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Simple Summary: Though the anticancer potentiality of momilactones has been reported in several
studies, their cytotoxic mechanism has not been comprehensively scrutinized. In this study, we
investigated the cytotoxicity of momilactones A (MA) and B (MB) against acute promyelocytic
leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. According to MTT results,
MB and the mixture MAB (1:1, w/w) show a substantial inhibition on the cell viability of HL-60
and U266, with IC50 ranging from 4.49 to 5.59 µM. Besides, MB and MAB at 5 µM inhibit HL-60
cells through the regulations of relevant proteins to apoptosis-inducing factors (p-38, BCL-2, and
caspase-3) and cell cycle arrest at G2 phase (p-38, CDK1, and cyclin B1). Meanwhile, these compounds
enhance U266 apoptosis by altering p-38, BCL-2, and caspase-3 signaling pathways. Significantly,
momilactones exhibit a minor effect on a non-cancerous cell line (MeT-5A), implying that they are
promising candidates for developing novel anti-APL and anti-MM medicines.

Abstract: This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B
(MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via
the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49
and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic
acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22,
3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin
substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at
5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in
the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2
and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase
arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1
complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This
finding provides novel insights into the anticancer property of momilactones, which can be a premise
for future studies and developments of momilactone-based anticancer medicines.

Keywords: momilactones; leukemia; multiple myeloma; cytotoxic mechanism; apoptosis; cell cycle

1. Introduction

Blood cancer is a serious human disorder, accounting for over 1.2 million cases an-
nually in the world [1]. Among blood cancer types, the incidence of worldwide leukemia
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was reported as 474,519 new cases with 311,594 deaths in 2020 [1]. Acute promyelocytic
leukemia (APL) regularly becomes aggravated during chemotherapy and has a poor prog-
nosis with a high level of early death because of bleeding from coagulopathy. On the other
hand, multiple myeloma (MM) occurred in 176,404 cases with 117,007 deaths in 2020 [1].
In MM patients, the accumulated cells in bone marrow can lead to bone lesions with the
disruption of structure and function [2]. APL and MM have been becoming serious and
complicated problems over the years without any signal of stopping. Therefore, pharma-
ceutical and medicinal candidates are urgently needed to develop effective treatments for
patients suffering from these cancers.

In anticancer studies, numerous strategies have been conducted to promote the apop-
totic process, which is a natural mechanism for cell death to control or eliminate the undisci-
plined expansion of tumors [3]. Enhanced apoptosis is one of the most effective approaches
for developing specific anticancer therapy and represents the most successful non-surgical
treatment for all cancer cases [3]. Another potential target in anticancer research is the
cell cycle, which strictly regulates cell division through multiple control mechanisms [4].
Cancer-associated mutations lead to abnormal regulation that prevents cells from exiting
the cell cycle, followed by continuous cell division [4]. Therefore, inducing cell cycle arrest
is a promising method for inhibiting tumor proliferation and expansion. Interestingly, both
apoptotic and cell cycle processes can be regulated by regulatory proteins [3,5]. Therefore,
substances with synergistic effects on apoptosis induction and cell cycle arrest through
mediating the activities of relevant proteins may be excellent candidates for developing
efficient cancer therapies.

In recent years, a vast number of studies have been conducted considering the an-
ticancer potentials of plant-based products [6–9], which have exhibited benefits for ther-
apeutic purposes with less toxicity than synthetic medicines [10]. Reality also shows
that the simultaneous use of herbal remedies and modern medicine has brought certain
effectiveness to the treatment [11]. Among valuable plant-derived analytes, momilac-
tones, diterpene lactones, have been found only in rice (Oryza sativa) and the Hypnum
moss (Hypnum plumaeforme). These compounds were first known as phytoalexins, which
principally play a role in the defense system of rice against pathogens [12]. Recently, momi-
lactones have exhibited antioxidant, anticancer (leukemia [13], lymphoma [14], and colon
cancer [15]), anti-diabetes [16,17], anti-obesity [17], and anti-skin aging properties [18].
Hitherto, the mechanism of cytotoxic and anticancer actions of momilactones has not been
comprehensively scrutinized. The limitation of in-depth studies about the anticancer activ-
ity of momilactones may be due to the confined availability on the market as well as the
difficulty in isolation and purification [16]. Our laboratory is one of the few laboratories
in the world that can purify momilactones from natural sources. In preceding reports, we
successfully established a method to achieve a remarkable amount of momilactones A and
B from rice by-products [16].

The aforementioned rationales prompted us to investigate the cytotoxic mechanisms
of momilactones A (MA) and B (MB) and their mixture MAB (1:1, w/w) on HL-60 (a typ-
ical cell line isolated from APL patients) and U266 (a well-known cell line derived from
MM patients) through apoptotic and cell cycle pathways, and the expressions of relevant
regulatory proteins.

2. Materials and Methods
2.1. Materials

Momilactones A (MA) and B (MB) were previously isolated and purified from rice husk
in our laboratory of Plant Physiology and Biochemistry, Hiroshima University, Japan [16].
Briefly, MA and MB were isolated from the ethyl acetate (EtOAc) extract of rice husks
(Oryza sativa var. Koshihikari) by column chromatography over silica gel with the mobile
phase of hexane:EtOAc (8:2). The identification and confirmation of such pure compounds
applying TLC, HPLC, LC-ESI-MS, GC-MS, 1H-NMR, and 13C-NMR were described in the
previous study of Quan et al. [16].
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The cell lines, including non-cancerous MeT-5A (CRL-9444™), acute promyelocytic
leukemia HL-60 (CCL-240™), and multiple myeloma U266 (number: TIB-196™), were
purchased from ATCC (Manassas, VA, USA).

2.2. Cell Viability (MTT) Assay

In this assay, culture media was prepared by adding fetal bovine serum (10%),
L-glutamine (5 mM), penicillin (100 IU/mL), and streptomycin (100 µg/mL) to IMDM
(Sigma-Aldrich, St. Louis, MO, USA). The cells (5 × 103 cells/well) were seeded into a
96-well plate filled with 100 µL of culture media and placed in a CO2 incubator at 37 ◦C.
After 24 h, the cells were treated with MA, MB, and MAB with different concentrations
(0.5, 1, 5, and 10 µM) for 48 h. Subsequently, 10 µL of the MTT solution (5 mg/mL, Sigma-
Aldrich) was pipetted into each well. The cells were continuously incubated for 4 h. Finally,
100 µL of cell lysis buffer (10% SDS in 0.01 M HCl) was applied to dissolve the colored
formazan crystals. Culture media instead of momilactones was used as the negative control.
Meanwhile the drugs consisting of doxorubicin, all-trans retinoic acid (ATRA), the mixture
of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w), and bortezomib were tested as
the standard inhibitors. The absorbance at 595 nm was scanned to determine the cell
growth rate using a spectrophotometer (SpectraMAX M5, Molecular Devices, Sunnyvale,
CA, USA) [8]. All tests were performed with three replications. The cytotoxic activity
(% inhibition) of momilactones and/or inhibitors on the tested cell lines was as follows:

Inhibition (%) = (ANC − AS)/ANC × 100 (1)

where ANC: absorbance of reaction with negative control, and AS: absorbance of reaction
with momilactone and/or inhibitor.

Dose-responding curves and IC50 values (the required concentration for inhibiting
50% of cell viability) of momilactones and the standard inhibitors for cytotoxicity against
tested cell lines were established. A lower IC50 indicates a stronger cytotoxic activity.

2.3. Cell Apoptosis (Annexin V) Assay

The procedure was conducted in triplicate following Lam et al. [9]. In brief, the cells
(5 × 105 cells/well) were seeded into a 6-well plate filled with 1.5 mL of culture media and
cultured in a CO2 incubator for 24 h with the same condition as mentioned in the MTT
assay. The cells were then treated with momilactones at a concentration of 5 µM for 24 and
48 h. The non-treated cells were used as a control. Harvested cells were washed twice
with cold phosphate-buffered saline (PBS). After that, the control and treated cells were
incubated with annexin V-conjugated fluorescein isothiocyanate (FITC) (Biolegend, San
Diego, CA, USA) and propidium iodide (PI) for 15 min at 25 ◦C. The obtained cells were
dissolved in 450 µL of PBS. The solution was filtered by a nylon membrane to prevent cell
clumping and kept on ice until analysis. The intensities of annexin V-FITC and PI and the
percentages of apoptotic cells were instantly determined by a flow cytometer (BD, Franklin
Lakes, NJ, USA).

2.4. Cell Cycle Assay

The cells (5 × 105 cells/well) were cultured and treated in triplicate following the
same methods as the apoptosis assay. The FxCycle PI/RNase staining solution was applied
according to the manufacturer’s instructions (Calbiochem, Darmstadt, Germany). The cell
cycle distribution at each phase of G1, S, and G2 was determined based on the cell’s DNA
content. The percentages of cells in different phases of the cell cycle were quantified by a
flow cytometer (BD, Franklin Lakes, NJ, USA). In brief, the collected cells were washed with
ice-cold PBS. Subsequently, ice-cold PBS in pure ethanol was added to disperse the cells.
The obtained solution was stored at 4 ◦C for 24 h for fixing. For analysis, the cells were
incubated with 10 mg/mL of RNase A (Sigma-Aldrich) for 5 min on ice. The following
step was conducted by adding 1 mg/mL of PI (in PBS). After incubating for 10 min at
room temperature, the cells were dissolved in 450 µL of PBS. The solution was then filtered
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using a nylon membrane to remove cell clumping before analysis. Subsequently, the flow
cytometric measurement was immediately performed.

2.5. Western Blotting Assay

The cells (5 × 105 cells/well) were cultured and treated in triplicate following the
same methods as the apoptosis and cell cycle assays. The cell lysates were conducted by
rinsing cells with PBS, followed by adding 2× loading buffer two times (4% SDS, 10%
2-mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, 0.125 M Tris-HCl, pH 6.8). The
extracted protein (200 pg) was subjected to sodium dodecyl sulfate (SDS)-polyacrylamide
gels, applying 10% acrylamide, and subsequently transferred to a polyvinylidene fluoride
membrane (Takara Bio, Shiga, Japan) by electroblotting. The membrane was blocked using
3% skim milk in PBS-0.05% Tween 20 (PBS-T) at 25 ◦C for 1 h. The incubation with each
antibody (2 µg/mL) against anti-rabbit total p-38/MAPK, phosphorylated p-38/MAPK,
BCL-2, procaspase-3, cleaved caspase-3, CDK1/cdc2, cyclin B1, and GAPDH (BioLegend,
San Diego, CA, USA) in blocking buffer was conducted overnight at 4 ◦C. The following
step was performed by washing the membrane with PBS-T in triplicate. The collected
membrane was incubated with a secondary antibody of horseradish peroxidase-labeled
goat anti-rabbit IgG (20 ng/mL) (IBL, Gunma, Japan) at 37 ◦C for 1 h. Protein bands were
visualized with the use of the LAS-4000 image analyzer (GE Healthcare, Tokyo, Japan). The
relative expression (RE) was calculated by normalizing the intensity of targeted proteins to
the intensity of the housekeeping protein GAPDH.

2.6. Statistical Analysis

Data are displayed as mean ± standard deviation (SD) (n = 3). Student’s t-test and one-way
ANOVA were used to compare differences between groups. The statistical significances were
considered at values of p < 0.05 (Minitab 16.0 software, Minitab Inc., State College, PA, USA).

3. Results
3.1. Effects of Momilactones on Cell Viability of Non-Cancerous (MeT-5A), Acute Promyelocytic
Leukemia (HL-60), and Multiple Myeloma (U266) Cell Lines

The cytotoxic activities of momilactones A (MA) and B (MB) and their mixture (MAB)
(1:1, w/w) in increased concentrations against the cell viability of non-cancerous MeT-
5A, acute promyelocytic leukemia (APL) HL-60, and multiple myeloma (MM) U266 cell
lines after 48 h of treatments are displayed in Figure 1. In addition, the cytotoxicity of
momilactones is compared with that of well-known medicines, including doxorubicin,
all-trans retinoic acid (ATRA), the mixture of ATRA and arsenic trioxide (ATRA/ATO)
(1:1, w/w), and bortezomib.

According to Figure 1 and Table 1, MA, MB, and MAB exhibited a minor inhibition
on normal cell line MeT-5A with percentages of 28.52%, 38.00%, and 37.82%, respectively,
which are lower than doxorubicin (inhibition percentage = 49.23%) at a concentration of
10 µM (Figure 1).

Table 1. Cytotoxic activities of momilactones A and B against MeT-5A, HL-60, and U266 cell lines.

Compounds MeT-5A
(% Inhibition at 10 µM)

HL-60
IC50 (µM)

U266
IC50 (µM)

MA 28.52 ± 2.93 c - -
MB 38.00 ± 2.29 b 4.49 ± 0.34 bc 5.09 ± 0.58 a

MAB 37.82 ± 3.64 b 4.61 ± 0.10 b 5.59 ± 0.17 a

Doxorubicin 49.23 ± 6.17 a 5.22 ± 0.15 a 0.24 ± 0.01 b

ATRA - 3.99 ± 0.16 cd -
ATRA/ATO - 3.67 ± 0.20 d -

Outcome is presented as mean ± standard deviation (SD). Means within a column followed by similar superscript
letters (a,b,c,d) are insignificantly different at p < 0.05 (one-way ANOVA). MA, momilactone A; MB, momilactone
B; MAB, the mixture of MA and MB (1:1, w/w); ATRA, all-trans retinoic acid; ATRA/ATO, the mixture of all-trans
retinoic acid and arsenic trioxide (1:1, w/w); -, not determined.
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Figure 1. Effects of momilactones A (MA) and B (MB) and their mixture (MAB) (1:1, w/w) on cell
viability of non-cancerous (MeT-5A), acute promyelocytic leukemia (HL-60), and multiple myeloma
(U266) cell lines after 48 h. Data are expressed as mean ± standard deviation (SD). Statistical
significance was determined by the t-test. * p < 0.05 versus control (0 µM), ** p < 0.01 versus control
(0 µM), *** p < 0.001 versus control (0 µM). ATRA, all-trans retinoic acid; ATRA/ATO, the mixture of
all-trans retinoic acid and arsenic trioxide (1:1, w/w); ns, not significant versus control (0 µM).

The APL cell line HL-60 was least inhibited by MA, with a percentage of 30.25% at
10 µM (Figure 1). Meanwhile, MB and MAB displayed a potent cytotoxic capacity against
HL-60 (IC50 = 4.49 and 4.61 µM, respectively) which was more substantial than doxorubicin
(IC50 = 5.22 µM) (Table 1 and Figure 1). The IC50 values of ATRA and ATRA/ATO against
HL-60 were 3.99 and 3.67 µM, respectively (Table 1 and Figure 1).

In the case of the MM cell line, MA exhibited the lowest effect on U266 cell proliferation
(inhibition percentage = 40.97%) at 10 µM (Figure 1). On the other hand, bortezomib
revealed an outstanding prevention against U266 (IC50 = 0.008 µM) (Supplementary Figure
S1), followed by doxorubicin, MB, and MAB (IC50 = 0.24, 5.09, and 5.59 µM, respectively)
(Table 1 and Figure 1).

In general, MA was the weakest compound inhibiting tested cancer cell lines, while
MB and MAB substantially suppressed these cell lines at around 5 µM. Therefore, MB
and MAB at a concentration of 5 µM were selected for further investigation of their cyto-
toxic mechanism.

3.2. Apoptosis-Inducing Activities of Momilactones against Non-Cancerous (MeT-5A), Acute
Promyelocytic Leukemia (HL-60), and Multiple Myeloma (U266) Cell Lines

In this assay, the annexin V method was applied to evaluate the effects of MB and
MAB at 5 µM on the cell apoptosis of MeT-5A, HL-60, and U266 cell lines (Figure 2).
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Figure 2. Apoptosis-inducing effects of momilactone B (MB) and the mixture of momilactone A and
B (MAB) (1:1, w/w) at 5 µM against (a) non-cancerous MeT-5A, (b) acute promyelocytic leukemia
(APL) HL-60, and (c) multiple myeloma (MM) U266 cell lines after 24 and 48 h. Statistical significance
was determined by the t-test. * p < 0.05 versus control, ** p < 0.01 versus control. ns, not significant
versus control.
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The effects of MB and MAB at 5 µM on cell apoptosis of normal cells (MeT-5A) are
presented in Figure 2a. The results obtained that after 24 h, MB and MAB revealed a mild
decrease in cell apoptosis of MeT-5A (% apoptosis = 2.87% and 2.44%, respectively), while
apoptotic cells in the non-treated control accounted for 3.86% (Figure 2a). After 48 h, a
slight increase in cell apoptosis of MeT-5A was recorded under the influences of MB and
MAB (2.67- and 1.23-fold, respectively) compared to the non-treated control (Figure 2a).

Regarding the APL cell line, MB and MAB revealed an insignificant increase in the
apoptotic process of HL-60 after 24 h (1.30- and 3.26-fold, respectively, over the control)
(Figure 2b). Remarkably, after 48 h, the number of HL-60 apoptotic cells was dramatically
enhanced to 40.50% and 42.10% under MB and MAB effects, respectively, which were much
higher than the control (% apoptosis = 0.86%) (Figure 2b).

For the tested MM cell line, MB and MAB remarkably promoted U266 cell apopto-
sis after 24 and 48 h. Apoptotic cells accounted for 4.06%, 16.90%, 22.70%, 18.0%, and
20.5% in the control and the treatments of MB-24 h, MAB-24 h, MB-48 h, and MAB-48 h,
respectively (Figure 2c).

In general, MB and MAB promoted apoptosis in cancer cells (HL-60 and U266), but
they exhibited just a minor effect on normal cells (MeT-5A).

3.3. Effects of Momilactones on Inducing Cell Cycle Arrest of Non-Cancerous (MeT-5A), Acute
Promyelocytic Leukemia (HL-60), and Multiple Myeloma (U266) Cell Lines

The effects of MB and MAB at 5 µM on the cell cycle of MeT-5A, HL-60, and U266 cell
lines after 24 and 48 h are displayed in Figure 3.

In Figure 3a, MB and MAB revealed a negligible impact on sub-G1 phase of normal
cells (MeT-5A) after 24 h. After 48 h, the cell percentages of sub-G1 were increased by
2.59 and 2.65 times under the effects of MB and MAB, respectively, after 48 h, compared
to the untreated control. The outcomes revealed that MeT-5A cell death was slightly
elevated in the treatment with MB and MAB for 48 h, which is consistent with the apoptosis
(annexin V) results, whereas the cell counts had insignificant changes in G1 and G2 phases
after 24 and 48 h. Decreased cell numbers were recorded in S phase of the cells affected by
MB and MAB. This finding implies that MB and MAB have a trivial effect on the cell cycle
of MeT-5A (Figure 3a).

For HL-60, MB- and MAB-treated cells were significantly accumulated in G2 phase of
the cell cycle. Particularly, the cell counts increased from 13.9% in G2 phase of the control
cells to 30.1% and 52.8%, respectively, in the cells affected by MB and MAB after 24 h
(Figure 3b). After 48 h, the percentages of HL-60 cells in G2 phase were 29.2% and 27.7%
under the effects of MB and MAB, respectively (Figure 3b). The results indicate that MB
and MAB remarkably arrested the cell cycle of HL-60 at G2 phase, accompanied by the
reduced percentages of cells in G1 and S phases.

In the case of U266 cells, there was no remarkable difference in the cell number of G1
phase among the control and the treatments with MB and MAB (Figure 3c). Meanwhile,
the cell counts were reduced in S and G2 phases, which may be caused by the increased
cell deaths in sub-G1 phase under the effects of MB and MAB after 24 and 48 h (Figure 3c).
Generally, MB and MAB have negligible impacts on the U266 cell cycle (Figure 3c).

Overall, MB and MAB show a negligible effect on the cell cycle of normal cells
(MeT-5A) and MM cells (U266), whereas these compounds activate G2 arrest in the cell
cycle of APL cells (HL-60).
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Figure 3. Effects of momilactone B (MB) and the mixture of momilactone A and B (MAB) (1:1, w/w)
at 5 µM on the cell cycle of (a) non-cancerous (MeT-5A), (b) acute promyelocytic leukemia (HL-60),
and (c) multiple myeloma (U266) cell lines after 24 and 48 h. Statistical significance was determined
by the t-test. * p < 0.05 versus control, ** p < 0.01 versus control, *** p < 0.01 versus control, ˆˆ p < 0.01
versus MAB-24 h, ## p < 0.01 versus MB-48 h. ns, not significant versus control.
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3.4. Effects of Momilactones on Expressions of Proteins Related to Apoptosis Induction and Cell
Cycle Arrest of Acute Promyelocytic Leukemia (HL-60) and Multiple Myeloma (U266) Cell Lines

Based on the results of apoptosis induction and G2 phase arrest in the cell cycle
of HL-60 treated with MB and MAB, the expressions of relevant proteins to apoptosis
(total p-38, phosphorylated p-38, BCL-2, procaspase-3, and cleaved caspase-3) and G2
phase (total p-38, phosphorylated p-38, CDK1, and cyclin B1) were evaluated (Figure 4a).
Meanwhile, MB and MAB promoted the apoptotic process in U266, but failed to activate
cell cycle arrest. Therefore, the expressions of regulatory proteins in the apoptotic pathways
comprising total p-38, phosphorylated p-38, BCL-2, procaspase-3, and cleaved caspase-3
were examined (Figure 4b).

According to Figure 4a, the expression of phosphorylated p-38/total p-38 was in-
creased in APL (HL-60) cells affected by MB and MAB, and the relative expression (RE)
values in the control and the treatments including MB-24 h, MB-48 h, MAB-24 h, and
MAB-48 h were 0.48, 1.15, 0.96, 0.82, and 0.85, respectively. Meanwhile, the protein bands
of BCL-2 were dramatically degraded under the effects of MB (the RE values in 24 and
48 h treatments were 1.92- and 2.32-fold, respectively, lower than the control) and MAB
(the RE values in 24 and 48 h treatments were 2.16- and 2.67-fold, respectively, lower than
the control) (Figure 4a). Besides, the RE values of cleaved caspase-3/procaspase-3 were
substantially enhanced in HL-60 treated with MB (RE = 0.56 and 0.77 after 24 and 48 h,
respectively) and MAB (RE = 2.97 and 5.17 after 24 and 48 h, respectively), while the value
in the untreated control was 0.17 (Figure 4a). In the cell cycle pathway, cyclin B1 and CDK1
expressions were remarkably impeded in HL-60 affected by MB and MAB. The RE values
in the control and the treatments comprising MB-24 h, MB-48 h, MAB-24 h, and MAB-48 h
were 1.17, 0.80, 0.69, 1.39, 0.79, respectively, for cyclin B1, while the values were 1.55, 1.10,
0.75, 0.68, 0.40, respectively, for CDK1 (Figure 4a).

For the MM cell line U266, MB and MAB remarkably elevated the expression of
phosphorylated p-38/total p-38 (RE = 1.00, 2.47, 2.35, 1.47, and 1.88 in the control and
the treatments of MB-24 h, MB-48 h, MAB-24 h, and MAB-48 h, respectively) (Figure 4b).
Besides, MB and MAB inhibited BCL-2 expression after 24 h by 2.37 and 2.74 times, re-
spectively, compared to the control. Meanwhile, after 48 h, MB and MAB decreased the
expression of BCL-2 by 4.41- and 2.88-fold, respectively, over the control (Figure 4b). The
expression of cleaved caspase-3/procaspase-3 in U266 treated with MB after 24 and 48 h
was increased by 5.33 and 8.83 times, respectively, over the control. While in the treat-
ment with MAB, the RE values of caspase-3/procaspase-3 after 24 and 48 h were 6.92 and
9.08 times, respectively, higher than the control (Figure 4b).
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Figure 4. Effects of momilactone B (MB) and the mixture of momilactones A and B (MAB) (1:1,
w/w) on the expressions of proteins related to apoptosis induction and cell cycle arrest of (a) acute
promyelocytic leukemia (APL) HL-60 and (b) multiple myeloma (MM) U266 cell lines after 24 and 48
h. Statistical significance was determined by the t-test. ** p < 0.01 versus control; *** p < 0.001 versus
control; † p < 0.05 versus MB-24 h; †† p < 0.01 versus MB-24 h; ††† p < 0.01 versus MB-24 h; ˆ p < 0.05
versus MAB-24 h; ˆˆ p < 0.01 versus MAB-24 h; ˆˆˆ p < 0.001 versus MAB-24 h; # p < 0.05 versus MB-48
h; ## p < 0.01 versus MB-48 h. The uncropped blots are shown in Supplementary Figure S2.

4. Discussion

In anticancer research, the cell viability (MTT) assay is an indispensable initial step in
exploring antitumor candidates [6–9]. Principally, the cytotoxicity of natural compounds
is dose-dependent [6–9]. Therefore, we examined the activities of momilactones in in-
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creased concentrations against APL (HL-60) and MM (U266) cell lines, compared with
non-cancerous (MeT-5A) cell lines. The drugs, including bortezomib, all-trans retinoic acid
(ATRA), arsenic trioxide (ATO), and doxorubicin, were tested as standard suppressors
(Table 1, Figure 1, and Supplementary Figure S1), among which bortezomib is a common
medicine for MM patients [19]. ATRA and the ATRA/ATO combination are commonly
applied to treat APL [20]. Doxorubicin shows effectiveness in lymphoma and MM ther-
apies [21]. Besides, doxorubicin was widely used as a positive control in the research on
cytotoxic activity against the HL-60 cell line [22]. In searching for ideal candidates for
the development of novel anticancer medicines, the potential compounds should be able
to eliminate cancer cells with an IC50 of less than or equal to 5 µM [23,24]. Accordingly,
MB and MAB with an IC50 of around 5 µM may be promising substances for developing
anti-APL and anti-MM drugs. Remarkably, their cytotoxic abilities were stronger than
that of doxorubicin and in line with that of ATRA in preventing HL-60 cells via the MTT
assay (Figure 1 and Table 1). Moreover, the candidate must have a high cytotoxic selectivity
against tumors without damaging normal cells [25]. Interestingly, these compounds were
less toxic to the non-cancerous cell MeT-5A than doxorubicin (Figure 1 and Table 1). Based
on that, we selected MB and MAB to clarify their cytotoxic mechanism in suppressing
HL-60 and U266 cancer cells.

Via apoptosis, cell cycle, and Western blotting analyses (Figures 2–4), MB and MAB
may inhibit tested cancer cells through apoptosis induction and cell cycle arrest by regu-
lating relevant protein expressions. Among targeted proteins, the p-38 group serves as an
important signaling mediator in the mitogen-activated protein kinase (MAPK) pathway,
which contributes to many biological processes, including inflammation, cell cycle, apop-
tosis, development, differentiation, senescence, and tumor formation in specific cells [26].
Remarkably, previous studies focusing on the regulation of p-38 were conducted to over-
come the drug resistance and improve the suppressive effects on MM cell lines consisting
of MM.1S, RPMI8226, and U266 [27]. The activation of p-38 can be determined by the
fold increase in the expression of phosphorylated p-38/total p-38 [22]. Accordingly, the
upregulated phosphorylation of p-38 observed from Western blotting outcomes may cause
apoptosis enhancement of HL-60 and U266 treated with MB and MAB (Figure 4). On
the other hand, the elevated expression of p-38 can destabilize cdc25b and cdc25c, which
subsequently disrupt CDK1/cyclin B1 complex [28]. This disruption may lead to HL-60 cell
cycle arrest at G2 phase. Regarding apoptosis, an anti-apoptotic member, namely BCL-2,
suppresses the apoptotic process by sequestering the preforms of fatal cysteine proteases or
blocking the release of mitochondrial cell death factors into the cytoplasm [29]. Significantly,
elevated expression of BCL-2 has been detected in more than half of all cancer cases [3].
Thus, apoptosis promotion by inhibiting BCL-2 activities could be a promising approach to
eliminating tumors. Interestingly, numerous plant-based products have shown their role in
activating cancer cell apoptosis through the BCL-2 pathway, for example, curcumin from
Curcuma longa or graviola from Annona muricata [3], suggesting a great potential in the
development of anticancer medicines. In this study, MB and MAB extremely impeded the
expression of BCL-2 in HL-60 and U266 after 48 h (Figure 4), which may motivate the apop-
totic process in these cells. Especially, the U266 cell line harboring t(11;14) translocation
belongs to a MM cytogenetic subgroup, which presents a high level of BCL-2 relative to
MCL-1 or BCL-XL [30]. Therefore, MB and MAB with BCL-2 inhibitory effects may be po-
tential candidates for prospective anticancer research on t(11;14) MM. As another concern,
many traditional medicines suppress cancer cells primarily depending on the BCL-2/BAX
mechanism [31]. Disruption of this signaling pathway can cause intrinsic resistance to
drugs [3]. Therefore, substances targeting multiple factors can enhance the effectiveness of
cancer treatment. In the present study, the effects of MB and MAB on the activation of a
pro-apoptotic factor, namely caspase-3, were also determined (Figure 4). During the apop-
totic process, procaspase-3 is converted to the active form caspase-3, which decomposes
proteins, resulting in cell death [3]. Importantly, elevated procaspase-3 has been observed
in various cancer cases (e.g., acute myeloid leukemia), involving a poor prognosis [32,33].
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Through the regulations of procaspse-3 and cleaved caspase-3 expressions (Figure 4), it may
be conjectured that MB and MAB stimulated the conversion of procaspase-3 to caspase-3 in
both tested cancer cell lines HL-60 and U266. This may cause the promotion of proteolysis
in these cancer cells, which subsequently kills them. In the cell cycle pathway, the activation
of the CDK1/cyclin B1 complex plays a major role in the transition from G2 to M phase.
Thereby, inhibited CDK1/cyclin B1 activity leads to G2 phase arrest [34]. Several anticancer
studies were conducted focusing on G2/M phase arrest through this mechanism. For
example, genistein arrested G2/M phase in the cell cycle of colon cancer cells [35] and
breast cancer [36]. In our study, the expressions of CDK1 and cyclin B1 in HL-60 were
significantly impeded by MB and MAB (Figure 4a). The finding indicates that MB and MAB
may disrupt the interaction of CDK1/cyclin B1 complex, causing HL-60 cell cycle arrest at
G2 phase, followed by mitosis inhibition. In other studies, the potential of MB in inhibiting
colon cancer cells (HT-29 and SW620) was shown via MTT, lactate dehydrogenase (LDH),
and colony-forming ability assays [15]. Besides, MB suppressed the human monocytic
leukemia cell line U937 by stimulating apoptosis and the cell cycle arrest at G1 phase via the
decrease in pRB phosphorylation and the upregulation of a CDK inhibitor p21Waf1/Cip1 [13].
Lee et al. [14] announced that MB prevented human leukemic T cells (Jurkat) by inducing
apoptosis through the mitochondrial pathways. In addition, the inhibitory effect of MB on
HL-60 cell viability was previously demonstrated [14], but the cytotoxic mechanism has not
been elucidated. Furthermore, to the best of our knowledge, the present study is the first to
clarify the induction of MB and MAB on apoptotic and cell cycle arrest pathways of HL-60
and U266 cells through the regulation of relevant proteins (Figure 5). Based on evidence
from in vitro assays, we highlighted the cytotoxic potential of momilactones on HL-60
and U266 cell lines by comparing to that of well-known medicines (doxorubicin, ATRA,
ATRA/ATO, and bortezomib), which have not been reported elsewhere (Figure 1, Table 1,
and Supplementary Figure S1). However, the pharmacodynamics of drugs and tested
agents are variable depending on the mechanism of cytotoxic action and multiple factors
such as drug uptake, intracellular metabolism, interaction with target molecules, and efflux
from the cell [37]. Therefore, the actual effectiveness of momilactones in preventing APL
and MM requires deeper clarification and confirmation through pharmacodynamic as
well as pharmacokinetic studies to develop them as novel anticancer drugs. Besides, the
comparison between momilactones and well-known medicines should be investigated. For
example, in the case of APL therapies, all-trans retinoic acid (ATRA), and the combination
of ATRA and arsenic trioxide (ATRA/ATO) are widely used [20]. While for MM treatments,
proteasome inhibitors (PI) (e.g., bortezomib, carfilzomib, and ixazomib), immunomodu-
latory agents (IMiD) (e.g., lenalidomide, pomalidomide, and thalidomide), monoclonal
antibodies (e.g., daratumumab and elotuzumab), and targeted B cell maturation agent
(BCMA) therapies are commonly applied [19]. In our research, ATRA, ATRA/ATO, and
bortezomib were tested (Figure 1, Table 1, and Supplementary Figure S1), whilst other men-
tioned medicines were neither available in our laboratory nor purchased, and thus need
further investigation. Moreover, the combined use of momilactones and these drugs should
be investigated, aiming to enhance the efficiency of targeted therapies, reduce the negative
side effects, and overcome drug resistance [19,20,38,39]. On the other hand, the impacts
of momilactones on normal cells should be comprehensively interpreted since they might
be affected by the same course of events with tumors [40]. In this study, momilactones
slightly promoted cell apoptosis of the normal mesothelial cell line (MeT-5A) but exhibited
no effects on the cell cycle. Forthcoming studies should focus on the alterations of relevant
proteins to the apoptotic process in MeT-5A cells treated with momilactones. Additionally,
other cells sensitive to drugs, including bone marrow, gonads (sex organs), gastrointestinal
tract, and skin (hair follicle cells), should also be included to clearly understand the toxicity
or adverse effects of momilactones [40]. This is an integral requirement to minimize failure
in later stages of drug development. Furthermore, this may help establish potential drug
combinations as well as effective therapies [40].
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Figure 5. Cytotoxic mechanism of momilactones (A) (MA) and (B) (MB) against acute promyelocytic
leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines.

In addition to the above-mentioned anticancer potentials, the antioxidant capacity of
momilactones was previously reported. It was noteworthy that the synergistic effect of MA
and MB revealed a stronger antioxidant capacity than individual compounds [18]. This may
address the complications in cancer progression and treatment due to the negative side effects
of drugs associated with oxidative stress [21]. Thus, substances simultaneously revealing
antioxidant and cytotoxic properties may be excellent candidates for the development of
effective cancer therapies. Moreover, a correlation between chronic disorders, including
diabetes, obesity, aging, and cancer, through the central role of inflammation and oxidative
stress has been acknowledged [41]. Interestingly, momilactones have recently exhibited
potential for anti-diabetes, anti-obesity, and anti-skin aging activities [16–18]. Thereby, these
compounds can be considered a promising source for improving blood cancer treatments,
especially for patients complicated with oxidative stress and chronic diseases.

MA and MB were principally found in rice husk [42], leaf [43], and root [42]. Re-
cently, a specific sample preparation technique and advanced ultra-performance liquid
chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) method were
improved to increase the detection sensitivity that help quantify MA and MB in different
rice organs with a minor amount (e.g., in rice bran) [16]. Those outstanding achievements
may support prospective strategies to take advantage of momilactones from rice and rice by-
products for pharmaceutical purposes. Notably, rice is a monocot plant, which adapts to a
wide range of environmental conditions [44]. Thus, rice organs can be feasibly exploited for
medicinal production and therapeutics with an abundant biomass availability. In addition
to momilactones, 47 momilactone-like molecules have been acknowledged [12], suggesting
an abundant source for further investigations of their cytotoxic potentials against blood
cancer cells. As another concern, the biological activity and bio-accessibility of substances
can be affected by human digestion [7]. Accordingly, future studies should be conducted
to investigate the bio-accessibility and bioavailability of momilactones during the diges-
tive stages. Moreover, a natural-based product must satisfy the requirements of benefits
outweighing risks [10]. Therefore, the effective concentration of momilactones should be
established to exhibit the strongest cytotoxicity against tumors without harmful effects on
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normal cells. On the other hand, the potential risks, such as neurotoxicity and hepatotoxic-
ity, of using herbal products should be seriously considered and thoroughly evaluated [38].

In summary, MB and MAB are promising candidates, which are highly recommended
for the next steps of developing novel anti-APL and anti-MM medicines. In vivo tests are
required to confirm their possibilities for proposing prospective and appropriate clinical trials.

5. Conclusions

In this report, we interpreted, for the first time, the cytotoxic mechanism of momilac-
tones A (MA) and B (MB) and their mixture (MAB) against acute promyelocytic leukemia
(APL) HL-60 and multiple myeloma (MM) U266 cell lines. Based on the evidence from
in vitro assays, MB and MAB substantially inhibited the cell viability of HL-60 and U266,
with an IC50 of around 5 µM. Especially, the cytotoxicity of MB and MAB against HL-60 was
in line with that of the well-known medicines doxorubicin, all-trans retinoic acid (ATRA),
and the mixture of ATRA and arsenic trioxide (ATRA/ATO). Besides, MB and MAB may
induce HL-60 and U266 cell apoptosis via the mitogen-activated protein kinase (p-38) and
mitochondrial (BCL-2 and caspase-3) signaling pathways. In addition, HL-60 cell cycle
was arrested at G2 phase by MB and MAB through the regulations of related protein (p-38,
CDK1, and cyclin B1) expressions. Significantly, momilactones revealed a slight effect on
the normal cell line MeT-5A. It can be concluded that momilactones are promising candi-
dates for developing novel anti-APL and anti-MM medicines. Moreover, momilactones and
momilactone-like compounds are expected as prospective natural sources for future phar-
marceutical production and therapeutics. However, the dose-effectiveness, bio-accessibility,
and bioavailability of these analytes need validation via in vivo tests before considering
further clinical trials.
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