Construction of Brain Metastasis Prediction Model and Optimization of Prophylactic Cranial Irradiation Selection for Limited-Stage Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Method
2.1. Patients
2.2. Nomogram Development
2.3. Nomogram Model Validation and Risk Stratification of BM
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Factors Predictive of BM
3.3. Construction and Validation of a Nomogram
3.4. Risk Stratification of BM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NLR | Neutrophil/Lymphocyte |
PLR | Platelet/Lymphocyte |
ALI | BMI × Albumin/NLR |
SIRI | Neutrophil × Monocyte/Lymphocyte |
AAPR | Albumin/Alkaline phosphatase |
PNI | Albumin + 0.005 × Lymphocyte |
LMR | Lymphocyte/monocyte |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef]
- Auperin, A.; Arriagada, R.; Pignon, J.P.; Le Pechoux, C.; Gregor, A.; Stephens, R.J.; Kristjansen, P.E.; Johnson, B.E.; Ueoka, H.; Wagner, H.; et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic cranial irradiation overview collaborative group. N. Engl. J. Med. 1999, 341, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Meert, A.P.; Paesmans, M.; Berghmans, T.; Martin, B.; Mascaux, C.; Vallot, F.; Verdebout, J.M.; Lafitte, J.J.; Sculier, J.P. Prophylactic cranial irradiation in small cell lung cancer: A systematic review of the literature with meta-analysis. Bmc Cancer 2001, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Macdonald, O.K.; Suntharalingam, M. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. Cancer Am. Cancer Soc. 2009, 115, 842–850. [Google Scholar] [CrossRef]
- Dingemans, A.C.; Fruh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.E.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.M.; et al. Small-cell lung cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 839–853. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network Small Cell Lung Cancer Version 2. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/sclc.pdf (accessed on 3 September 2022).
- Daly, M.E.; Ismaila, N.; Decker, R.H.; Higgins, K.; Owen, D.; Saxena, A.; Franklin, G.E.; Donaldson, D.; Schneider, B.J. Radiation therapy for small-cell lung cancer: Asco guideline endorsement of an astro guideline. J. Clin. Oncol. 2021, 39, 931–939. [Google Scholar] [CrossRef]
- Yin, X.; Yan, D.; Qiu, M.; Huang, L.; Yan, S.X. Prophylactic cranial irradiation in small cell lung cancer: A systematic review and meta-analysis. Bmc Cancer 2019, 19, 95. [Google Scholar] [CrossRef] [Green Version]
- Pechoux, C.L.; Sun, A.; Slotman, B.J.; de Ruysscher, D.; Belderbos, J.; Gore, E.M. Prophylactic cranial irradiation for patients with lung cancer. Lancet Oncol. 2016, 17, e277–e293. [Google Scholar] [CrossRef]
- Gondi, V.; Tome, W.A.; Mehta, M.P. Why avoid the hippocampus? A comprehensive review. Radiother. Oncol. 2010, 97, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; Denittis, A.; Greenspoon, J.N.; et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (rtog 0933): A phase ii multi-institutional trial. J. Clin. Oncol. 2014, 32, 3810–3816. [Google Scholar] [CrossRef] [PubMed]
- Belderbos, J.; de Ruysscher, D.; de Jaeger, K.; Koppe, F.; Lambrecht, M.; Lievens, Y.N.; Dieleman, E.; Jaspers, J.; van Meerbeeck, J.P.; Ubbels, F.; et al. Phase 3 randomized trial of prophylactic cranial irradiation with or without hippocampus avoidance in sclc (nct01780675). J. Thorac. Oncol. 2021, 16, 840–849. [Google Scholar] [CrossRef]
- Vees, H.; Caparrotti, F.; Eboulet, E.I.; Xyrafas, A.; Fuhrer, A.; Meier, U.; Mark, M.; Elicin, O.; Aebersold, D.M.; Zwahlen, D.R.; et al. Impact of early prophylactic cranial irradiation with hippocampal avoidance on neurocognitive function in patients with limited disease small cell lung cancer. A multicenter phase 2 trial (sakk 15/12). Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, T.A.; Fang, P.; Gjyshi, O.; Feng, L.; Liu, S.; Komaki, R.; Lin, S.H. Rates of overall survival and intracranial control in the magnetic resonance imaging era for patients with limited-stage small cell lung cancer with and without prophylactic cranial irradiation. JAMA Netw. Open 2020, 3, e201929. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, Y.; Omae, M.; Fujii, M.; Matsui, T.; Kato, M.; Sagisaka, S.; Asada, K.; Karayama, M.; Shirai, T.; Yasuda, K.; et al. Management of brain metastasis with magnetic resonance imaging and stereotactic irradiation attenuated benefits of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer. Bmc Cancer 2015, 15, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, M.K.; Wheless, W.H.; Hughes, R.T.; Soike, M.H.; Masters, A.H.; Helis, C.A.; Chan, M.D.; Cramer, C.K.; Ruiz, J.; Lycan, T.; et al. Limited-stage small cell lung cancer: Is prophylactic cranial irradiation necessary? Pract. Radiat. Oncol. 2019, 9, e599–e607. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Briganti, G.; Mancuso, M.; Saran, A. Neurocognitive decline following radiotherapy: Mechanisms and therapeutic implications. Cancers 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.H.; Kang, S.Y.; Wu, H.G.; Seo, Y.S.; Kim, D.W.; Kang, K.W.; Kim, H.J.; Cheon, G.J. Risk stratification of symptomatic brain metastases by clinical and fdg pet parameters for selective use of prophylactic cranial irradiation in patients with extensive disease of small cell lung cancer. Radiother. Oncol. 2020, 143, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Matsuo, Y.; Kishi, N.; Yoneyama, M.; Yoshida, H.; Sakamori, Y.; Ozasa, H.; Hirai, T.; Mizowaki, T. Usefulness of pro-gastrin-releasing peptide as a predictor of the incidence of brain metastasis and effect of prophylactic cranial irradiation in patients with limited-stage small-cell lung cancer. J. Radiat. Res. 2022, 63, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, J.; Ge, X.; Wang, X.; Xu, L.; Liu, N.; Zhao, L.; Wang, P. The addition of peripheral blood inflammatory indexes to nomogram improves the predictive accuracy of survival in limited-stage small cell lung cancer patients. Front. Oncol. 2021, 11, 713014. [Google Scholar] [CrossRef]
- Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Winther-Larsen, A. Pretreatment albumin-to-alkaline phosphatase ratio is a prognostic marker in lung cancer patients: A registry-based study of 7077 lung cancer patients. Cancers 2021, 13, 6133. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.X.; Xiang, Y.; Zhao, S.; Chen, J. Assessment of systematic inflammatory and nutritional indexes in extensive-stage small-cell lung cancer treated with first-line chemotherapy and atezolizumab. Cancer Immunol. Immunother. 2021, 70, 3199–3206. [Google Scholar] [CrossRef]
- Kucuk, A.; Ozkan, E.E.; Eskici, O.S.; Mertsoylu, H.; Pehlivan, B.; Selek, U.; Topkan, E. The influence of systemic inflammation response index on survival outcomes of limited-stage small-cell lung cancer patients treated with concurrent chemoradiotherapy. J. Oncol. 2020, 2020, 8832145. [Google Scholar] [CrossRef] [PubMed]
- Shepshelovich, D.; Xu, W.; Lu, L.; Fares, A.; Yang, P.; Christiani, D.; Zhang, J.; Shiraishi, K.; Ryan, B.M.; Chen, C.; et al. Body mass index (bmi), bmi change, and overall survival in patients with sclc and nsclc: A pooled analysis of the international lung cancer consortium. J. Thorac. Oncol. 2019, 14, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, D.; Aufderstrasse, S.; Konig, L.; Adeberg, S.; Bozorgmehr, F.; Christopoulos, P.; Shafie, R.; Horner-Rieber, J.; Kappes, J.; Thomas, M.; et al. Impact of inflammatory markers on survival in patients with limited disease small-cell lung cancer undergoing chemoradiotherapy. Cancer Manag. Res. 2018, 10, 6563–6569. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Hong, J.S.; Chang, M.H.; Kim, J.A.; Kwak, J.Y.; Kim, J.S.; Yoon, D.H.; Lee, W.S.; Do, Y.R.; Kang, H.J.; et al. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large b-cell lymphoma: Results of a multicenter prospective cohort study. Oncotarget 2016, 7, 72033–72043. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Marks, R.; Zhang, M.; Jiang, G.; Jatoi, A.; Garces, Y.I.; Mansfield, A.; Molina, J.; Yang, P. Nomograms predict overall survival for patients with small-cell lung cancer incorporating pretreatment peripheral blood markers. J. Thorac. Oncol. 2015, 10, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, T.; Yang, Y.; Hong, S.; Zhan, J.; Hu, Z.; Fang, W.; Qin, T.; Ma, Y.; Zhao, Y.; et al. Advanced lung cancer inflammation index, a new prognostic score, predicts outcome in patients with small-cell lung cancer. Clin. Lung. Cancer 2015, 16, e165–e171. [Google Scholar] [CrossRef]
- Laurie, S.A.; Jeyabalan, N.; Nicholas, G.; Macrae, R.; Dahrouge, S. Association between anemia arising during therapy and outcomes of chemoradiation for limited small-cell lung cancer. J. Thorac. Oncol. 2006, 1, 146–151. [Google Scholar] [CrossRef]
- Gong, L.; Wang, Q.I.; Zhao, L.; Yuan, Z.; Li, R.; Wang, P. Factors affecting the risk of brain metastasis in small cell lung cancer with surgery: Is prophylactic cranial irradiation necessary for stage i-iii disease? Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 196–200. [Google Scholar] [CrossRef]
- Greenspoon, J.N.; Evans, W.K.; Cai, W.; Wright, J.R. Selecting patients with extensive-stage small cell lung cancer for prophylactic cranial irradiation by predicting brain metastases. J. Thorac. Oncol. 2011, 6, 808–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Jing, W.; Zhu, H.; Li, M.; Zou, B.; Zhang, Y.; Fu, L.; Kong, L.; Yue, J.; Yu, J. Clinical value of carcinoembryonic antigen for predicting the incidence of brain metastases and survival in small cell lung cancer patients treated with prophylactic cranial irradiation. Cancer Manag. Res. 2018, 10, 3199–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Bi, Y.; Han, A.; Luo, J.; Li, M.; Shi, F.; Kong, L.; Yu, J. Risk factors for brain metastases in completely resected small cell lung cancer: A retrospective study to identify patients most likely to benefit from prophylactic cranial irradiation. Radiat. Oncol. 2014, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, L.; Zhao, W.; Dou, Y.; Lv, W.; Yang, H.; Sun, Y.; Xing, L. Risk factors for brain metastasis in patients with small cell lung cancer without prophylactic cranial irradiation. Strahlenther. Onkol. 2018, 194, 1152–1162. [Google Scholar] [CrossRef]
- Wu, A.J.; Gillis, A.; Foster, A.; Woo, K.; Zhang, Z.; Gelblum, D.Y.; Downey, R.J.; Rosenzweig, K.E.; Ong, L.; Perez, C.A.; et al. Patterns of failure in limited-stage small cell lung cancer: Implications of tnm stage for prophylactic cranial irradiation. Radiother. Oncol. 2017, 125, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Seute, T.; Leffers, P.; Ten, V.G.; Twijnstra, A. Detection of brain metastases from small cell lung cancer: Consequences of changing imaging techniques (ct versus mri). Cancer Am. Cancer Soc. 2008, 112, 1827–1834. [Google Scholar] [CrossRef]
- Manapov, F.; Klautke, G.; Fietkau, R. Prevalence of brain metastases immediately before prophylactic cranial irradiation in limited disease small cell lung cancer patients with complete remission to chemoradiotherapy: A single institution experience. J. Thorac. Oncol. 2008, 3, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, U.; Kirakli, E.K.; Gurlek, U.; Ozdogan, Y.; Gumus, B.; Aksit, S. Frequency of silent brain metastasis before prophylactic cranial irradiation in small cell lung cancer. Turk. Thorac. J. 2017, 18, 11–13. [Google Scholar] [CrossRef]
- Farooqi, A.S.; Holliday, E.B.; Allen, P.K.; Wei, X.; Cox, J.D.; Komaki, R. Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit? Radiother. Oncol. 2017, 122, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Pijls-Johannesma, M.; de Ruysscher, D.; Vansteenkiste, J.; Kester, A.; Rutten, I.; Lambin, P. Timing of chest radiotherapy in patients with limited stage small cell lung cancer: A systematic review and meta-analysis of randomised controlled trials. Cancer Treat. Rev. 2007, 33, 461–473. [Google Scholar] [CrossRef]
- Fried, D.B.; Morris, D.E.; Poole, C.; Rosenman, J.G.; Halle, J.S.; Detterbeck, F.C.; Hensing, T.A.; Socinski, M.A. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. J. Clin. Oncol. 2004, 22, 4837–4845. [Google Scholar] [CrossRef]
- Stinchcombe, T.E.; Gore, E.M. Limited-stage small cell lung cancer: Current chemoradiotherapy treatment paradigms. Oncologist 2010, 15, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonemori, K.; Sumi, M.; Fujimoto, N.; Ito, Y.; Imai, A.; Kagami, Y.; Ikeda, H. Pro-gastrin-releasing peptide as a factor predicting the incidence of brain metastasis in patients with small cell lung carcinoma with limited disease receiving prophylactic cranial irradiation. Cancer Am. Cancer Soc. 2005, 104, 811–816. [Google Scholar] [CrossRef]
- Forkasiewicz, A.; Dorociak, M.; Stach, K.; Szelachowski, P.; Tabola, R.; Augoff, K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell. Mol. Biol. Lett. 2020, 25, 35. [Google Scholar] [CrossRef]
- Anami, S.; Doi, H.; Nakamatsu, K.; Uehara, T.; Wada, Y.; Fukuda, K.; Inada, M.; Ishikawa, K.; Kanamori, S.; Nishimura, Y. Serum lactate dehydrogenase predicts survival in small-cell lung cancer patients with brain metastases that were treated with whole-brain radiotherapy. J. Radiat. Res. 2019, 60, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Steindl, A.; Schlieter, F.; Klikovits, T.; Leber, E.; Gatterbauer, B.; Frischer, J.M.; Dieckmann, K.; Widhalm, G.; Zochbauer-Muller, S.; Hoda, M.; et al. Prognostic assessment in patients with newly diagnosed small cell lung cancer brain metastases: Results from a real-life cohort. J. Neurooncol. 2019, 145, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, W.; Yin, W.; Xiao, Y.; Zhou, C.; Hu, Y.; Geng, S. The prognostic value of the serum neuron specific enolase and lactate dehydrogenase in small cell lung cancer patients receiving first-line platinum-based chemotherapy. Medicine 2017, 96, e8258. [Google Scholar] [CrossRef]
- Chan, J.C.; Chan, D.L.; Diakos, C.I.; Engel, A.; Pavlakis, N.; Gill, A.; Clarke, S.J. The lymphocyte-to-monocyte ratio is a superior predictor of overall survival in comparison to established biomarkers of resectable colorectal cancer. Ann. Surg. 2017, 265, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijima, T.F.; Muss, H.B.; Shachar, S.S.; Tamura, K.; Takamatsu, Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2015, 41, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I.I. Prognostic biomarkers in stage iv non-small cell lung cancer (nsclc): Neutrophil to lymphocyte ratio (nlr), lymphocyte to monocyte ratio (lmr), platelet to lymphocyte ratio (plr) and advanced lung cancer inflammation index (ali). Transl. Lung. Cancer Res 2019, 8, 886–894. [Google Scholar] [CrossRef]
Variable | Before PSM | After PSM | ||||||
---|---|---|---|---|---|---|---|---|
All Patients | Non-PCI | PCI | p | All Patients | Non-PCI | PCI | p | |
Clinical stage | 0.192 | 0.186 | ||||||
I–II | 21 (8.5%) | 17 (10.12%) | 4 (5.13%) | 10 (8.6%) | 7 (12.07%) | 3 (5.17%) | ||
III | 225 (91.5%) | 151 (89.88%) | 74 (94.87%) | 106 (91.4%) | 51 (87.93%) | 55 (94.83%) | ||
Gender | 0.532 | 0.83 | ||||||
Male | 57 (23.2%) | 37 (22.02%) | 20 (25.64%) | 29 (25%) | 15 (25.86%) | 14 (24.14%) | ||
Female | 189 (76.8%) | 131 (77.98%) | 58 (74.36%) | 87 (75%) | 43 (74.14%) | 44 (75.86%) | ||
Age | 0.052 | 0.353 | ||||||
<70 | 129 (52.4%) | 81 (48.21%) | 48 (61.54%) | 61 (52.6%) | 28 (48.28%) | 33 (56.9%) | ||
≥70 | 117 (47.6%) | 87 (51.79%) | 30 (38.46%) | 55 (47.4%) | 30 (51.72%) | 25 (43.1%) | ||
ECOG | 0.036 | 0.717 | ||||||
0–1 | 214 (87%) | 141 (83.93%) | 73 (93.59%) | 108 (93.1%) | 55 (94.83%) | 53 (91.38%) | ||
2–4 | 32 (13%) | 27 (16.07%) | 5 (6.41%) | 8 (6.9%) | 3 (5.17%) | 5 (8.62%) | ||
Smoke | 0.175 | 0.555 | ||||||
Yes | 74 (30.1%) | 46 (27.38%) | 28 (35.9%) | 39 (33.6%) | 18 (31.03%) | 21 (36.21%) | ||
No | 172 (69.9%) | 122 (72.62%) | 50 (64.1%) | 77 (66.4%) | 40 (68.97%) | 37 (63.79%) | ||
BMI | 0.099 | 0.85 | ||||||
Normal | 154 (62.6%) | 111 (66.07%) | 43 (55.13%) | 69 (59.5%) | 35 (60.34%) | 34 (58.62%) | ||
Abnormal | 92 (37.4%) | 57 (33.93%) | 35 (44.87%) | 47 (40.5%) | 23 (39.66%) | 24 (41.38%) | ||
ChT cycles | 0.033 | 1.000 | ||||||
<4 | 24 (9.8%) | 21 (12.5%) | 3 (3.85%) | 3 (2.6%) | 2 (3.45%) | 1 (1.72%) | ||
≥4 | 222 (90.2%) | 147 (87.5%) | 75 (96.15%) | 113 (97.4%) | 56 (96.55%) | 57 (98.28%) | ||
Time To RT | <0.001 | 0.775 | ||||||
≥1.8 | 157 (72.4%) | 96 (57.1%) | 61 (78.2%) | 91 (78.5%) | 44 (75.86%) | 47 (81.03%) | ||
<1.8 | 60 (24.4%) | 55 (32.7%) | 5 (6.4%) | 12 (10.3%) | 7 (12.07%) | 5 (8.62%) | ||
No RT | 29 (11.8%) | 17 (10.1%) | 12 (15.4%) | 12 (11.2%) | 7 (12.07%) | 6 (10.34%) | ||
HGB | 0.024 | 1.000 | ||||||
Normal | 16 (6.5%) | 15 (8.93%) | 1 (1.28%) | 3 (2.6%) | 2 (3.45%) | 1 (1.72%) | ||
Abnormal | 230 (93.5%) | 153 (91.07%) | 77 (98.72%) | 113 (97.4%) | 56 (96.55%) | 57 (98.28%) | ||
Na | <0.001 | 0.834 | ||||||
Normal | 182 (74%) | 136 (80.95%) | 46 (58.97%) | 85 (73.3%) | 42 (72.41%) | 43 (74.14%) | ||
Abnormal | 64 (26%) | 32 (19.05%) | 32 (41.03%) | 31 (26.7%) | 16 (27.59%) | 15 (25.86%) | ||
LYM | 0.713 | 0.802 | ||||||
Low | 205 (83.3%) | 139 (82.74%) | 66 (84.62%) | 97 (83.6%) | 49 (84.48%) | 48 (82.76%) | ||
High | 41 (16.7%) | 29 (17.26%) | 12 (15.38%) | 19 (16.4%) | 9 (15.52%) | 10 (17.24%) | ||
PLT | 0.23 | 0.793 | ||||||
Low | 46 (18.7%) | 28 (16.67%) | 18 (23.08%) | 17 (14.7%) | 8 (13.79%) | 9 (15.52%) | ||
High | 200 (81.3%) | 140 (83.33%) | 60 (76.92%) | 99 (85.3%) | 50 (86.21%) | 49 (84.48%) | ||
MPV | 0.52 | 0.678 | ||||||
Low | 73 (29.7%) | 52 (30.95%) | 21 (26.92%) | 32 (27.6%) | 17 (29.31%) | 15 (25.86%) | ||
High | 173 (70.3%) | 116 (69.05%) | 57 (73.08%) | 84 (72.4%) | 41 (70.69%) | 43 (74.14%) | ||
LDH | 0.363 | 0.455 | ||||||
Low | 122 (49.6%) | 80 (47.62%) | 42 (53.85%) | 64 (55.2%) | 34 (58.62%) | 30 (51.72%) | ||
High | 124 (50.4%) | 88 (52.38%) | 36 (46.15%) | 52 (44.8%) | 24 (41.38%) | 28 (48.28%) | ||
AGR | 0.209 | 0.059 | ||||||
Low | 177 (72%) | 125 (74.4%) | 52 (66.67%) | 85 (73.3%) | 47 (81.03%) | 38 (65.52%) | ||
High | 69 (28%) | 43 (25.6%) | 26 (33.33%) | 31 (26.7%) | 11 (18.97%) | 20 (34.48%) | ||
UA | 0.944 | 0.166 | ||||||
Low | 31 (12.6%) | 21 (12.5%) | 10 (12.82%) | 15 (12.9%) | 10 (17.24%) | 5 (8.62%) | ||
High | 215 (87.4%) | 147 (87.5%) | 68 (87.18%) | 101 (87.1%) | 48 (82.76%) | 53 (91.38%) | ||
CysC | 0.626 | 0.555 | ||||||
Low | 83 (33.7%) | 55 (32.74%) | 28 (35.9%) | 39 (33.6%) | 21 (36.21%) | 18 (31.03%) | ||
High | 163 (66.3%) | 113 (67.26%) | 50 (64.1%) | 77 (66.4%) | 37 (63.79%) | 40 (68.97%) | ||
CEA | 0.007 | 0.529 | ||||||
Low | 153 (62.2%) | 95 (56.55%) | 58 (74.36%) | 85 (73.3%) | 44 (75.86%) | 41 (70.69%) | ||
High | 93 (37.8%) | 73 (43.45%) | 20 (25.64%) | 31 (26.7%) | 14 (24.14%) | 17 (29.31%) | ||
NSE | 0.046 | 1.000 | ||||||
Low | 219 (89%) | 145(86.31%) | 74 (94.87%) | 108 (93.1%) | 54 (93.1%) | 54 (93.1%) | ||
High | 27 (11%) | 23(13.69%) | 4 (5.13%) | 8 (6.9%) | 4 (6.9%) | 4 (6.9%) | ||
ProGRP | 0.732 | 1.000 | ||||||
Low | 217 (88.2%) | 149 (88.69%) | 68 (87.18%) | 100 (86.2%) | 50 (86.21%) | 50 (86.21%) | ||
High | 29 (11.8%) | 19 (11.31%) | 10 (12.82%) | 16 (13.8%) | 8 (13.79%) | 8 (13.79%) | ||
CA125 | 0.13 | 0.075 | ||||||
Low | 201 (81.7%) | 133 (79.17%) | 68 (87.18%) | 90 (77.6%) | 41 (70.69%) | 49 (84.48%) | ||
High | 45 (18.3%) | 35 (20.83%) | 10 (12.82%) | 26 (22.4%) | 17 (29.31%) | 9 (15.52%) | ||
NLR | 0.45 | 0.431 | ||||||
Low | 31 (12.6%) | 23 (13.69%) | 8 (10.26%) | 17 (14.7%) | 10 (17.24%) | 7 (12.07%) | ||
High | 215 (87.4%) | 145 (86.31%) | 70 (89.74%) | 99 (85.3%) | 48 (82.76%) | 51 (87.93%) | ||
PLR | 0.583 | 0.542 | ||||||
Low | 210 (85.4%) | 142 (84.52%) | 68 (87.18%) | 104 (89.7%) | 51 (87.93%) | 53 (91.38%) | ||
High | 36 (14.6%) | 26 (15.48%) | 10 (12.82%) | 12 (10.3%) | 7 (12.07%) | 5 (8.62%) | ||
ALI | 0.126 | 0.636 | ||||||
Low | 211 (85.8%) | 148 (88.1%) | 63 (80.77%) | 94 (81%) | 48 (82.76%) | 46 (79.31%) | ||
High | 35 (14.2%) | 20 (11.9%) | 15 (19.23%) | 22 (19%) | 10 (17.24%) | 12 (20.69%) | ||
SIRI | 0.009 | 1.000 | ||||||
Low | 213 (86.6%) | 139 (82.74%) | 74 (94.87%) | 109 (94%) | 54 (93.1%) | 55 (94.83%) | ||
High | 33 (13.4%) | 29 (17.26%) | 4 (5.13%) | 7 (6%) | 4 (6.9%) | 3 (5.17%) | ||
AAPR | 0.913 | 1.000 | ||||||
Low | 220 (89.4%) | 150 (89.29%) | 70 (89.74%) | 106 (91.4%) | 53 (91.38%) | 53 (91.38%) | ||
High | 26 (10.6%) | 18 (10.71%) | 8 (10.26%) | 10 (8.6%) | 5 (8.62%) | 5 (8.62%) | ||
PNI | 0.046 | 0.342 | ||||||
Low | 31 (12.6%) | 26 (15.48%) | 5 (6.41%) | 11 (9.5%) | 7 (12.07%) | 4 (6.9%) | ||
High | 215 (87.4%) | 142 (84.52%) | 73 (93.59%) | 105 (90.5%) | 51 (87.93%) | 54 (93.1%) | ||
LMR | 0.172 | 0.608 | ||||||
Low | 54 (22%) | 41 (24.4%) | 13 (16.67%) | 18 (15.5%) | 10 (17.24%) | 8 (13.79%) | ||
High | 192 (78%) | 127 (75.6%) | 65 (83.33%) | 98 (84.5%) | 48 (82.76%) | 50 (86.21%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Q.; Sun, B.; Yao, N.; Liang, Y.; Cao, X.; Wei, L.; Cao, J. Construction of Brain Metastasis Prediction Model and Optimization of Prophylactic Cranial Irradiation Selection for Limited-Stage Small-Cell Lung Cancer. Cancers 2022, 14, 4906. https://doi.org/10.3390/cancers14194906
Hou Q, Sun B, Yao N, Liang Y, Cao X, Wei L, Cao J. Construction of Brain Metastasis Prediction Model and Optimization of Prophylactic Cranial Irradiation Selection for Limited-Stage Small-Cell Lung Cancer. Cancers. 2022; 14(19):4906. https://doi.org/10.3390/cancers14194906
Chicago/Turabian StyleHou, Qing, Bochen Sun, Ningning Yao, Yu Liang, Xin Cao, Lijuan Wei, and Jianzhong Cao. 2022. "Construction of Brain Metastasis Prediction Model and Optimization of Prophylactic Cranial Irradiation Selection for Limited-Stage Small-Cell Lung Cancer" Cancers 14, no. 19: 4906. https://doi.org/10.3390/cancers14194906
APA StyleHou, Q., Sun, B., Yao, N., Liang, Y., Cao, X., Wei, L., & Cao, J. (2022). Construction of Brain Metastasis Prediction Model and Optimization of Prophylactic Cranial Irradiation Selection for Limited-Stage Small-Cell Lung Cancer. Cancers, 14(19), 4906. https://doi.org/10.3390/cancers14194906