, E.; Shichinohe, T.; Tsuchikawa, T.; Kato, K.; Matsumoto, J.; Kondo, S. A new preoperative prognostic scoring system to predict prognosis in patients with locally advanced pancreatic body cancer who undergo distal pancreatectomy with en bloc celiac axis resection: A retrospective cohort study. Surgery 2014, 155, 457–467. [Google Scholar] [CrossRef]
- Imamura, T.; Yamamoto, Y.; Sugiura, T.; Okamura, Y.; Ito, T.; Ashida, R.; Ohgi, K.; Uesaka, K. Reconsidering the optimal regional lymph node station according to tumor location for pancreatic cancer. Ann. Surg. Oncol. 2021, 28, 1602–1611. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, C.M.; Satoi, S.; Sho, M.; Nakamura, Y.; Lee, W.J. Proposal for splenectomy-omitting radical distal pancreatectomy in well-selected left-sided pancreatic cancer: Multicenter survey study. J. Hepato-Biliary-Pancreat. Sci. 2013, 20, 375–381. [Google Scholar] [CrossRef]
- Collard, M.; Marchese, T.; Guedj, N.; Cauchy, F.; Chassaing, C.; Ronot, M.; Dokmak, S.; Soubrane, O.; Sauvanet, A. Is routine splenectomy justified for all left-sided pancreatic cancers? Histological reappraisal of splenic hilar lymphadenectomy. Ann. Surg. Oncol. 2019, 26, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, R.J.; Irving, A.D.; Cuschieri, A. Postsplenectomy sepsis and its mortality rate: Actual versus perceived risks. Br. J. Surg. 1991, 78, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Lutwick, L.I. Life threatening infections in the asplenic or hyposplenic individual. Curr. Clin. Top. Infect. Dis. 2002, 22, 78–96. [Google Scholar] [PubMed]
- Aiolfi, A.; Asti, E.; Siboni, S.; Bernardi, D.; Rausa, E.; Bonitta, G.; Bonavina, L. Impact of spleen-preserving total gastrectomy on postoperative infectious complications and 5-year overall survival: Systematic review and meta-analysis of contemporary randomized clinical trials. Curr. Oncol. 2019, 26, e202–e209. [Google Scholar] [CrossRef]
- Hirano, S.; Kondo, S.; Tanaka, E.; Shichinohe, T.; Tsuchikawa, T.; Kato, K.; Matsumoto, J. Postoperative bowel function and nutritional status following distal pancreatectomy with en-bloc celiac axis resection. Dig. Surg. 2010, 27, 212–216. [Google Scholar] [CrossRef]
- Okada, K.I.; Kawai, M.; Hirono, S.; Miyazawa, M.; Kitahata, Y.; Ueno, M.; Hayami, S.; Shimokawa, T.; Yamaue, H. Ischemic gastropathy after distal pancreatectomy with en bloc celiac axis resection for pancreatic body cancer. Langenbeck’s Arch. Surg. 2018, 403, 561–571. [Google Scholar] [CrossRef]
- Oba, A.; Inoue, Y.; Sato, T.; Ono, Y.; Mise, Y.; Ito, H.; Ishizawa, T.; Takahashi, Y.; Saiura, A. Impact of indocyanine green-fluorescence imaging on distal pancreatectomy with celiac axis resection combined with reconstruction of the left gastric artery. HPB 2019, 21, 619–625. [Google Scholar] [CrossRef]
Total Patients n = 235 | Pb n = 109 | Pt n = 75 | p Value (Pb vs. Pt) | Pbt n = 51 | p Value (Pbt vs. Pb + Pt) | |
---|---|---|---|---|---|---|
Gender (Male/Female) | 138/97 | 61/48 | 40/35 | 0.725 | 37/14 | 0.023 |
Age | 70 [63–75] * | 72 [63.5–77] * | 69 [62–75] * | 0.467 | 69 [63–73] * | 0.214 |
BMI | 22.9 [20.6–25.1] * | 22.5 [19.7–24.3] * | 22.7 [21.0–25.0] * | 0.317 | 23.5 [21.2–25.9] * | 0.063 |
ASA (1/2/3) | 39/187/8 | 23/84/2 | 9/63/2 | 0.283 | 7/40/4 | 0.129 |
CA19-9 | 49.6 [14.3–184.5] * | 48.3 [14.3–143.6] * | 55 [14.2–160.4] * | 0.790 | 57.2 [13.2–356] * | 0.378 |
Neoadjuvant therapy | 43 (18.3%) | 26 (23.9%) | 11 (14.7%) | 0.127 | 6 (11.8%) | 0.173 |
Hospital | 0.770 | <0.001 | ||||
HU | 56 | 17 | 14 | 25 | ||
SMU | 59 | 31 | 17 | 11 | ||
KJ | 101 | 52 | 39 | 10 | ||
Kin | 19 | 9 | 5 | 5 | ||
Operation procedure | 0.124 | <0.001 | ||||
DP-CAR | 19 | 8 | 0 | 11 | ||
DP (SPDP) | 216 (1) | 101 (1) | 75 | 40 | ||
Operation time (min) | 292 [223.5–377.5] * | 290 [233–364] * | 268 [204–330] * | 0.042 | 367 [276–431] * | <0.001 |
Blood loss (mL) | 378 [162–701.5] * | 272 [126–550] * | 365.5 [158.5–658] * | 0.444 | 625 [281–1150] * | <0.001 |
Transfusion | 27 (11.5%) | 15 (13.8%) | 6 (8.0%) | 0.227 | 6 (12.0%) | 0.944 |
CD classification ≥ 3a | 50 (21.3%) | 24 (22.0%) | 9 (12.0%) | 0.082 | 17 (37.0%) | 0.021 |
Mortality | 2 (0.9%) | 2 (1.8%) | 0 | 0.514 | 0 | 0.999 |
Postoperative hospital stays | 21 [13–35] * | 21 [13–34.5]* | 18 [13–27] * | 0.307 | 28 [18–53] * | 0.003 |
Adjuvant treatment | 177 (75.3%) | 86 (78.9%) | 57 (76.0%) | 0.642 | 34 (66.7%) | 0.105 |
pT1/pT2/pT3/pT4 | 24/7/202/2 | 16/4/88/1 | 8/1/66/0 | 0.492 | 0/2/48/1 | 0.040 |
pN0/pN1 | 103/132 | 53/56 | 28/47 | 0.130 | 22/29 | 0.910 |
pM0/pM1 | 228/7 | 106/3 | 71/4 | 0.446 | 51/0 | 0.352 |
R0/R1/R2 | 197/34/4 | 87/21/1 | 66/6/3 | 0.145 † | 44/7/0 | 0.554 † |
pStage I/II/III/IV | 26/198/3/8 | 17/88/1/3 | 5/64/1/5 | 0.194 | 4/46/1/0 | 0.342 |
Tumor size (mm) | 27 [19–40] * | 25 [17–33.5] * | 29.5 [20–40] * | 0.040 | 32 [25–55] * | <0.001 |
No. of harvested LNs (n = 163) | 25 [14–37] * | 27 [14.5–43.5] * | 20.5 [12.25–32.5] * | 0.022 | 33 [18.5–41] * | 0.074 |
pA positive | 33 (13.9%) | 13 (11.9%) | 13 (17.3%) | 0.301 | 7 (13.7%) | 0.941 |
pPV positive | 99 (41.9%) | 34 (31.2%) | 37 (49.3%) | 0.015 | 28 (54.9%) | 0.040 |
pOO positive | 35 (14.8%) | 5 (4.6%) | 20 (26.7%) | <0.001 | 10 (19.6%) | 0.285 |
Total Patients n = 235 | Pb n = 109 | Pbt n = 51 | Pt n = 75 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Frequency of Metastasis | Frequency of Metastasis | 5-Year OS Rate (%) | 5-Year OS Index | Frequency of Metastasis | 5-Year OS Rate (%) | 5-Year OS Index | Frequency of Metastasis | 5-Year OS Rate (%) | 5-Year OS Index | |
#8a/p | 18 (7.7%) | 12 (11.0%) | 21.09 | 2.32 | 4 (7.8%) | 37.50 | 2.93 | 2 (2.7%) | 0.00 | 0.0 |
#10 | 16 (6.8%) | 0 | N.A. | N.A. | 4 (7.8%) | 0.00 | 0.0 | 12 (16.0%) | 38.89 | 6.22 |
#11d | 47 (20.0%) | 5 (4.6%) | 0.00 | 0.0 | 14 (27.5%) | 0.00 | 0.0 | 28 (37.3%) | 4.76 | 1.77 |
#11p | 62 (26.4%) | 39 (35.8%) | 28.37 | 10.16 | 13 (25.5%) | 19.44 | 4.96 | 10 (13.3%) | 14.81 | 1.97 |
#14p | 3 (1.3%) | 1 (0.9%) | 100.00 | 0.9 | 1 (2.0%) | 0.00 | 0.0 | 1 (1.3%) | 0.00 | 0.0 |
#16b1 | 5 (2.1%) | 2 (1.8%) | 0.00 | 0.0 | 1 (2.0%) | 0.00 | 0.0 | 2 (2.7%) | 0.00 | 0.0 |
#18 | 37 (15.7%) | 17 (15.6%) | 10.98 | 1.71 | 8 (15.7%) | 12.50 | 1.96 | 12 (16.0%) | 11.54 | 1.85 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
HR (95%CI) | p Value | HR (95%CI) | p Value | |
Age > 70/ ≤ 70 | 1.521 (1.090–2.122) | 0.014 | 1.365 (0.962–1.938) | 0.082 |
CA19−9 > 100/ ≤ 100 | 2.155 (1.539–3.017) | 0.001 | 1.451 (1.009–2.086) | 0.045 |
pN 1/0 | 2.253 (1.581–3.211) | 0.001 | 1.485 (0.965–2.284) | 0.072 |
pPV 1/0 | 1.908 (1.364–2.669) | 0.001 | ||
pA 1/0 | 2.504 (1.625–3.857) | 0.001 | 1.453 (0.911–2.086) | 0.117 |
pOO 1/0 | 1.674 (1.092–2.568) | 0.018 | ||
Tumor location Pbt/Pb or Pt | 0.895 (0.609–1.314) | 0.571 | ||
R1 + 2/0 | 1.473 (0.962–2.256) | 0.075 | 1.578 (0.998–2.496) | 0.051 |
Tumor size >20 mm/≤20 mm | 2.381 (1.588–3.569) | 0.001 | 1.648 (1.053–2.579) | 0.029 |
NAT +/− | 1.190 (0.745–1.902) | 0.466 | ||
AT −/+ | 1.979 (1.393–2.812) | 0.001 | 2.191 (1.513–3.172) | 0.001 |
#8a/p LNs +/− | 1.254 (0.658–2.391) | 0.491 | ||
#10 LNs +/− | 1.229 (0.664–2.277) | 0.512 | ||
#11d LNs +/− | 2.722 (1.874–3.955) | 0.001 | 1.914 (1.219–3.005) | 0.005 |
#11p LNs +/− | 1.415 (0.978–2.048) | 0.065 | ||
#14p LNs +/− | 2.660 (0.652–10.850) | 0.173 | ||
#16b1 LNs +/− | 2.027 (0.748–5.492) | 0.165 | ||
#18 LNs +/− | 1.740 (1.143–2.650) | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, K.; Kimura, Y.; Hayashi, T.; Ambo, Y.; Yoshida, M.; Umemoto, K.; Murakami, T.; Asano, T.; Nakamura, T.; Hirano, S. Appropriate Lymph Node Dissection Sites for Cancer in the Body and Tail of the Pancreas: A Multicenter Retrospective Study. Cancers 2022, 14, 4409. https://doi.org/10.3390/cancers14184409
Tanaka K, Kimura Y, Hayashi T, Ambo Y, Yoshida M, Umemoto K, Murakami T, Asano T, Nakamura T, Hirano S. Appropriate Lymph Node Dissection Sites for Cancer in the Body and Tail of the Pancreas: A Multicenter Retrospective Study. Cancers. 2022; 14(18):4409. https://doi.org/10.3390/cancers14184409
Chicago/Turabian StyleTanaka, Kimitaka, Yasutoshi Kimura, Tsuyoshi Hayashi, Yoshiyasu Ambo, Makoto Yoshida, Kazufumi Umemoto, Takeshi Murakami, Toshimichi Asano, Toru Nakamura, and Satoshi Hirano. 2022. "Appropriate Lymph Node Dissection Sites for Cancer in the Body and Tail of the Pancreas: A Multicenter Retrospective Study" Cancers 14, no. 18: 4409. https://doi.org/10.3390/cancers14184409
APA StyleTanaka, K., Kimura, Y., Hayashi, T., Ambo, Y., Yoshida, M., Umemoto, K., Murakami, T., Asano, T., Nakamura, T., & Hirano, S. (2022). Appropriate Lymph Node Dissection Sites for Cancer in the Body and Tail of the Pancreas: A Multicenter Retrospective Study. Cancers, 14(18), 4409. https://doi.org/10.3390/cancers14184409