IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cases and Specimens
2.2. Immunohistochemical (IHC) Staining
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Correlations among Immune Biomarkers
3.3. Correlations among Survival Outcomes
3.4. Correlations between the Expression of Immune Biomarkers and Survival Outcomes
3.5. Predictive Capacity of Concurrently Low CD8+ T Cell Infiltration and IFNγ Expression for Survival Outcome in aUC Patients Treated with Pembrolizumab as a Second-Line Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellmunt, J.; von der Maase, H.; Mead, G.M.; Skoneczna, I.; De Santis, M.; Daugaard, G.; Boehle, A.; Chevreau, C.; Paz-Ares, L.; Laufman, L.R.; et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J. Clin. Oncol. 2012, 30, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J. Clin. Oncol. 2012, 30, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Hahn, N.M.; Rosenberg, J.; Sonpavde, G.; Hutson, T.; Oh, W.K.; Dreicer, R.; Vogelzang, N.; Sternberg, C.N.; Bajorin, D.F.; et al. Treatment of patients with metastatic urothelial cancer "unfit" for Cisplatin-based chemotherapy. J. Clin. Oncol. 2011, 29, 2432–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Chang, S.; Downs, T.M.; Efstathiou, J.A.; Friedlander, T.; et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 329–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Comperat, E.M.; Cowan, N.C.; Gakis, G.; Hernandez, V.; Linares Espinos, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takeuchi, A.; Nishiyama, H.; Eto, M. Current status and future perspectives of immunotherapy against urothelial and kidney cancer. Jpn. J. Clin. Oncol. 2021, 51, 1481–1492. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Fradet, Y.; Bellmunt, J.; Vaughn, D.J.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; Necchi, A.; et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: Results of >2 years of follow-up. Ann. Oncol. 2019, 30, 970–976. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Wang, L.; Saci, A.; Szabo, P.M.; Chasalow, S.D.; Castillo-Martin, M.; Domingo-Domenech, J.; Siefker-Radtke, A.; Sharma, P.; Sfakianos, J.P.; Gong, Y.; et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 2018, 9, 3503. [Google Scholar] [CrossRef]
- Tu, M.M.; Ng, T.L.; De Jong, F.C.; Zuiverloon, T.C.M.; Fazzari, F.G.T.; Theodorescu, D. Molecular Biomarkers of Response to PD-1/ PD-L1 Immune Checkpoint Blockade in Advanced Bladder Cancer. Bladder Cancer 2019, 5, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Dunn, G.P.; Koebel, C.M.; Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006, 6, 836–848. [Google Scholar] [CrossRef]
- Wheelock, E.F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science 1965, 149, 310–311. [Google Scholar] [CrossRef]
- Nakajima, C.; Uekusa, Y.; Iwasaki, M.; Yamaguchi, N.; Mukai, T.; Gao, P.; Tomura, M.; Ono, S.; Tsujimura, T.; Fujiwara, H.; et al. A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res. 2001, 61, 3399–3405. [Google Scholar]
- Ni, L.; Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018, 7, 4509–4516. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Ping, Y.; Zhang, K.; Yang, L.; Li, F.; Zhang, C.; Cheng, S.; Yue, D.; Maimela, N.R.; Qu, J.; et al. Low-Dose IFNgamma Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Res. 2019, 79, 3737–3748. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, C.; Xu, C.; Lou, Y.; Chen, J.; Yang, Y.; Yagita, H.; Overwijk, W.W.; Lizee, G.; Radvanyi, L.; et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res. 2012, 72, 5209–5218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakou, C.I.; Kamat, A.; Tang, D.N.; Chen, H.; Sun, J.; Troncoso, P.; Logothetis, C.; Sharma, P. CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl. Acad. Sci. USA 2008, 105, 14987–14992. [Google Scholar] [CrossRef] [Green Version]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017, 547, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Toda, Y.; Kono, K.; Abiru, H.; Kokuryo, K.; Endo, M.; Yaegashi, H.; Fukumoto, M. Application of tyramide signal amplification system to immunohistochemistry: A potent method to localize antigens that are not detectable by ordinary method. Pathol. Int. 1999, 49, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Holland, B.C.; Sood, A.; Delfino, K.; Dynda, D.I.; Ran, S.; Freed, N.; Alanee, S. Age and sex have no impact on expression levels of markers of immune cell infiltration and immune checkpoint pathways in patients with muscle-invasive urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Immunol. Immunother. 2019, 68, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Kamai, T.; Kijima, T.; Tsuzuki, T.; Nukui, A.; Abe, H.; Arai, K.; Yoshida, K.I. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival. Cancer Immunol. Immunother. 2021, 70, 2009–2021. [Google Scholar] [CrossRef] [PubMed]
- Mimura, K.; Teh, J.L.; Okayama, H.; Shiraishi, K.; Kua, L.F.; Koh, V.; Smoot, D.T.; Ashktorab, H.; Oike, T.; Suzuki, Y.; et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018, 109, 43–53. [Google Scholar] [CrossRef]
- Parra, E.R.; Behrens, C.; Rodriguez-Canales, J.; Lin, H.; Mino, B.; Blando, J.; Zhang, J.; Gibbons, D.L.; Heymach, J.V.; Sepesi, B.; et al. Image Analysis-based Assessment of PD-L1 and Tumor-Associated Immune Cells Density Supports Distinct Intratumoral Microenvironment Groups in Non-small Cell Lung Carcinoma Patients. Clin. Cancer Res. 2016, 22, 6278–6289. [Google Scholar] [CrossRef] [Green Version]
- Imai, H.; Kishikawa, T.; Minemura, H.; Yamada, Y.; Ibe, T.; Mori, K.; Yamaguchi, O.; Mouri, A.; Hamamoto, Y.; Kanazawa, K.; et al. Post-Progression Survival Influences Overall Survival among Patients with Advanced Non-Small Cell Lung Cancer Undergoing First-Line Pembrolizumab Monotherapy. Oncology 2021, 99, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Ito, K.; Kojima, T.; Kato, M.; Kanda, S.; Hatakeyama, S.; Matsui, Y.; Matsushita, Y.; Naito, S.; Shiga, M.; et al. Risk stratification for the prognosis of patients with chemoresistant urothelial cancer treated with pembrolizumab. Cancer Sci. 2021, 112, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Ito, K.; Kojima, T.; Maruyama, S.; Mukai, S.; Tsutsumi, M.; Miki, J.; Okuno, T.; Yoshio, Y.; Matsumoto, H.; et al. Pre-pembrolizumab neutrophil-to-lymphocyte ratio (NLR) predicts the efficacy of second-line pembrolizumab treatment in urothelial cancer regardless of the pre-chemo NLR. Cancer Immunol. Immunother. 2021. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Park, J.H.; Ren, L.; Yew, P.Y.; Kiyotani, K.; Antic, T.; O’Connor, K.; O’Donnell, P.H.; Nakamura, Y. CD8 lymphocytes in tumors and nonsynonymous mutational load correlate with prognosis of bladder cancer patients treated with immune checkpoint inhibitors. Cancer Rep. 2018, 1, e1002. [Google Scholar] [CrossRef] [Green Version]
- Gandara, D.R.; von Pawel, J.; Mazieres, J.; Sullivan, R.; Helland, A.; Han, J.Y.; Ponce Aix, S.; Rittmeyer, A.; Barlesi, F.; Kubo, T.; et al. Atezolizumab Treatment Beyond Progression in Advanced NSCLC: Results From the Randomized, Phase III OAK Study. J. Thorac. Oncol. 2018, 13, 1906–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Higgs, B.W.; Morehouse, C.A.; Streicher, K.; Brohawn, P.Z.; Pilataxi, F.; Gupta, A.; Ranade, K. Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clin. Cancer Res. 2018, 24, 3857–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Kohli, K.; Black, R.G.; Yao, L.; Spadinger, S.M.; He, Q.; Pillarisetty, V.G.; Cranmer, L.D.; Van Tine, B.A.; Yee, C.; et al. Systemic Interferon-gamma Increases MHC Class I Expression and T-cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol. Res. 2019, 7, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Garris, C.S.; Arlauckas, S.P.; Kohler, R.H.; Trefny, M.P.; Garren, S.; Piot, C.; Engblom, C.; Pfirschke, C.; Siwicki, M.; Gungabeesoon, J.; et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-gamma and IL-12. Immunity 2018, 49, 1148–1161 e1147. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef]
- Stanietsky, N.; Simic, H.; Arapovic, J.; Toporik, A.; Levy, O.; Novik, A.; Levine, Z.; Beiman, M.; Dassa, L.; Achdout, H.; et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 17858–17863. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, Q.; Wang, Z.; Zhang, H.; Zeng, H.; Huang, Q.; Chen, Y.; Jiang, W.; Lin, Z.; Qu, Y.; et al. Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J. Immunother. Cancer 2020, 8, e000978. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014, 26, 923–937. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Zhu, X.; Lan, T.; Ding, D.; Zheng, Z.; Chen, T.; Huang, Y.; Liu, J.; Yang, X.; Shao, J.; et al. TIGIT promotes CD8(+)T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunol. Immunother. 2021, 70, 2781–2793. [Google Scholar] [CrossRef] [PubMed]
- Vuky, J.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Bellmunt, J.; Powles, T.; Bajorin, D.; Hahn, N.M.; Savage, M.J.; et al. Long-Term Outcomes in KEYNOTE-052: Phase II Study Investigating First-Line Pembrolizumab in Cisplatin-Ineligible Patients With Locally Advanced or Metastatic Urothelial Cancer. J. Clin. Oncol. 2020, 38, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
Patients, n = 26 (%) | |||
---|---|---|---|
Age, years | Primary site | ||
Median (range) | 72.5 (47–87) | Bladder cancer | 18 (69.2) |
Sex | Upper urinary tract | 8 (30.7) | |
Female | 5 (19.2) | Tumor status | |
Male | 21 (80.7) | pTa | 0 (0) |
Tobacco history | pTis | 0 (0) | |
No | 9 (34.6) | pT1 | 0 (0) |
Yes | 17 (65.3) | pT2 | 4 (15.3) |
ECOG-PS | pT3 | 9 (34.6) | |
0 | 4 (15.3) | pT4 | 6 (23.0) |
1 | 12 (46.1) | NA | 7 (26.9) |
2 | 5 (19.2) | Nodal status | |
3 | 4 (15.3) | pN0 | 14 (53.8) |
4 | 1 (3.8) | pN1 | 1 (3.8) |
NLR | pN2 | 2 (7.6) | |
Median (range) | 4.07 (1.03–28.84) | pN3 | 1 (3.8) |
Prior chemotherapy | NA | 8 (30.7) | |
GC | 10 (38.4) | Metastatic site | |
G-CBDCA | 11 (42.3) | Liver | 6 (23.0) |
Both | 4 (15.3) | Other | 20 (76.9) |
Others | 1 (3.8) | No metastasis | 1 (3.8) |
Prior RT | Histology | ||
Yes | 7 (26.9) | UC | 21 (80.7) |
No | 19 (73.0) | Other | 5 (19.2) |
RT after Pembrolizumab | Histological grade | ||
Yes | 7 (26.9) | High | 26 (100.0) |
No | 19 (73.0) | Low | 0 (0) |
PR, n (%) | SD or PD, n (%) | p Value * | ||
---|---|---|---|---|
Patients | 10 (38.5) | 16 (61.5) | ||
IFNγ | High | 4 (15.3) | 10 (38.4) | - |
Low | 6 (23.0) | 6 (23.0) | 0.9367 | |
CD8 | High | 6 (23.0) | 3 (11.5) | - |
Low | 4 (15.3) | 13 (50.0) | 0.0425 † | |
CD4 | High | 5 (19.2) | 5 (19.2) | - |
Low | 5 (19.2) | 11 (42.3) | 0.2929 | |
PD-L1, TC | High | 4 (15.3) | 9 (34.6) | - |
Low | 6 (23.0) | 7 (26.9) | 0.8869 | |
PD-L1, IC | High | 2 (7.6) | 8 (30.7) | - |
Low | 8 (30.7) | 8 (30.7) | 0.977 | |
TIGIT | High | 6 (23.0) | 8 (30.7) | - |
Low | 4 (15.3) | 8 (30.7) | 0.464 |
Spearman’s rho | p Value * | ||
---|---|---|---|
IFNγ | CD8 | 0.0617 | 0.7646 |
CD4 | −0.0741 | 0.7189 | |
PD-L1, TC | 0.063 | 0.7599 | |
PD-L1, IC | −0.0338 | 0.87 | |
TIGIT | −0.4218 | 0.0318 † |
OS | PFS | PPS | |||||
---|---|---|---|---|---|---|---|
HR (95% CI) | p * | HR (95% CI) | p * | HR (95% CI) | p * | ||
IFNγ | High | Ref. | - | 1.48 (0.63–3.52) | 0.3642 | Ref. | - |
Low | 1.17 (0.46–2.91) | 0.741 | Ref. | - | 5.37 (1.69–20.40) | 0.0042 † | |
CD8 | High | Ref. | - | Ref. | - | Ref. | - |
Low | 5.58 (1.78–24.65) | 0.0021 † | 4.12 (1.51–13.34) | 0.0047 † | 1.47 (0.47–6.39) | 0.5338 | |
CD4 | High | Ref. | - | Ref. | - | Ref. | - |
Low | 1.79 (0.70–5.10) | 0.2272 | 1.46 (0.62–3.68) | 0.3904 | 1.27 (0.48–3.72) | 0.6371 | |
PD-L1, TC | High | 1.001 (0.40–2.49) | 0.9976 | 1.16 (0.49–2.73) | 0.7276 | 1.006 (0.38–2.69) | 0.9901 |
Low | Ref. | - | Ref. | - | Ref. | - | |
PD-L1, IC | High | 1.26 (0.46–3.23) | 0.6377 | 1.48 (0.60–3.47) | 0.3819 | Ref. | - |
Low | Ref. | - | Ref. | - | 1.15 (0.44–3.17) | 0.7797 | |
TIGIT | High | Ref. | - | Ref. | - | 2.06 (0.77–5.81) | 0.1479 |
Low | 1.003 (0.40–2.50) | 0.9943 | 1.38 (0.59–3.24) | 0.4498 | Ref. | - |
OS | PFS | PPS | |||||
---|---|---|---|---|---|---|---|
HR (95% CI) | p * | HR (95% CI) | p * | HR (95% CI) | p * | ||
Low CD8+ T cells and low IFNγ | Yes | 4.07 (1.36–12.74) | 0.0125 † | 1.20 (0.46–2.97) | 0.703 | 7.21 (2.14–27.89) | 0.0014 † |
No | Ref. | - | Ref. | - | Ref. | - | |
NLR | 14.46 (2.13–108.07) | 0.0067 † | 26.45 (3.76–202.62) | 0.0011 † | 0.62 (0.09–4.10) | 0.619 | |
PS | ≥2 | 1.305 (0.41–3.84) | 0.635 | 1.22 (0.43–3.19) | 0.695 | 3.44 (0.96–13.67) | 0.058 |
<2 | Ref. | - | Ref. | - | Ref. | - | |
Liver metastasis | Yes | 2.91 (0.83–9.49) | 0.093 | 1.40 (0.43–3.87) | 0.544 | 4.84 (1.29–18.16) | 0.020 † |
No | Ref. | - | Ref. | - | Ref. | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakatani, T.; Kita, Y.; Fujimoto, M.; Sano, T.; Hamada, A.; Nakamura, K.; Takada, H.; Goto, T.; Sawada, A.; Akamatsu, S.; et al. IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab. Cancers 2022, 14, 263. https://doi.org/10.3390/cancers14020263
Sakatani T, Kita Y, Fujimoto M, Sano T, Hamada A, Nakamura K, Takada H, Goto T, Sawada A, Akamatsu S, et al. IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab. Cancers. 2022; 14(2):263. https://doi.org/10.3390/cancers14020263
Chicago/Turabian StyleSakatani, Toru, Yuki Kita, Masakazu Fujimoto, Takeshi Sano, Akihiro Hamada, Kenji Nakamura, Hideaki Takada, Takayuki Goto, Atsuro Sawada, Shusuke Akamatsu, and et al. 2022. "IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab" Cancers 14, no. 2: 263. https://doi.org/10.3390/cancers14020263
APA StyleSakatani, T., Kita, Y., Fujimoto, M., Sano, T., Hamada, A., Nakamura, K., Takada, H., Goto, T., Sawada, A., Akamatsu, S., & Kobayashi, T. (2022). IFN-Gamma Expression in the Tumor Microenvironment and CD8-Positive Tumor-Infiltrating Lymphocytes as Prognostic Markers in Urothelial Cancer Patients Receiving Pembrolizumab. Cancers, 14(2), 263. https://doi.org/10.3390/cancers14020263