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Simple Summary: Cancer is the second leading cause of death worldwide. Predicting phenotype and
understanding makers that define the phenotype are important tasks. We propose an interpretable
deep learning model called T-GEM that can predict cancer-related phenotype prediction and reveal
phenotype-related biological functions and marker genes. We demonstrated the capability of T-GEM
on cancer type prediction using TGCA data and immune cell type identification using scRNA-seq
data. The code and detailed documents are provided to facilitate easy implementation of the model
in other studies.

Abstract: Deep learning has been applied in precision oncology to address a variety of gene
expression-based phenotype predictions. However, gene expression data’s unique characteristics
challenge the computer vision-inspired design of popular Deep Learning (DL) models such as Convo-
lutional Neural Network (CNN) and ask for the need to develop interpretable DL models tailored for
transcriptomics study. To address the current challenges in developing an interpretable DL model for
modeling gene expression data, we propose a novel interpretable deep learning architecture called
T-GEM, or Transformer for Gene Expression Modeling. We provided the detailed T-GEM model for
modeling gene–gene interactions and demonstrated its utility for gene expression-based predictions
of cancer-related phenotypes, including cancer type prediction and immune cell type classification.
We carefully analyzed the learning mechanism of T-GEM and showed that the first layer has broader
attention while higher layers focus more on phenotype-related genes. We also showed that T-GEM’s
self-attention could capture important biological functions associated with the predicted phenotypes.
We further devised a method to extract the regulatory network that T-GEM learns by exploiting the
attributions of self-attention weights for classifications and showed that the network hub genes were
likely markers for the predicted phenotypes.

Keywords: phenotypes prediction; interpretable deep learning; Transformer; cancer type prediction;
immune cell type prediction

1. Introduction

The ever-growing genomics data from omics profiling and single-cell technologies
have spurred rapid developments of deep learning (DL) methods for genomics, especially
gene expression-based phenotype predictions [1,2]. In precision oncology, deep learning
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modeling of gene expression and other genomics data have offered exciting new solutions
and perspectives to a variety of important questions cancer diagnosis using convolutional
neural networks (CNNs) [3–5], patient survival prediction using graph convolution net-
works (GCNs) [6], drug response prediction using deep neural networks (DNN) [7,8], and
cancer vulnerability prediction using DNN [9]. While producing accurate predictions is
critical, developing deep interpretable DL models capable of informing the functions and
mechanisms underlying the phenotype predictions becomes increasingly desirable [10].

However, developing interpretable DL models for gene expression-based phenotype
prediction faces the following challenges. First, how to model unordered genes: A gene
expression sample is commonly represented as a vector of unordered expression values.
However, popular CNN was originally developed for images/texts, where features (pix-
els/words) have a fixed order. Therefore, different gene orders for the same sample could
lead to distinct DL architectures with varying performances. Finding the best order is
computationally inhibitive. Although DNN is order-agnostic, it is highly inefficient and
prone to overfitting. Second, how to model gene–gene interactions: Functional gene inter-
actions impose correlations between their expressions. However, interacting genes might
be separated in the expression vector. Because CNNs exploit pixel/text correlations within
a local region, they cannot fully capture functional interactions from the expression data.
Existing attempts to map gene expression data into 2- or 3-D images are inadequate to
model functionally interacting genes [11–13]. The recent development of graph CNN
(GCNN) points to a promising direction for addressing this issue [6]. However, GCNN
is restricted to working with a predefined network and cannot model context-specific
interactions. Third, inferring functions and markers from (G)CNN/DNN is not trivial. As
the convolution/dense layer bears little biological considerations, its computation mud-
dles input genes’ identities, generating feature maps highly difficult to deconvolute. The
disagreement between functional interactions and image local features hinders the existing
DL interpretation tools from extracting much-desired insights into regulatory pathways
and functions. Moreover, phenotypes can be defined by either a few markers or some
complex signaling cascades. Because neighboring dependencies in image/text data en-
courage “smoothness,” the objective of revealing isolated markers or networks is at odds
with the smooth constraint of many DL interpretation algorithms. Therefore, genomics
data’s unique characteristics challenge the computer vision-inspired design of popular DL
models such as CNN and ask for the need to develop interpretable DL models tailored for
transcriptomics study.

One notable class of genomics-centric DL models is visible neural networks
(VNNs) [14,15], which include models such as DCells [16], DrugCells [17], and P-NET [15].
They are DNN models whose connections and hierarchical layers are defined based on
Gene Ontology (GO), pathways, or networks. They have been trained to predict gene
dependencies in yeast and drug responses in cancer cells, where the model architectures
could inform the associated functions [16,17]. Although VNNs facilitate interpretation,
they are inflexible to model and uncover context-specific interactions as the connections
and hierarchy are fixed. Moreover, they are oversized models for my genomics applications
where the sample size is small. For instance, DCells and DrugCells have 12 layers but only
model binary perturbations or mutations.

To address the above limitations, we propose a new interpretable DL modeling frame-
work based on Transformer. Since their invention in 2017 [18], Transformer has taken
natural language processing (NLP) by storm. The Transformer and the Transformer-based
models have quickly achieved state-of-the-art performance for most NLP tasks [18,19]. The
Transformer’s core is the self-attention mechanism, which learns global features’ depen-
dencies. We recognize that self-attention addresses the existing DL models’ limitations to
model genomics data. Specifically, unlike CNN, self-attention can model unordered input,
such as genes in gene expression data. Furthermore, self-attention models’ interactions
between all the features instead of local features, as in CNN, thus capable of learning
important gene–gene interactions. Above all, self-attention facilitates interpretation. Unlike
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CNN or DNN, outputs of self-attention take the same input word identity but learn new
representations of input words. This property has been exploited to explain that BERT
learns the classical NLP pipeline in an explainable manner, encoding different syntactic and
semantic forms [20–22]. These appealing features and benefits of self-attention inspired us
to propose Transformer for Gene Expression Modeling or T-GEM.

In this paper, we hypothesize that:

• T-GEM can accurately predict phenotypes based on gene expression;
• T-GEM captures the biological function and potential marker genes.

To assess these hypotheses, we design the T-GEM model for modeling gene–gene
interactions and evaluate its ability for gene expression-based predictions and functional
interpretation of cancer-related phenotypes, including cancer type prediction and immune
cell type classification. The remaining paper is organized as follows. In the Materials and
Methods, we describe the datasets and preprocessing steps. We also detail the proposed
T-GEM model and discuss the developed methods to interpret T-GEM for its learned
functions, key regulatory networks, and marker genes. In the Results, we carefully assess
T-GEM’s prediction performance and compare it with existing popular approaches. We
further analyze the learning mechanism of T-GEM and show that T-GEM’s self-attention
could capture important biological functions associated with the predicted phenotypes.
We also extract the regulatory network that T-GEM learns by exploiting the attributions of
self-attention weights for classifications and show that the network hub genes were likely
markers for the predicted phenotypes. Concluding remarks are discussed in the Conclusion.

2. Materials and Methods

In this study, we proposed a novel interpretable deep learning model called T-GEM,
or the Transformer for Gene Expression Modeling, to predict gene expression-based cancer-
related phenotypes, including cancer type prediction and immune cell type classification.
The interpretability of T-GEM is also presented.

2.1. Data Collection and Preprocessing

The T-GEM is evaluated on two gene expression-based datasets from RNA-seq and
scRNA-seq, respectively.

2.1.1. TCGA RNA-Seq Data

The Cancer Genome Atlas (TCGA) [23] pan-cancer dataset was collected via
R/Bioconductor package TCGAbiolinks [24] in December 2018. The dataset contains
10,340 and 713 samples for 33 cancer types and 23 normal tissues, respectively. All gene
expression was processed by log-transferred and normalized by min-max. To facilitate the
investigation of T-GEM’s learning mechanism and functional interpretation, we selected
1708 genes from 24 genesets containing 14 cancer functional genesets from CancerSEA [25]
and 10 KEGG biological pathways that are less relevant to cancer.

2.1.2. PBMC scRNA-Seq Data

To test T-GEM’s generalizability and interpretability, we applied T-GEM for immune
call type classification using the single-cell RNA-seq (scRNA-seq) gene expression profile of
Human peripheral blood mononuclear cells (PBMC; Zhengsorted) [26]. The PBMC dataset
includes 10 cell populations extracted through antibody-based bead enrichment and FACS
sorting. Each cell population has 2000 cells and, therefore, there is a total of 20,000 cells
from 10 cell classes. We followed the method in [27] to preprocess the data and selected
1000 highly variable genes as input features.

2.2. T-GEM Model

Let x ∈ RG×1 be the vector of normalized log-transformed gene expression of
G genes and y∈Z be the classification label. The goal is to design a deep learning model F
parameterized by θ such that p(y|x) = Fθ(x). The overall architecture of T-GEM follows
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that of a Transformer (Figure 1A), which includes multiple attention layers, each of which
is composed of multiple self-attention heads. Similar to the classical Transformer, the
attention layer generates new attention values z ∈ RG×1, which are representations of
the input gene expression x. One important feature of the attention layer is that there is
a one-to-one correspondence between the input gene and the output representation, i.e.,
zg is the representation of xg (Figure 1B). This input–out consistency is a key modeling
feature of T-GEM that results in a biological-aware design of the self-attention units and an
essential ingredient that enables an interpretable deep learning model. The core computing
element in T-GEM is the self-attention module (Figure 1B), which takes the representation
of each gene from the previous layer and computes a set of new representations. We use the
self-attention module of the first attention layer to explain its inner operations (Figure 1B).
To help understand the connections and differences between the self-attention modules
of T-GEM and Transformer, we draw the parallel between an input gene for T-GEM and
an input word for Transformer. However, a notable difference lies in the fact that a gene
denotes its scalar expression value, whereas a word is embedded by a word vector. Similar
to the Transformer, the self-attention module of T-GEM performs two sets of operations.
First, three entities, i.e., Query (qg), Key (kg), and Value (vg) are computed for each gene g,
where qg = wqgxg, kg = wkgxg, and vg = wvgxg, with wqg, wkg, and wvg being the weights
to be learned. Compared to Transformer, they are similar in that all the computations are
linear; they are nevertheless different because for Transformer, the linear weights are shared
for all the words, whereas for T-GEM, the weights wqg, wkg and wvg are gene-dependent.
Introducing gene-dependent weights makes T-GEM more flexible and powerful to learn
gene-specific representations. It is also computationally feasible because the input gene is a
scalar as opposed to a word vector. In the second operation, the representations for each
Query gene g are computed. Specifically, for Query gene g, an attention weight vector ag
or a probability distribution of the similarity between g and all other Key genes except g is
computed as

agi = so f tmax
(

f
(
qg, ki

))
∀ i = 1, . . . , G and i 6= g (1)

where agi is the gth attention weight in ag and f is a similarity between qg and ki defined as

f (qg, ki) = qgki (2)
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Equation (2) makes Query attend to the Key gene that has a similar up/down behavior
and consistently large magnitudes (either highly or lowly expressed) across different
samples. Since the Key genes with such behavior are likely to be marker genes, Equation (2)
would result in Query gene paying attention to marker genes.

Once the attention weights ag are computed, a representation of the Query gene is
obtained as

zg = a>g vg− (3)

where vg− is the vector of the values excluding gene g. The computation in Equation (3)
suggests that the genes that are deemed more “similar” by Equation (2) (i.e., correlated
marker genes) will have bigger contributions to gene g’s representation. This progress
is repeated for each gene until the representations for all the genes are computed. This
concludes the operations for the self-attention module. When there are H self-attention
heads, the representations from each head will be linearly combined to obtain a single set
of representations z1 for layer 1

z1 = x + layernorm
(

w>HZ
)

(4)

where the summation represents the skip connection, wH ∈ RH×1 is the weight vector,
Z ∈ RH×G has its (h, g)th element as the representation of the query gene in head h, and
layernorm represents the layer normalization function [18]. The entire computation from
Equaions (1)–(4) will repeat to calculate the Query gene representations of additional layers.
In the end, a classification layer is added

p(y|z) = so f tmax(φ(zL)) (5)

where φ is an activation function and zL is the representations of last layer L.

2.3. T-GEM Interpretation Methods
2.3.1. Entropy of the Attention Weights of a Head

The attention weight vector ag measures the attentions that the Query gene g has on
the Key genes, and it is in the form of a probability distribution. Therefore, to assess the
characteristics of the attentions of a Query gene, we compute the entropy of ag

H
(
ag
)
= −

G

∑
i

agi log
(
agi
)

(6)

Intuitively, a lower entropy demonstrates that the distribution of agi becomes more
skewed, and therefore Query gene g pays higher attention to specific genes or focused
attention. In contrast, higher entropy indicates that the distribution of agi is flatter, and
therefore Query gene g pays similar attention to its Key genes or broad attention. We
averaged the entropies across all samples to obtain the entropy of a Query gene.

2.3.2. Attribution Scores of Attention Weights of a Head and a Layer

To assess the contributions of the attention weights to the classification, we adopted
the method proposed in [28] to compute the attribution scores of the attention weights
using an Integrated gradient (IG). Given the T-GEM model with attention weights agi and
some baseline weights agi

′, an attribution score is computed as

IG
(
agi
)
=
(
agi − agi

′)× ∫ ∂F
(
agi + α×

(
agi − agi

′))
∂agi

dα (7)

where the integral is taken along a straight line from the agi
′ to agi parameterized by the

parameter α. To simply the computation, we set baseline agi
′ as 0. We used the PyTorch

interpretability library Captum [29] to compute the attribution scores in Equation (7).
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2.3.3. Visualization of the Regulatory Networks of the Top Layer

A regulatory network representing the regulations of Query genes by Key genes was
derived from the last layer using attention weight attribution scores computed from the
testing samples of a specific label. We used Cytoscape [30] to visualize this network.

2.4. Training Procedure

The model was trained with optimizer Adam [31], with a batch size of 16 and an epoch
of 50. The negative log-likelihood function was used as the loss function. The model was
trained on multiple sets of hyper-parameters (Table 1), and the best model parameters were
selected based on their validation performance. All of the baseline models were trained
according to the same procedure. For CNN, AutoKeras [32] was applied to determine the
best model architecture. All of the model training was conducted by using Pytorch 1.9.0 on
NVIDIA A100 GPUs.

Table 1. Hyperparameter sets of G-TEM.

Hyperparameter Value of Hyperparameter

The number of layers: 1, 2, 3, 4

the number of heads 1, 2, 3, 4, 5

the activation function of the classification layer No activation, ReLu, GeLu

2.5. Performance Evaluation Metrics

The proposed model was evaluated on two multi-labeled datasets while TCGA has the
unbalance samples for each class and PBMC has the equal size for each class. We adopted
two metrics to assess the models’ performance, including ACC (accuracy), MCC (Matthews
correlation coefficient), and AUC (the area under the ROC curve). MCC is a reliable metric
that produces a high score only if the model performs well in TP, TN, FP, and FN. ACC
and MCC is defined as

ACC =
TP + TN

TP + TN + FP + FN
(8)

MCC =
TP·TN − FP·FN√

(TP + FP )·(TP + FN)·(TN + FP)·(TN + FN)
(9)

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,
and false negatives, respectively. The ROC curve is plotted by using FPR (false positive
rate) against TPR (true positive rate)

FPR =
FP

TN + FP
(10)

TPR =
TP

TP + FN
(11)

and AUC was computed as the area under the ROC curve.

3. Results and Discussion

In this section, we first compare T-GEM’s performance with CNN and several classical
classifiers on the TCGA and PBMC datasets. Then, we analyze the learning mechanism of
T-GEM and examine the biological functions and marker genes captured by T-GEM.

3.1. T-GEM’s Performance for Cancer Type Classification Using TCGA Data

We evaluate the performance of the T-GEM model on cancer type prediction using
TCGA pan-cancer gene expression data. The data contain 10,340 patients with 33 different
cancer types and 713 normal samples. The classification includes 34 labels (33 cancer types
and normal). For each label, we extracted 70% of the samples as the training set, 10% as the
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validation set, and 20% as the testing set. To facilitate the evaluation of interpretation, we
selected genes from 14 cancer functional gene sets from CancerSEA, including apoptosis,
angiogenesis, invasion, etc., and 10 KEGG biological pathways gene sets that are not
related to cancer. A total of 1708 genes are used as input features (Detailed information
about 14 functional gene sets and 10 KEGG pathways can be found in the Supplementary
Materials file). Because we know which genes belong to cancer-related genesets, we could
examine the genes that each T-GEM’s attention layers focus on and understand if T-GEM’s
predictions are based on cancer-related genes and functions and what they are.

To determine the architecture and hyperparameter, T-GEM with multiple sets of
hyper-parameters (Table 1) were trained, and the obtained model with the best validation
performance included three layers, five heads, and no activation in the classification layer
of Equation (5).

We evaluated the ACC, MCC, and AUC of T-GEM, CNN, and several classical clas-
sifiers (Table 2), where CNN was trained using AutoKeras so that its architecture and
hyperparameters were optimized. As we can see, deep learning-based methods, including
T-GEM and CNN, have overall better performance, whereas T-GEM achieves the overall
best performance, although the improvement over CNN is small, especially on AUCs.
To gain a better understanding of the differences in improvements by T-GEM shown by
different performance metrics, we examined the confusion matrices of their predictions.
We observed that most of the misclassifications were associated with two cancer types,
namely colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). For SVM, it
misclassified all 34 READ samples to COAD, while CNN misclassified about half of the
96 COAD samples to READ. In contrast, T-GEM correctly predicted 84/96 COAD samples
and 15/34 READ samples. The lower misclassification by T-GEM was clearly revealed by
ACC, but this could only register a slight AUC improvement because of the small sample
sizes of these two cancer types. Collectively, T-GEM outperformed CNN and classical
machine learning algorithms and could achieve lower misclassifications for especially
cancer types with small samples.

Table 2. Performances of T-GEM and the benchmark models for TCGA cancer type classification.

ACC MCC AUC

CNN(AUTOKERAS) 94.34% 0.9411 0.9985
SVM 93.21% 0.9292 0.9972

RANDOM FOREST 91.60% 0.9123 0.9970
DECISION TREE 81.80% 0.8097 0.9062

T-GEM 94.92% 0.9469 0.9987

3.1.1. Investigation of T-GEM’s Learning Mechanism

Next, we investigated how T-GEM learns to produce a classification prediction. Spe-
cially, we sought to understand the importance of each layer/head for classification, what
T-GEM focuses on in each layer, and the biological functions of each layer. We designed
three following analyses to address these questions.

To assess the importance of a layer/head, we first pruned that layer/head and checked
the accuracies after pruning. Note that we consider the head output before the skip
connection in this experiment. The larger the accuracy reduction that the pruning causes,
the more important the head/layer is. To prune a head, we set this head’s corresponding
weight in wH in Equation (4) as 0 while keeping the rest of elements in wH unchanged.
Similarly, to prune a layer, we zeroed the weights of all the heads in that layer. The original
test samples were used to compute this pruned model’s accuracy.

As can be seen in Table 3, the accuracy after pruning layer 1 drops the most from the
original 94.92% to 57.48%, indicating that layer 1 is the essential layer. Examining different
heads in layer 1 reveals that head 1 could be the most important head. Intriguingly, we
observe much smaller accuracy drops for the heads than the layer. This could be due
to heads in the same layer capturing similar features. Notice that there are slight drops
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associated with layers 2 and 3. Recall that each layer includes a skip connection, and thus,
this result suggests that being able to pass the learned information from layer 1 to layers 2
and 3 could be an important mechanism to achieve the overall performance.

Table 3. Accuracy (%) of pruning a T-GEM layer or head for TCGA-based cancer type classification
(original accuracy is 94.92%).

LAYER HEAD 1 HEAD 2 HEAD 3 HEAD 4 HEAD 5

LAYER 1 57.48 87.19 94.92 95.10 94.92 94.83
LAYER 2 94.83 95.01 94.92 94.61 94.92 94.92
LAYER 3 94.92 94.97 94.92 94.92 94.92 94.97

To further support this observation, we directly assessed the classification performance
of each head/layer. To that end, we took the output from a layer/head and trained an
SVM. The ACCs are shown in (Table 4). Now, the larger the accuracy, the more important
a head/layer is. Overall, all accuracies of all layers/heads are close to the original, indi-
cating that each layer/head contains a large amount of information needed for accurate
classification. Note that the accuracies decrease from layer 1 to layer 3, which supports
the conclusion from the pruning experiment that passing outputs of layer 1 to other layers
through skip connection ensures achieving the reported performance of the T-GEM model.
We also notice that the accuracies of different heads, especially in layer 3 vary. This suggests
that features extracted from these heads could be different and different heads might focus
on learning information from different genes.

Table 4. Accuracies of each T-GEM layer/head output via SVM.

LAYER HEAD 1 HEAD 2 HEAD 3 HEAD 4 HEAD 5

LAYER 1 93.57% 93.48% 91.69% 92.36% 91.91% 93.12%
LAYER 2 93.12% 90.65% 90.88% 93.80% 90.43% 93.57%
LAYER 3 91.24% 93.35% 90.29% 90.61% 89.57% 88.18%

Motivated by this observation, we then investigated what T-GEM focuses on in each
layer. Recall from Equation (3), that the head output for each Query is computed as a linear
combination of the Values weighted by attention weight vector ag. As an important part
of T-GEM, ag reflects the attention in the form of the discrete probability distribution that
Query gene g pays to all Key genes. When this distribution is flat and close to the uniform
distribution, the Query gene pays broad attention to Key genes. Otherwise, the Query gene
put more attention on a subset of genes. This distribution varies in each layer and each head
depending on what and how Query genes attend to Key genes. To understand if a head
pays more attention on a subset of genes (i.e., smaller entropy) or has broad attention (i.e.,
large entropy), we computed the entropy of ag for every head in each layer averaged across
all of the samples (Figure 2). We notice that the entropies of all the heads in layer 1 are
similar and among the largest, suggesting that Query genes in layer 1 tend to pay similar
and broad attention to key genes. In contrast, layer 2 and layer 3 contain heads with Query
genes having lower entropies and layer 3 has some of the genes with the lowest average
entropy. This suggests that layers 2 and 3 start to pay more attention to specific genes. To
further understand what the specific genes the heads focus on, we examined five Query
genes with the lowest entropy in layer 3 (Figure 2). We found that all of them are related
to cancer. EMX2 is the candidate tumor suppressor that regulates tumor progression [33].
EPCAM is a well-known marker for tumor-initiating cancer stem cells, and it is a penitential
target for cancer therapy [34]. POU5F1 is a penitential prognostic and diagnostic biomarker
for various epithelial cancers [35]. A lack of BHMT impacts susceptibility to fatty liver and
hepatocellular carcinoma [36]. Finally, GFAP is a classical marker of astrocytoma, and it is
marker of less malignant and more differentiated astrocytoma [37].
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In summary, T-GEM pays broad attention in layer 1 but has more concentrated atten-
tion in higher layers. The genes with more focused attention or lowest entropies in layer 3
are cancer-related genes.

3.1.2. T-GEM Makes Decisions by Focusing on Important Cancer Pathways

Next, we investigated the biological functions that T-GEM learns in each layer. To this
end, we assessed the attribution of attention weights to the classification by computing their
attribution scores using IG, as in Equation (7). Then, we averaged the weight attribution
scores of the same Query and Key gene pairs from all heads in the same layer to obtain
the attribution scores of the layer function. Then, according to [28], we thresholded the
attribution scores to retain the Query and Key genes associated with the high weight attri-
bution scores. A snapshot of layer 3 is shown in Figure 3A. We see that Query genes VCAN,
MMP11, and FBN1 are connected with Key genes, indicating that the weight attribution
scores between these Query and Key genes are large and, therefore, the information passed
from these Key genes to the Query genes contributes to the classification. Consequently,
we called these Query genes informative genes. On the contrary, we called Query genes
with no linked Key genes (e.g., PGM1, PSMB4, LOX) non-informative genes.

To determine the biological function of each layer, we performed the functional en-
richment of the associated informative genes. We investigated the predicted functions for
BRAC classification as BRCA has the last number of samples (Figure 3B). Since our genes
were selected from 14 cancer functional state genesets and 10 KEGG pathways less related
to cancer, we used these 24 gene sets for enrichment.

As we can see from Figure 3B, the 4, 3, and 4 pathways were enriched for layers 12, and
3, respectively, (FDR < 0.05). Except one pathway (VALINE_LEUCINE_AND_ISOLEUCINE
_DEGRADATION) in the first layer, all other ways are cancer functional states, indicating
that T-GEM is able to quickly focus on genes related to cancer even starting from the
first layer. Layer 2 and layer 3 focus on specific cancer pathways including metastasis,
inflammation, and stemness, which are all highly correlated to breast cancer [38–40].
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Figure 3. Functions of T-GEM each layer for cancer type classification. A. snapshot of layer 3 af-
ter thresholding the weight attribution scores. The links are associated with scores larger than the
threshold. Query genes with no links are non-informative genes. (B) Enriched functions of each
layer for the classification of breast cancer (BRCA). (A) link connects an enriched pathway with a
pathway in the previous layer if this pathway’s informative gene-associated Key genes are enriched
the pathway at the previous layer. The size of the dots represents the number of enriched infor-
mative genes in each pathway genesets, and the color shows the enrichment significance (FDR).
FDR is negative log2 transferred, red means more significantly enriched, and blue means less en-
riched. The genesets from cancer states are marked as orange, and genesets from KEGG pathway
are black. The pathway is ranked based on the sum of −log2(FDR) for all 3 layers. Abbr. VLID
(VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION); BM (BUTANOATE_METABOLISM);
SIVT(SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT); OGB (O_GLYCAN_BIOSYNTHESIS);
AAGM(ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM); GSTM (GLYCINE_SERINE
_AND_THREONINE_METABOLISM); ATB(AMINOACYL_TRNA_BIOSYNTHESIS) SHB (STEROID
_HORMONE_BIOSYNTHESIS); CMC(CARDIAC_MUSCLE_CONTRACTION); OT(OLFACTORY
_TRANSDUCTION).

To investigate how the information related to these enriched cancer states is transferred
from the input to generate the classification decision, we identified the input Key genes
associated with the Query genes in all the significantly enriched pathways for each layer
and performed the functional enrichment on these Key genes. Then, for each layer, we
linked each enriched pathway with the pathways enriched in Key genes connected to Query
genes in that pathway by virtue of Query–Key gene associations (Figure 3B). As shown
in Figure 3B, the Key genes from layer 1 are mainly enriched in Invasion, Cell cycle, and
DNA Repair, suggesting that only genes in these cancer pathways impact the informative
Query genes and thus enriched pathways of layer 1. Interestingly, among these significantly
enriched pathways of layer 1, only genes in invasion influence the significantly enriched
pathways in layer 2, which are metastasis, inflammation, and stemness. Among these
pathways, only invasion and metastasis contribute to the significantly enriched pathways of
layer 3, which are invasion, metastasis, inflammation, and stemness, and further contribute
to the classification of BRCA. Overall, this investigation reveals that T-GEM attends to more
pathways in layers but manages to focus on genes in key cancer pathways in layers 2 and 3
to make decisions.
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3.1.3. T-GEM Defines a Regulatory Network That Reveals Marker Genes for Different
Cancer Types

Note that the Query–Key gene relationship obtained in the last section, as in Figure 3A,
essentially defines a regulatory network that a layer learns with Key genes as the regulators.
We extracted the network from the last T-GEM layer for BRCA and LUAD classification
using their respective samples and examined the networks (Figure 4).
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For BRAC, we first examined the nodes in this regulatory and tested their differential
expression between breast cancer patients and normal samples by using the Mann–Whitney
U test. Overall, 102/107 genes showed significant differential expression in breast cancer
patients compared to normal samples (FDR < 0.05). We further examined the five not-
differentially-expressed genes (ABAT, NFKBIA, GUCY1A1, CDH2, TPM2) and found that
they do play an important role in breast cancer. For example, ABAT can suppress breast
cancer metastasis [41], and NFKBIA’s deletion and low expression are highly related to
the unfavorable survival of breast cancer patients [42]. CDH2 is strongly associated with
several stem cell-related transcription factors, and it could be the targeted therapy for breast
cancer [43]. TPM2 is a potential novel tumor suppressor gene for breast cancer [44]. This
result suggests that T-GEM can focus on functional relevant genes even if they show small
differential expression.

Close examination of the network (Figure 4) revealed several hub genes, including
GATA3, FOXA1, COMP, IGFBP2, COX7A1, CDH2, VEGFD, AKAP12, and STC2. All of
them are highly related to breast cancer, and some of them are known BRCA markers.
For example, GATA3 is a well-known associated with favorable breast cancer pathologic
features and a promising prognostic marker for breast cancer [45]; FOXA1 is a transcription
factor that is predominantly expressed in breast cancer and is considered as breast cancer
biomarker [46,47]; COMP is an emerging independent prognostic marker for breast cancer
patients [48]. IGFBP2 is directly related to estrogen receptor status, and it is a potential
biomarker for the therapeutic response to breast cancer [49]. Finally, STC2 has been shown
to suppress breast cancer cell migration and invasion [50].
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For LUAD, 183/199 nodes show significant differential expression in LUAD patients
compared to normal samples (U-test, FDR < 0.05). Similarly, many of the remaining genes
that are not differentially expressed (FBN1, COX7A2L, IGFBP2, WNT5B, CDKN1B, KIT,
etc.) have been shown to be related to lung cancer. For example, FBN1 plays a crucial role in
EMT, and its gene expression is highly correlated with the recurrence-free survival rate for
LUAD patients [51]. COX7A2L is important for the assembly of mitochondrial respiratory
supercomplexes, and it is related to the regulation of respiratory chain supercomplex
assembly and function in lung cancer [52]. A high circulating level of IGFBP2 is highly
associated with a poor survival rate, and it is a penitential prognostic biomarker for lung
cancer [53].

Similar to BRCA, we observed hub gens NKX2-1, ST6GALNAC1, FOXA1, HSD17B6,
AKAP12, DDIT4, ASPN, CEACAM5, MALAT1, GALNT6, and PIPOX (Figure 5), and
they also highly associated with LUAD. NKX2-1 controls lung cancer development, and
it could be a novel biomarker for lung cancer [54]. AKAP12 acts as a tumor promoter
in LUAD and is negatively correlated with patients’ prognosis [55]. A high expression
level of DDIT4 associates with poor survival in LUAD patients, and it is a predictor of
overall survival [56]. ASPN is found to correlate with LUAD patients’ survival time [57].
HSD17B6 is shown as a potential tumor suppressor in LUAD and a promising prognostic
indicator for LUAD patients [58]. CEACAM5 is indicated as a valid clinical biomarker and
promising therapeutic target in lung cancer [59]. MALAT1 is a highly conserved nuclear
noncoding RNA (ncRNA) and a predictive marker for metastasis development in lung
cancer [60]. ST6GALNAC1 can promote lung cancer metastasis, and it is also a novel
biomarker for LUAD [61,62]. FOXA1 plays an oncogenic role in lung cancer, and its high
expression level is associated with a poor overall survival rate [63]. GALNT6 can promote
invasion and metastasis of LUAD, and its expression level is associated with LUAD lymph
node metastasis and poor prognosis [64,65]. PIPOX is a major enzyme in the sarcosine
metabolism pathway, and it is positively correlated with shorter overall survival [66].
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In summary, T-GEM’s attention mechanism models a regulatory network of Query
genes by Key genes, and the hub genes of the network of the top layer reveal important
marker genes of different cancer types.

3.2. T-GEM’ Performance for PBMC Single Cell Cell-Type Prediction and Interpretation Result

To further examine the generalizability of T-GEM, we applied it to the PBMC single-
cell data set for cell type classification. The dataset contains 10 different cell types and
2000 samples for each cell type. Overall, 1000 highly variable genes were selected as the
input features. We followed the same model training and selection process and obtained a
T-GEM model with one layer and five heads with GeLU as the activation function of the
classification layer.

T-GEM achieved among the best performances, outperforming random forest and
decision trees by large margins but was competitive with CNN and SVM (Table 5). We
further examined the confusion matrices of SVM and T-GEM separately and observed
that both models have high misclassification rates for three T cell subtypes, CD4+ T
helper, CD4+/CD25 T Reg, CD4+ /CD45RA+/CD25- Naïve T. However, T-GEM has
lower misclassification rates (150/400 and 73/400) for T helper cell and T Reg cell than
SVM (157/400, 94/400), although SVM has fewer misclassifications (50/400) for Naïve T
cell than T-GEM (82/400). In conclusion, T-GEM achieved competitive performances with
SVM or CNN for PBMC cell type classification using scRNA-seq data. However, CNN and
SVM are not easy to interpret. We investigate the interpretability of T-GEM next.

Table 5. Performances of T-GEM and benchmark models for cell type classification using PBMC
scRNA-seq data.

ACC MCC AUC

CNN(AUTOKERAS) 89.00% 0.8779 0.9945
SVM 90.70% 0.8970 0.9913

RANDOM FOREST 82.53% 0.8062 0.9870
DECISION TREE 74.00% 0.7112 0.8556

T-GEM 90.73% 0.8971 0.9964

3.2.1. T-GEM Learns the Biological Functions That Define Each Cell Types in PBMC

As shown for TCGA cancer type classification, T-GEM makes decisions by focusing on
the genes in cancer-related pathways. Therefore, we used the same approach to examine
the functions that T-GEM leans. We enriched the informative genes from the first layer in
GO Biology Processes. The result shows that most of the informative genes are enriched
on the ribosome- and translation-related pathways, including, for example, cytoplasmic
translation, peptide biosynthetic process, ribosome biogenesis, ribosome assembly, etc.(the
detailed enrichment result is in the Supplementary Materials file) Because these cell types
are FACS-sorted based on the protein activities of surface markers, but T-GEM’s inputs are
gene expression, T-GEM seems to focus more on translation-related processes that translate
gene expression to protein activities. We subsequently compared the informative genes
with the marker genes for these PBMC cell types defined in the CellMatch database [67]
and identified the NK cell markers NKG7 and KLRB1 and the B cell markers CD79B and
CD37. Note that many of the marker genes (such as CD4, CD19, etc.) were excluded from
the 1000 HVGs selected for our prediction, suggesting that their expression levels are either
low or not differentially expressed in the cell types. This result highlights T-GEM’s ability
to learn the underlying processes that relate predicted phenotypes with inputs.

3.2.2. The T-GEM’s Regulatory Networks for NK Cell and B Cell

We next derived the regulatory network of Key-Query genes for the T-GEM layer for
the NK cells and B cells (Figures 6 and 7). Out of 123 nodes in this network, 114 showed
differential expression in NK cells (FDR < 0.05). For NK cells, there are four hub genes,
including MALAT1, CD52, RPLP1, and KLRB1 (Figure 6). KLRB1 is a C-type lectin-like
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receptor of NK cells and a known NK cell maker. It plays an important role as an inhibitory
receptor of NK cells and also works as a co-stimulatory receptor to promote the secretion
of IFNγ [68]. MALAT1 is a druggable long non-coding RNA and plays an important role
in NK cell-mediated immunity [69].
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We next examined the regulatory network for CD19+ B cells (Figure 7). Note that
CD19 is not an HVG. Out of 128 nodes in this network, 127 showed differential expression
in B cells (FDR < 0.05). CD53 is the only gene that is not differentially expressed. However,
CD53 is found to promote B cell development by maintaining IL-&R signaling [70]. We
examined the hub genes of the B cell regulatory network, which include HLA-DPB1, RPL35,
RPLP0, RPLP1, RPL13, and MALAT1. Interestingly, RPL35, RPLP0, RPLP1, and RPL13 are
ribosomal proteins, which could contribute to the enriched translation-related functions
of this layer. MALAT1 is also a hub gene for the NK cell network. It has large expression
variations across different PBMC cell types and is down-regulated in B cells [71]. HLA-
DPB1 is shown to be highly expressed in B cell lines [72] and could serve as an expression
marker for B cells. Taken together, these results demonstrate T-GEM’s ability to learn
functions and marker genes associated with predicted phenotypes.
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4. Conclusions

We proposed T-GEM, an interpretable deep-learning architecture inspired by Trans-
former for gene expression-based phenotype predictions using RNA-seq and scRNA-seq
data. In the model architecture, the input gene expression is treated as the token, and a
self-attention function attending to markers was proposed to model gene–gene interactions.
We comprehensively investigated T-GEM’s performance and learned functions for cancer
type classification using TCGA data and immune cell type classification using PBMC
scRNA-seq. We show that

• T-GEM can provide accurate gene expression-based prediction. We investigated
T-GEM for cancer type classification using TCGA data and immune cell type classi-
fication using PBMC scRNA-seq. T-GEM has the best performance on both datasets
compared with CNN and several classical classifiers.

• T-GEM learns associated cancer functions. We showed that T-GEM had broad attention
in the first layer and paid attention to specific cancer-related genes in layers 2 and 3
for cancer type classification. We also revealed that T-GEM learned cancer-associated
pathways at every layer and could concentrate on specific pathways important for
predicted phenotypes in layer 3.

• We extracted the regulatory network of layer 3 and showed that the network hub
genes were likely cancer marker genes. We also demonstrated the generalization of
these results for immune cell type classification using PBMC scRNA-seq data.
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As far as we know, this is the first time such a model has been proposed for modeling
gene expression data. Inevitably, there are still many challenges to be addressed. High
memory overhead associated with the training of the attention weights limits the input
gene dimension. Right now, we have to carefully preselect a subset of genes, which could
overlook important genes for T-GEM to model. Furthermore, the self-attention function
in Equation (2) is general and allows the integration of prior biological networks such as
protein–protein interaction networks to introduce biological meaningful inductive bias into
the learning. Research into solutions to these challenges will be our future focus.
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