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Simple Summary: Deep learning-based computer-aided diagnosis has gained momentum in the
radiology field thanks to the technological advances of convolutional neural networks (CNN). How-
ever, how to utilize the black-box predictions of these CNN models to the clinical routine still relies
on radiologists’ personal judgements. In addition, existing CNN models only improve radiologists’
diagnosis when they outperform the radiologists, thereby limiting their added values for possible
efficiency enhancement and improving mostly the diagnostic performances of junior radiologists.

Abstract: We present a Human Artificial Intelligence Hybrid (HAIbrid) integrating framework
that reweights Thyroid Imaging Reporting and Data System (TIRADS) features and the malig-
nancy score predicted by a convolutional neural network (CNN) for nodule malignancy stratifi-
cation and diagnosis. We defined extra ultrasonographical features from color Doppler images
to explore malignancy-relevant features. We proposed Gated Attentional Factorization Machine
(GAFM) to identify second-order interacting features trained via a 10 fold distribution-balanced
stratified cross-validation scheme on ultrasound images of 3002 nodules all finally characterized by
postoperative pathology (1270 malignant ones), retrospectively collected from 131 hospitals. Our
GAFM-HAIbrid model demonstrated significant improvements in Area Under the Curve (AUC)
value (p-value < 10−5), reaching about 0.92 over the standalone CNN (~0.87) and senior radiologists
(~0.86), and identified a second-order vascularity localization and morphological pattern which
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was overlooked if only first-order features were considered. We validated the advantages of the
integration framework on an already-trained commercial CNN system and our findings using an
extra set of ultrasound images of 500 nodules. Our HAIbrid framework allows natural integra-
tion to clinical workflow for thyroid nodule malignancy risk stratification and diagnosis, and the
proposed GAFM-HAIbrid model may help identify novel diagnosis-relevant second-order features
beyond ultrasonography.

Keywords: thyroid nodule; malignancy risk stratification; feature selection; second-order feature
interaction; interpretable deep learning; radiology

1. Introduction

Ultrasound is the most widely used medical imaging tool to evaluate thyroid nodules,
whose prevalence is found to be 30% to 68% [1,2], and the malignancy risks are evaluated
based on the ultrasound nodular features according to Thyroid Imaging Reporting and Data
System (TIRADS). While having many shared risk attributes, there exist TIRADS standards
like ACR-TIRADS [3] proposed by American College of Radiology, Kwak-TIRADS [4] by
Korean researchers, Eu-TIARDS [5] from the European Thyroid Association, K-TIRADS [6]
from the Korean Society of Thyroid Radiology and the Korean Society of Radiology, as
well as most recent C-TIRADS [7] proposed by the Chinese Medical Association and the
Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound (CAAU). Despite
being more standardized, no matter what TIRADS is taken for thyroid nodule screening,
the lesion interpretations by radiologists are still subjective.

With the development of deep learning Convolutional Neural Networks (CNNs),
radiologists start to use computer aided diagnosis (CADx) systems as a second opinion for
thyroid nodule evaluation [8–10]. It consists of many layers of computations, taking the
advantage of convolution computations over the images using kernels or filters of different
sizes to extract features relevant to a classification task [11]. The outputs of each layer serves
as the inputs for the next. The introduction of nonlinear activation functions in CNN models
enables complex nonlinear mapping between their inputs and outputs. After many layers
of computations, the activated spatial patterns of the perceptive field or the feature maps
become incomprehensible to humans. Consequently, it is up to individual radiologists
to make their final decisions. An immediate challenge facing the radiologists is how to
objectively integrate such CADx systems into their clinical workflow such that the usage of
these tools also becomes standardized. No less important is whether this integration can be
made understandable or at least interpretable to humans. Otherwise, creating yet another
black box on top of one does not address the concerns of radiologists as we would always
prefer a conceptually meaningful explanation to an important decision. It is desirable to
standardize the adoption of CADx systems in clinical practices by constructing a set of
meaningful rules of criteria about how to use them in an objective way.

For medical image diagnosis, generating class activation heatmaps [12–15] localizes
the deep representation of class-discriminating image regions of diseased tissues [9,16,17].
However, these techniques merely highlight the regions of importance for the class predic-
tion with false color visualization (for instance, using typically red and blue respectively
for positive and negative contribution), offering no further insight into what exact features
from those outlined regions contribute to the model’s predictions. An overlooked possi-
bility is to take the diagnosis results of a trained CNN as an input feature, aggregate it to
human-extracted ones for subsequent feature selection and weight optimization to refine
the final prediction. In essence, the malignancy score outputted by a CNN is assigned with
a weight representing its contribution to the final decision. Though how the CNN as a
modular building block of the complete decision-making system, which we refer as Human
Artificial Intelligence hybrid (HAIbrid) framework, comes about its decision is still opaque,
that is no longer the case with regards to its contribution. Consequently, it enables us to
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generate a new set of TIRADS criteria that sum up contributions of both features noted by
radiologists and a CNN model for malignancy risk stratification and diagnosis.

In this work, we chose Kwak-TIRADS as the basis for thyroid nodule evaluation
as it has been widely adopted in China. In addition, we included extra vasculature-
related ultrasound features [18] that describe both the localizations in relation to a nodule
(i.e., being perinodular, close to the center, etc.) and their morphologies (being twisted
or not twisted) to explore possibilities for establishing novel clinically-relevant TIRADS
criteria. The complete set of candidate features is referred as TIRADS+ and listed in
Appendix A Table A1. The interplay between cancerous tumors and vascularization is
generally acknowledged in cancer research [19,20], and vascularity features observed in
color Doppler images are an indispensable component in the T [21]. Some other malignancy-
relevant features in ACR BIRADS, for instance posterior echoic features, heterogeneity
of echo patterns, etc., are also included in the candidate feature set. In addition, the
presence of hypoechoic or anechoic rim referred to as halo surrounding nodule introduced
in C-TIRADS [7] and its thickness were also considered.

Hypothetically, co-occurrence of features or second-order feature interactions can
constituent a unique malignancy-relevant feature. Just as an individual’s inherent inter-
dependent preferences over items of certain categories can be modeled by second or
higher-order feature interactions using Factorization Machine (FM) [22] for improving
the prediction of online users’ click-through rate for advertising [23], there presumably
can also exist interdependence between certain ultrasound features of malignant thyroid
nodules. However, to our humble knowledge, this has never been explored in the context
of the CADx field. Additionally, as different feature interactions may have unequal impacts
on predictions, on top of an existing attention-FM variant (AFM) [24] that weighs the
importance of each feature interaction, we introduce an additional gate mechanism that
removes the interference of minimally relevant feature interactions, termed GAFM, to
explore the usefulness of second-order interacting features in ultrasound-based thyroid
nodule diagnosis.

As a proof of concept, we took a ResNet101 model [25] pretrained on ImageNet as a
basis CNN and used the Area Under the Curve (AUC) of receiver operating characteristics
as the main evaluation metric to compare the diagnosis results by standalone radiologists,
CNN-based CADx, and by HAIbrid methods using feature selection modules of logistic
regression (LR), conventional AFM model and our modified GAFM model. We compared
two CNN systems integrated through our proposed GAFM-HAIbrid model, including an
already-trained commercial system, to validate the usefulness of the model on an extra
ultrasound image dataset of 500 nodules.

2. Materials and Methods
2.1. Clinical Samples

This study was based on the authorized clinical dataset with continuous data con-
tribution from the consortium of CAAU [7] with 131 alliance hospitals led by Ruijin
Hospital Affiliated to School of Medicine, Shanghai JiaoTong University. All registered
data were from patients who had taken preoperative ultrasound examinations and had
definitive postoperative pathological examination outcomes. The pathological results
were taken as the gold standard for diagnosis evaluation by radiologists, CNN and the
integrated approaches.

For each nodule, ultrasound scans of standard longitudinal and transverse planes were
saved, including B-mode and color Doppler images. A retrospective cohort of 3002 thyroid
nodules from 3002 patients continuously registered at CAAU alliance hospitals collected
between January 2017 and August 2019 following the same protocol as in the previous
publication was used for training and cross-validating our proposed model. Of these,
1732 nodules were determined to be benign, and 1270 nodules were malignant according
to histopathological diagnosis. These samples were randomly partitioned into 10 folds for
cross-validation experiments for which each fold was alternatingly taken as the validation
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set while the rest were taken as the training set. It is also important to note that dataset
shift, which introduces substantial set to set variations, is a known deteriorating factor for
accurate performance estimation [26]. To eliminate this effect, we adopted the distribution-
balanced stratified cross-validation [27] algorithm to balance sample distributions in the
feature space when partitioning a dataset according to radiologists’ assigned features.

Data for an additional 500 nodules collected between February and April of 2021 were
used to verify results obtained on the former cohort. Half of these nodules were benign
and the other half were malignant, confirmed by pathological examinations.

2.2. Candidate Feature Set Construction

This part mainly describes the construction of candidate feature set from features
extracted by radiologists and diagnosis results of a convolutional neural network for
establishment of interpretable thyroid diagnosis criteria and malignancy risk stratification,
as illustrated in Figure 1a.

The features extracted by radiologists are descriptions of ultrasound images as text
data using feature dictionary defined in TIRADS. Each sample is represented by structured
data in consistent order. One-Hot Encoding is used to convert text data to feature vectors,
using N-bit status registers to encode N states, with each state having an independent
register bit, and only one bit being valid at any time. For absent feature description, 0 was
used to encode the feature to ensure consistent vector dimension.

In our study, the collected samples were labeled on the basis of Kwak-TIRADS and our
defined extra features, most of which were already described in the published C-TIRADS [7]
except features defined in color Doppler images, to explore possibilities to further improve
the diagnosis. The complete candidate features are listed in Appendix A Table A1.

The diagnosis results from CNN-based CADx were included as an additional candi-
date feature for constructing candidate feature set together with human-extracted features.
This is different from the conventional procedure where image features are extracted via a
CNN model for later feature fusion and classifications.

2.3. Feature Selection Based on AFM and GAFM Model

The candidate features were thereafter used to construct weighted second-order fea-
ture interactions using either AFM or our proposed variant GAFM module according to
the individual contribution of each feature to the diagnosis. The difference between AFM
and GAFM is that an additional gate mechanism is introduced to only keep the top-ranked
features according to their weights. The inclusion of the gate mechanism is because some
insignificant second-order features, if not removed, can interfere the learned weights of
other features and return sub-optimal combinations of features for the ultimate thyroid
malignancy classifications. The architecture of our proposed GAFM model is illustrated in
Figure 1b. The input of the model is the feature vector from the candidate feature set and
we denote the feature vector as X.

2.3.1. Embedding Layer

This layer adopts a sparse representation for input features and embeds each non-zero
feature into a dense vector, which can be represented as

ei = Vixi, i = 1, 2, ..., n, (1)

where xi is a non-zero feature in the feature vector X and n is the number of the non-
zero features. The output of the embedding layer is then the concatenation of multiple
embedding vectors as:

E = [e1, e2, ..., en], i = 1, 2, ..., n (2)



Cancers 2022, 14, 4440 5 of 14Cancers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. Our proposed HAIbrid method to establish CNN-boosted human-understandable thyroid 
diagnostic criteria and the corresponding results. (a) Scheme depicting the workflow: first, radiolo-
gists extract features from the ultrasound images and a convolutional neural network of arbitrary 
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(b) The neural network architecture of our proposed GAFM model consists of an input layer, em-
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out minimally relevant second-order interacting features. (c) Bar plot of the mean AUC values to-
gether with the corresponding standard deviations from 10-fold feature-stratified cross-validation 
experiments for diagnosing thyroid nodules using different methods. (d) The correlation between 
the assigned score of each selected feature by the GAFM model and the corresponding odds ratio. 
(e) The probability density functions of HAIbrid-TIRADS scores computed based on GAFM model 
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Figure 1. Our proposed HAIbrid method to establish CNN-boosted human-understandable thyroid
diagnostic criteria and the corresponding results. (a) Scheme depicting the workflow: first, radiolo-
gists extract features from the ultrasound images and a convolutional neural network of arbitrary
architectural design produces primary diagnosis results as a separate feature to construct a candidate
feature set and then use a feature selection module that optimizes feature weights to generate the
thyroid diagnostic criteria and finally return the diagnosis. The risk stratification module ensures that
the malignancy rate for each risk category is within the corresponding specified range. (b) The neural
network architecture of our proposed GAFM model consists of an input layer, embedding layer and
interaction layer identical to an AFM, with an additional gate mechanism to filter out minimally
relevant second-order interacting features. (c) Bar plot of the mean AUC values together with the
corresponding standard deviations from 10-fold feature-stratified cross-validation experiments for
diagnosing thyroid nodules using different methods. (d) The correlation between the assigned score
of each selected feature by the GAFM model and the corresponding odds ratio. (e) The probability
density functions of HAIbrid-TIRADS scores computed based on GAFM model for benign and
malignant samples. (f) The distributions of samples according to our risk classifications. (g) Table of
score ranges for risk classifications.
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2.3.2. Interaction Layer

For pairwise interactions of n vectors, there are n(n−1)/2 interacting vectors, each of
which is the element-wise product of two distinct vectors representing their interaction.
This can be expressed as:

[〈e1, e2〉, 〈e1, e3〉, . . . , 〈en−1, en〉] (3)

where ei is the feature embedding and <�,�> represents the inner product of two vectors.

2.3.3. Attention Layer

The attention mechanism of the GAFM model is the same as AFM, which parameter-
izes the attention score with a multi-layer perceptron (MLP). The input of the gate-attention
network is the pairwise interacting vectors, while the output is the attention scores, a vector
whose dimension is consistent with the number of interacting vectors. The attention score
of each feature interaction in the embedding space a(i,j) for the entire sample on average
a(i,j) representing the feature importance is given by:

α(i,j) =
1
N ∑

N
a(i,j) (4)

The gate mechanism introduced in GAFM model sets a gate operation for each second-
order interacting feature, and the number of gate operations are consistent with that of the
interacting features. When the weight of the interacting feature is greater than the preset
threshold, the gate state is open, and second-order interacting feature is retained, otherwise
the opposite.

2.4. Model Training

We propose a two-step training procedure for our GAFM model. The first step is
similar to the training process of an AFM model and there is no gate mechanism involved.
After the model converges, we use the gate mechanism to remove minimally relevant
second-order interacting features. The second step is to re-train the model after the gate
operation with the remaining second-order interacting features and all first-order ones. The
output of gate-attention layer can be expressed as:

LGAFM =< W, X > + ∑
(i,j)∈Γ

a(i,j) < ei, ej > (5)

where Γ =
{
(i, j)

∣∣∣α(i,j) > ε, i, j = 1, 2, ..., n
}

is the subscript set of the remaining second-
order interacting features after gate operation with a threshold of ε. For conventional AFM,
no gate operation is applied, therefore all second-order interacting features are kept. The
output of the GAFM model can be expressed as:

yGAFM = sigmoid(LGAFM) (6)

The objective function is the cross-entropy loss function expressed as:

L(y, yGAFM) = −y log(yGAFM)− (1− y) log(1− yGAFM) (7)

After the model converges, we normalize the weights of all remaining features through
the softmax function, then rank the coefficient of each feature in the model and select the
top-ranked features. Following the design principle of Kwak-TIRADS, 15 top-ranked
features were selected. The expression of the softmax function is as follows:

f (X)j =
exj

∑K
k=1 exk

(8)



Cancers 2022, 14, 4440 7 of 14

where X is a K-dimensional vector, xj is the j-th element and f (X)j is the softmax function
value of feature xj.

2.5. Risk Stratification

Once the feature selection and corresponding weight for each selected feature is
determined after the model training, a 1–5 risk stratification system (including 4A, 4B and
4C) is constructed. This is performed by summing the weights for each sample j:

Scorej = ∑
i∈O

Wi, (9)

in which O represents the feature set for sample j that includes all assigned features by
radiologists and the diagnosis by the CNN-based CADx system, while wi represents the
score for each feature i of sample j.

The malignancy rate for each summed score S (MRScore) is computed as follows:

MRScore =
MScore

MScore + BScore
, (10)

where MScore represents the number of malignant samples with a summed score S while
BScore represents the number of benign samples with a summed score S. Thereafter, the
score range [ai, ai+1) for each assigned risk category i according to the malignancy rate
illustrated in the risk stratification module in Figure 1 is determined. Remember that
during model training, all weights are normalized with their sum equals to 1. However,
this is not user-friendly to radiologists. To mimic a conventional TIRADS score system, a
multiplication factor to weight is manually optimized and each obtained weight is then
rounded to an integer.

2.6. Control Experiments

To evaluate the effectiveness of our proposed diagnostic framework that takes advan-
tages of both CNN-based CADx and radiologist-extracted features for thyroid nodules, we
designed a series of control experiments as summarized in Table 1.

Table 1. Experiment ID, the corresponding method and short descriptions.

Exp. # Method Description

1 Kwak-TIRADS Kwak-TIRADS criteria were followed by radiologists to extract features and to
evaluate thyroid nodules.

2 Kwak-TIRADS + LR0 Radiologists followed Kwak or candidate TIRADS+ to extract features; LR worked as
a classifier, denoted as LR0.3 TIRADS+-LR0

4 CADx (ResNet101) ResNet101 was used as an exemplar model for CADx.
5 Kwak-TIRADS/CADx Return diagnosis of higher malignancy from either method.

6 HAIbrid-LR0
Hybrid denotes combining features from TIRADS and diagnosis results from

CNN-based CADx for classifications using LR merely as a classifier, denoted as LR0.
7 HAIbrid+-LR1 Hybrid+ denotes the combination of features defined in TIRADS+ with diagnosis

results from CADx; LR1 *, AFM or GAFM when each corresponding method was used
as the feature selector and classifier simultaneously.

8 HAIbrid+-AFM
9 HAIbrid+-GAFM

* When using LR1 as both a feature selector and classifier, the cross-entropy loss function is used as the cost
function to learn the weights of each feature vector through stochastic gradient descent. After the model converges,
the weight of each feature is ranked and the top-ranked features selected for later thyroid diagnosis.

Our proposed diagnostic framework to establish new understandable TIRADS criteria
for thyroid nodules relies on using radiologist-extracted features according to TIRADS
criteria and the diagnosis results from CNN-based CADx. As a simple ablation study to
verify the significance of our HAIbrid approach, we included the diagnosis by radiolo-
gists according to Kwak-TIRADS criteria (method 1) or with a subsequent LR classifier
(method 2), or with additionally defined candidate features (method 3), the diagnosis by
conventional CADx (method 4), a simple integral approach that combine the diagnoses by
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radiologists and a CADx system by returning always the higher malignancy (method 5) or
a plain integral approach that combines the features defined in TIRADS and the diagnosis
results from CADx followed by using LR merely for classification (method 6) or as both
a feature selector and classifier (method 7). To elucidate the significance of second-order
feature interactions and the importance of further feature weight optimization, we included
conventional AFM (method 8), our proposed GAFM variant (method 9) and a conventional
method ignoring second-order feature interactions (method 7).

For verifying the results obtained from the cross-validation experiments, a CNN-based
CADx system, AI-SONICTM Thyroid of software version 4.0 (2020) developed by Demet-
ics Medical Technology (Hangzhou, China), was tested to check whether the proposed
integration framework could also bring benefits to an independently trained CNN model.

2.7. Statistical Analysis

For cross-validation experiments, we used pairwise two-tailed t-test to evaluate
whether the differences in mean AUC values between the GAFM model and control
experiments were statistically significant. For comparison of two CNN models integrated
through the GAFM-HAIbrid strategy, we subdivided the ultrasound images of 500 nodules
to two groups, each of which were further partitioned to five subsets for both intra-group
and cross-group statistical comparisons using the feature stratified partition method men-
tioned above. For intra-group comparisons of different diagnostic methods, as the dataset
partitions were kept identical, pairwise two-tail t-tests were used for statistical evaluations.
For cross-group comparisons, standard two-tail t-tests were used instead.

3. Results

We first performed a feature-stratified 10-fold cross-validation experiment on retro-
spectively collected 3002 nodules (1270 malignant ones) from our nationwide database
contributed by 131 member hospitals. From the results, it can be seen that combining the
CADx with TIRADS, denoted as HAIbrid+LR0 (where LR was used merely as a classi-
fier without feature exclusion) outperformed each separate method, i.e., Kwak-TIRADS
and CADx (Supplementary Figure S1). Interestingly, the inclusion of extra primary can-
didate features made no difference when using LR as a classifier. In contrast, enabling
feature selection capability of LR while providing extra candidate features with HAIbrid+-
LR1 improved the diagnosis compared to the case of HAIbrid-LR0 (0.893 ± 0.0017 vs
0.881± 0.0025). Furthermore, AFM-based methods including our proposed variant GAFM
achieved significantly better performances (Figure 1c and Supplementary Figure S1) than
the HAIbrid+-LR1. In addition, incorporating a gate mechanism to AFM by removing mini-
mally relevant second-order features using GAFM significantly improved the diagnosis
(p-value = 1.4 × 10−5 in Supplementary Figure S1).

The resulting TIRADS criteria, referred as HAIbrid-TIRADS which takes diagnosis
from CNN-based CADx as an additional feature reweighted together with ultrasono-
graphical features noted by radiologists, are listed in Supplementary Table S1 with the
corresponding scores returned by the GAFM model for primary features and second-order
feature interactions. The distribution of the summed scores and that of the correspond-
ing risk stratifications for the benign and malignant samples confirmed by pathological
examinations are shown in Figures 1e and 1f, respectively. The optimal threshold chosen by
maximizing F1 score for thyroid nodule diagnosis based on HAIbrid-TIRADS scores was
found to be 9 (for which 10 and above were considered suspicious to be malignant, Supple-
mentary Figure S2); at this threshold, the precision and sensitivity were found to be 0.921
and 0.912 with the false positive and false negative rate being 0.102 and 0.088, respectively.

It is worth-noting that our GAFM model identified the second-order feature inter-
action concerning vasculature localization and morphology (noted by radiologists from
Doppler ultrasound images in Supplementary Figure S3), i.e., being mainly perinodu-
larly distributed and untwisted (OR = 2.349) to be important for thyroid nodule clas-
sifications. However, these vasculature-related features defined by radiologists in this
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study played no significant roles when fed directly to conventional classification meth-
ods such as LR, in which second-order feature interactions were ignored (Figure 1c and
Supplementary Figure S1). On the ultrasound image test set of 500 extra thyroid nodule,
the OR of the vasculature-related second-order feature interaction was 2.41, consistent to
the OR calculated from the retrospectively collected 10-fold cross validation set.

Based on the 10-fold cross-validation experiments, another identified candidate feature
in this study was punctate echogenic foci of undetermined significance, defined according
to C-TIRADS [7], was found to have an OR of 1.891 (Supplementary Table S1). However,
on the test set of 500 extra thyroid nodules, the OR was 1.27 instead.

Furthermore, we applied the GAFM-HAIbrid method on two different CNN models
to assess the effectiveness of this approach on the test cohort by dividing the ultrasound
images of 500 thyroid nodules to two groups of equal sizes in a feature-stratified man-
ner, one for the trained ResNet101 model and the other for a CNN-based CADx system,
AI-SONICTM Thyroid. It is clear that in both groups the HAIbrid results exceeded the
diagnoses by the radiologists alone by large margins (Figure 2a) and were significantly
better than the standalone CADx models (Figure 2a,c,d). The performances of the radiolo-
gists in these two groups were comparable (p-value = 0.065, Figure 2b). Interestingly, by
combining radiologists’ diagnoses through our HAIbrid approach, the performance gap
between the under-performing ResNet and the AI-SONICTM Thyroid system (Figure 2a)
was largely closed-off (from 0.8463 ± 0.0020 versus 0.9023 ± 0.0008 to 0.9167 ± 0.0019
versus 0.9263 ± 0.0027) despite a still measurable statistical difference (p-value ~ 2 × 10−4).
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Figure 2. Comparison of two feature-stratified groups of equal sizes (250 cases each) to evaluate the
importance of applying GAFM-based HAIbrid approach for improving thyroid nodule diagnosis
performances of two CADx systems, the trained ResNet101 and commercial AI-SONICTM Thyroid.
(a) The barplots of the diagnosis AUCs for CADx, radiologists, radiologists consulting the respective
CADx and the HAIbrid approach in each group. (b) p-value heatmap for inter-group comparison.
(c) p-value heatmap for the intra-group comparison for the ResNet group as well as for the AI-
SONICTM Thyroid group (d). (e) The common p-value color-bar in logarithmic scale shared by (b–d).
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4. Discussion

From the 10-fold cross validation experiments on retrospectively collected thyroid
nodule ultrasound images, feature selection and weight reassignment in general can make
an influential impact on the performance of the resulted computer-aided TIRADS criteria.
For instance, enabling feature selection capability of conventional LR while providing extra
candidate features improved the diagnosis compared to the case where LR was only used as
a classifier, suggesting the relevance of feature selections on additional features for improv-
ing thyroid nodule diagnosis. Furthermore, the score of each selected feature correlated
very well with their corresponding odds ratios (ORs), supporting that the learned scores
reflect the relative malignancy risks of each feature. Implementing AFM-based feature se-
lection modules especially our proposed GAFM variant within the HAIbrid framework that
consider second-order interacting features further improved the diagnostic performances.

The GAFM-HAIbrid model identified a second-order vascular-related feature being
mainly perinodularly distributed and untwisted. At first glance, it may appear contra-
dictory to the notion that the thyroid nodule malignancy was more associated with the
intranodular vascularity given by a study of 402 nodules, in which 23 were malignant [8].
However, according to a recent quantitative study of regional vascularity of 111 thyroid
nodules, in which 27 were malignant, the mean vascularity index of peripheral region of the
malignant nodules significantly higher than that of the benign nodules. In addition, the au-
thors that suggested the contrary had only the binary definition of intra- and peri-nodular
vascularity, different from our definition of five cases, and their identified association
between regional vascularity and nodule malignancy may well be sample-dependent. In
our study, 3002 nodules (including 1270 malignant ones) were continuously collected from
131 member hospitals of the CAAU, and should contain less sampling bias. Furthermore,
though there was a claim that markedly chaotic central and peripheral vasculature was
considered more suspicious for malignancy [28], to our humble knowledge, there has not
been a quantitative study about what vasculature localization patterns and morphology
concurrently correlate with thyroid nodule malignancy. Vasculature-related second-order
feature from this test set was found to be 2.41 (not much different from 2.349), confirming
the validity of it as a useful malignancy marker.

Based on the 10-fold cross-validation experiments, a first-order feature “punctate
echogenic foci of undetermined significance” was also identified by the GAFM-HAIbrid
method with an OR of 1.891. Its OR was different from the OR of 0.944 in the original
C-TIRADS paper, where it was considered insignificant [7]. This is most likely due to
differences in samples distribution though substantial overlapping cases could be expected
as the data used in this study came from the same database maintained by CAAU. In the
test cohort of the 500 extra nodules, its OR was 1.27 instead, suggesting the contribution
of this feature for malignancy prediction was unstable. One explanatory factor to the
observed high degree of variability is that all sample data were periodically uploaded to
the CAAU database while different contributing hospitals could have different operational
cycles. Nevertheless, this complicating factor had a negligible effect on our identified
vasculature-related second-order feature.

It is also interesting to note that our test dataset results show that combining radi-
ologists’ diagnoses through our HAIbrid approach had a greater impact on the under-
performing ResNet such that the standalone performance gap compared to AI-SONICTM

Thyroid system was largely closed-off. This suggests that standardizing the incorporation
of radiologists’ expertise to CNN-based CADx systems may outweigh the improvement
of standalone CADx systems. In contrast, by inspecting the developments of high-profile
deep learning algorithms from a historical perspective, it can be seen that they typically
outperformed the previous state of the art algorithms by 1–3% [25,29–32]. It should also
be noted that the better performing standalone EfficientNet-based AI-SONICTM Thyroid
system than the ResNet101 model may have benefited more from much larger available
training samples than we had in this study. Nevertheless, this indicates that from a practi-
cal perspective, pushing the performance of a standalone CADx system to exceed senior
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radiologists’ diagnostic performance for the real-world clinical workflow may no longer be
an urgent need.

At the same time, the results show that our HAIbrid approach did not require the
CNN-based CADx to be superior to radiologists for diagnosis performance improvement.
This is different from other publications where the improvement of radiologists’ diagnosis
by consulting the results from CADx systems demands these systems to be more accurate
than the radiologists [10,33]. Our approach instead can be perceived as an ensemble
learning model [10,34] that is based on two constituent weaker learners, although one of
them is radiologists. This methodology puts a softer requirement on the constituent raters
that the predictions by CNN-based CADx systems are independent of the radiologists.
Or in other words, there exists valuable complementary information that can be utilized
to improve the final diagnosis. This is easier to fulfill because these systems are usually
trained according to results from pathological examinations rather than radiologists’ ratings
in reference to a set of TIRADS criteria [35].

It is however desirable to relieve the burden of radiologists as much as possible. It is
preferable to obtain the TIRADS features from another CNN system as done in reference [35]
and to allow human intervention if needed. With this minimally human-intervened variant
of HAIbrid approach, favorable image feature interpretability, diagnosis standardizability,
and user-friendliness are simultaneously achieved. This is certainly of interest, but requires
a large dataset with tremendous annotation efforts to train a CNN system to achieve
accurate multi-class classification results. Other limitations of this work include that we
have not tested the improvement of diagnostic accuracy for junior radiologists but focused
on senior radiologists. Our consideration for this omission is mainly due to the fact that
we focus on identifying novel malignancy-relevant features. In addition, in the clinical
routine, junior radiologists’ diagnoses need to be double-checked by a senior radiologist
before vital decisions are made. We also have good reasons to believe that our framework
will improve their diagnoses significantly also. It has been shown in numerous studies that
improving senior radiologists’ diagnostic accuracy is more difficult than junior radiologists
by using a CNN system [10,34]. For single features, the highest weight was assigned to the
prediction by the CNN system in our GAFM-HAIbrid model (Supplementary Table S1). As
the two CNN systems evaluated in this work have equivalent diagnostic performances to
senior radiologists or even better, it is expected that having a high weight on the CADx
system when integrating with the junior radiologists’ diagnoses will certainly be helpful
as well for them. A third perceivable limitation is that an international multicenter study
would be preferred to validate whether our findings in this work are universally applicable.
However, this is for future investigation.

5. Conclusions

To conclude, our HAIbrid approach allows integration of CNNs of arbitrary architec-
tural designs, combines thyroid nodule diagnosis results from CNN-based CADx system
and radiologist-defined features, permits the establishment of novel human interpretable
TIRADS criteria that outperform the original diagnostic methods and requires no extra
efforts from radiologists to adapt and integrate to their clinical workflow. Our proposed
GAFM feature selection method enables the identification of clinically relevant second-
order feature interactions, which have been overlooked by radiologists and conventional
feature selection methods. We anticipate that our integrated approach can be generally ap-
plicable for medical imaging-based diagnosis of other diseases beyond ultrasonography as
long as radiologists may consult the second opinion from a CNN-based CADx system and
our proposed GAFM model can be presumably adopted to identify potentially important
second-order feature interactions that are overlooked in existing diagnostic criteria.

6. Patents

A patent application has been filed with publication number CN113889229A, and
publication date 24 January 2022.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14184440/s1. Figure S1. Bar plot of the mean AUC values
in diagnosing thyroid nodules from 10-fold cross-validation experiments on 3002 nodules and the
statistical comparisons; Table S1. Our HAIbrid-TIRADS criteria returned by the proposed GAFM
model for thyroid nodule malignancy risk stratification from the cross-validation cohort; Figure S2.
The identification of the optimal threshold to separate malignant from benign samples based on F1
score computed using our HAIbrid-GAFM model; Figure S3. Representative images for additionally
defined vasculature-related features.
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Appendix A. Candidate Ultrasonographical Features

Table A1. Our defined candidate features (TIRADS+) of thyroid nodules in ultrasound images to
establish a clinically relevant HAIbrid-TIRADS. The features shown in light gray are extra features
defined with the aim to identify new potentially useful features for thyroid diagnosis.

Feature Definition Feature Definition

Orientation (Shape)

Parallel (Wider-than-tall)
Homogeneity of echo

intensity

Homogeneous

Vertical
(Taller-than-wide) Inhomogeneous

Margin

Circumscribed

Vasculature
localization

Avascular

Ill-defined Perinodular

Irregular Mixed

Extra-thyroidal extension/micro-lobulated Mainly intranodular

Composition

Solid Mainly perinodular

Predominantly solid Vascular
morphology

Not twisted

Mixed cystic and solid Twisted

Macro-calcification
Present

Halo thickness
Thin

Absent Thick

https://www.mdpi.com/article/10.3390/cancers14184440/s1
https://www.mdpi.com/article/10.3390/cancers14184440/s1
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Table A1. Cont.

Feature Definition Feature Definition

Echogenicity

Hyperechoic

Posterior echo
features

Absent

Isoechoic Enhanced

Hypoechoic Shadowing

Marked hypoechoic Mixed

Echogenic foci

Micro-calcifications
Note: (1) Micro-calcifications correspond to punctate
echogenic foci with or without shadowing;
(2) Punctate echogenic foci of undetermined
significance correspond to punctate echogenic foci
without shadowing or comet-tail artifacts, therefore
it is difficult to tell whether it is micro-calcification or
colloid [7].

Comet-tail artifacts

Peripheral calcifications

No punctate
echogenic foci

Punctate echogenic foci of undetermined
significance [7]
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