NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort and Samples
2.2. Capture Next-Generation Sequencing Panel Design
2.3. Bioinformatic Analyses
2.4. Fluorescence In Situ Hybridization
2.5. Whole-Exome Sequencing
2.6. Statistical Analyses
3. Results
3.1. Targeted Capture Next-Generation Sequencing Panel and Exome Statistics
3.2. Molecular Karyotyping Characterization of Patients with MM Using NGS Panels
3.3. Comparative Results for NGS Panel, FISH and WES
3.4. Impact of Molecular Karyotyping-Identified Alterations on Progression-Free Survival
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borello, I. Can We Change the Disease Biology of Multiple Myeloma? Leuk. Res. 2012, 36 (Suppl. 1), S3–S12. [Google Scholar] [CrossRef] [Green Version]
- Bolli, N.; Avet-Loiseau, H.; Wedge, D.C.; van Loo, P.; Alexandrov, L.B.; Martincorena, I.; Dawson, K.J.; Iorio, F.; Nik-Zainal, S.; Bignell, G.R.; et al. Heterogeneity of Genomic Evolution and Mutational Profiles in Multiple Myeloma. Nat. Commun. 2014, 5, 2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.B.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients with Newly Diagnosed Myeloma. J. Clin. Oncol. 2015, 33, 3911. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Salem, K.Z.; Park, J.; Landau, D.A.; Getz, G.; Ghobrial, I.M. Genomic Complexity of Multiple Myeloma and Its Clinical Implications. Nat. Rev. Clin. Oncol. 2017, 14, 100–113. [Google Scholar] [CrossRef]
- Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; et al. Treatment of Multiple Myeloma with High-Risk Cytogenetics: A Consensus of the International Myeloma Working Group. Blood 2016, 127, 2955–2962. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Hulin, C.; Campion, L.; Rodon, P.; Marit, G.; Attal, M.; Royer, B.; Dib, M.; Voillat, L.; Bouscary, D.; et al. Chromosomal Abnormalities Are Major Prognostic Factors in Elderly Patients with Multiple Myeloma: The Intergroupe Francophone Du Myélome Experience. J. Clin. Oncol. 2013, 31, 2806–2809. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Fonseca, R.; Ketterling, R.P.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Hayman, S.R.; Buadi, F.K.; Dingli, D.; Knudson, R.A.; et al. Trisomies in Multiple Myeloma: Impact on Survival in Patients with High-Risk Cytogenetics. Blood 2012, 119, 2100–2105. [Google Scholar] [CrossRef] [Green Version]
- Hebraud, B.; Magrangeas, F.; Cleynen, A.; Lauwers-Cances, V.; Chretien, M.L.; Hulin, C.; Leleu, X.; Yon, E.; Marit, G.; Karlin, L.; et al. Role of Additional Chromosomal Changes in the Prognostic Value of t(4;14) and Del(17p) in Multiple Myeloma: The IFM Experience. Blood 2015, 125, 2095–2100. [Google Scholar] [CrossRef] [Green Version]
- Leiba, M.; Duek, A.; Amariglio, N.; Avigdor, A.; Benyamini, N.; Hardan, I.; Zilbershats, I.; Ganzel, C.; Shevetz, O.; Novikov, I.; et al. Translocation t(11;14) in Newly Diagnosed Patients with Multiple Myeloma: Is It Always Favorable? Genes Chromosomes Cancer 2016, 55, 710–718. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A High-Risk, Double-Hit, Group of Newly Diagnosed Myeloma Identified by Genomic Analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V. Multiple Myeloma: 2020 Update on Diagnosis, Risk-Stratification and Management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Yang, Y.P.; Bai, J.; Yue, T.T.; Yang, P.Y.; Zhang, Y.; Fan, H.Q.; Li, W.; Jin, F.Y. Adverse Effects of Double-Hit Combining ISS-Ⅲ Stage and 1q Gain or Del (17p) on Prognosis of Patients with Newly Diagnosed Multiple Myeloma. Zhonghua Xue Ye Xue Za Zhi 2019, 40, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Walker, B.A.; Davies, F.E. The Genetic Architecture of Multiple Myeloma. Nat. Rev. Cancer 2012, 12, 335–348. [Google Scholar] [CrossRef] [PubMed]
- JLohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Yellapantula, V.; Hultcrantz, M.; Rustad, E.H.; Wasserman, E.; Londono, D.; Cimera, R.; Ciardiello, A.; Landau, H.; Akhlaghi, T.; Mailankody, S.; et al. Comprehensive Detection of Recurring Genomic Abnormalities: A Targeted Sequencing Approach for Multiple Myeloma. Blood Cancer J. 2019, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Heredia, Y.; Sánchez-Vega, B.; Onecha, E.; Barrio, S.; Alonso, R.; Martínez-ávila, J.C.; Cuenca, I.; Agirre, X.; Braggio, E.; Hernández, M.T.; et al. Mutational Screening of Newly Diagnosed Multiple Myeloma Patients by Deep Targeted Sequencing. Haematologica 2018, 103, e544–e548. [Google Scholar] [CrossRef]
- Kortuem, K.M.; Braggio, E.; Bruins, L.; Barrio, S.; Shi, C.S.; Zhu, Y.X.; Tibes, R.; Viswanatha, D.; Votruba, P.; Ahmann, G.; et al. Panel Sequencing for Clinically Oriented Variant Screening and Copy Number Detection in 142 Untreated Multiple Myeloma Patients. Blood Cancer J. 2016, 6, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Sacco, A.; Federico, C.; Todoerti, K.; Ziccheddu, B.; Palermo, V.; Giacomini, A.; Ravelli, C.; Maccarinelli, F.; Bianchi, G.; Belotti, A.; et al. Specific Targeting of the KRAS Mutational Landscape in Myeloma as a Tool to Unveil the Elicited Antitumor Activity. Blood 2021, 138, 1705–1720. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.; Sanchez-Vega, B.; Barrio, S.; Cuenca, I.; Ruiz-Heredia, Y.; Alonso, R.; Rapado, I.; Marin, C.; Cedena, M.T.; Paiva, B.; et al. Analytical and Clinical Validation of a Novel In-House Deep-Sequencing Method for Minimal Residual Disease Monitoring in a Phase II Trial for Multiple Myeloma. Leukemia 2017, 31, 1446–1449. [Google Scholar] [CrossRef]
- Rosiñol, L.; Oriol, A.; Rios, R.; Sureda, A.; Blanchard, M.J.; Hernández, M.T.; Martínez-Martínez, R.; Moraleda, J.M.; Jarque, I.; Bargay, J.; et al. Bortezomib, Lenalidomide, and Dexamethasone as Induction Therapy Prior to Autologous Transplant in Multiple Myeloma. Blood 2019, 134, 1337–1345. [Google Scholar] [CrossRef]
- Jiménez-Ubieto, A.; Paiva, B.; Puig, N.; Cedena, M.T.; Martínez-López, J.; Oriol, A.; Blanchard, M.J.; Ríos, R.; Martin, J.; Martínez, R.; et al. Validation of the International Myeloma Working Group Standard Response Criteria in the PETHEMA/GEM2012MENOS65 Study: Are These Times of Change? Blood 2021, 138, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Misiewicz-Krzeminska, I.; de Ramón, C.; Corchete, L.A.; Krzeminski, P.; Rojas, E.A.; Isidro, I.; García-Sanz, R.; Martínez-López, J.; Oriol, A.; Bladé, J.; et al. Quantitative Expression of Ikaros, IRF4, and PSMD10 Proteins Predicts Survival in VRD-Treated Patients with Multiple Myeloma. Blood Adv. 2020, 4, 6023–6033. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast Processing of NGS Alignment Formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic Mutation and Copy Number Alteration Discovery in Cancer by Exome Sequencing. Genome Res. 2012, 22, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lupat, R.; Amarasinghe, K.C.; Thompson, E.R.; Doyle, M.A.; Ryland, G.L.; Tothill, R.W.; Halgamuge, S.K.; Campbell, I.G.; Gorringe, K.L. CONTRA: Copy Number Analysis for Targeted Resequencing. Bioinformatics 2012, 28, 1307. [Google Scholar] [CrossRef] [Green Version]
- Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A Probabilistic Framework for Structural Variant Discovery. Genome Biol. 2014, 15, R84. [Google Scholar] [CrossRef] [Green Version]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural Variant Discovery by Integrated Paired-End and Split-Read Analysis. Bioinformatics 2012, 28, i333. [Google Scholar] [CrossRef] [Green Version]
- Duez, M.; Giraud, M.; Herbert, R.; Rocher, T.; Salson, M.; Thonier, F. Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing. PLoS ONE 2016, 11, e0166126. [Google Scholar] [CrossRef]
- Paiva, B.; Gutiérrez, N.C.; Rosiñol, L.; Vídriales, M.B.; Montalbán, M.Á.; Martínez-López, J.; Mateos, M.V.; Cibeira, M.T.; Cordón, L.; Oriol, A.; et al. High-Risk Cytogenetics and Persistent Minimal Residual Disease by Multiparameter Flow Cytometry Predict Unsustained Complete Response after Autologous Stem Cell Transplantation in Multiple Myeloma. Blood 2012, 119, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Thakurta, A.; Ortiz, M.; Blecua, P.; Towfic, F.; Corre, J.; Serbina, N.V.; Flynt, E.; Yu, Z.; Yang, Z.; Palumbo, A.; et al. High Subclonal Fraction of 17p Deletion Is Associated with Poor Prognosis in Multiple Myeloma. Blood 2019, 133, 1217–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, C.; Jara-Acevedo, M.; Corchete, L.A.; Castillo, D.; Ordóñez, G.R.; Sarasquete, M.E.; Puig, N.; Martínez-López, J.; Prieto-Conde, M.I.; García-Álvarez, M.; et al. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma. J. Mol. Diagn. 2017, 19, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Cody Ashby, T.; Bauer, M.; Davies, F.E.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. Identification of Novel Mutational Drivers Reveals Oncogene Dependencies in Multiple Myeloma. Blood 2018, 132, 587–597. [Google Scholar] [CrossRef]
- Sudha, P.; Ahsan, A.; Ashby, C.; Kausar, T.; Khera, A.; Kazeroun, M.H.; Hsu, C.-C.; Wang, L.; Fitzsimons, E.; Salminen, O.; et al. Myeloma Genome Project Panel Is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma. Clin. Cancer Res. 2022, 28, OF1–OF11. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeon, K.; Hutt, K.; Zlotnicki, A.M.; Kim, H.J.; Lee, J.; Kim, H.S.; Kang, H.J.; Lee, Y.K. Immunoglobulin gene rearrangement in Koreans with multiple myeloma: Clonality assessment and repertoire analysis using next-generation sequencing. PloS ONE 2021, 16, e0253541. [Google Scholar] [CrossRef]
- Medina, A.; Jiménez, C.; Sarasquete, M.E.; González, M.; Chillón, M.C.; Balanzategui, A.; Prieto-Conde, I.; García-Álvarez, M.; Puig, N.; González-Calle, V.; et al. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J. 2020, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrero, S.; Capello, D.; Svaldi, M.; Boi, M.; Gatti, D.; Drandi, D.; Rossi, D.; Barbiero, S.; Mantoan, B.; Mantella, E.; et al. Multiple myeloma shows no intra-disease clustering of immunoglobulin heavy chain genes. Haematologica 2012, 97, 849. [Google Scholar] [CrossRef]
- Hadzidimitriou, A.; Stamatopoulos, K.; Belessi, C.; Lalayianni, C.; Stavroyianni, N.; Smilevska, T.; Hatzi, K.; Laoutaris, N.; Anagnostopoulos, A.; Kollia, P.; et al. Immunoglobulin genes in multiple myeloma: Expressed and non-expressed repertoires, heavy and light chain pairings and somatic mutation patterns in a series of 101 cases. Haematologica 2006, 97, 781–787. [Google Scholar]
Total in Our Study (N = 149) * | Total GEM2012MENOS65 Clinical Trial (N = 458) * | |
---|---|---|
Median age (range) in years | 60 (42–65) | 58 (31–65) |
Sex (%) | ||
Male | 52.6 | 52.4 |
Female | 47.4 | 47.6 |
ECOG performance status (%) | ||
0 | 47 | 42.6 |
1 | 35.6 | 39.7 |
2 | 15.2 | 13.5 |
3 | 2.3 | 3.5 |
Missing | 2.3 | 0.7 |
M-protein type (%) | ||
IgG | 63.7 | 59.6 |
IgA | 20 | 23.4 |
Light chain | 14.8 | 15.1 |
IgD | 0 | 0.7 |
Nonsecretory | 1.5 | 1.3 |
ISS stage (%) | ||
I | 24.7 | 23.4 |
II | 36 | 36.2 |
III | 39.6 | 39.1 |
Missing | 0 | 1.3 |
Lactate dehydrogenase elevated (%) | ||
Yes | 8.1 | 14.2 |
No | 77.8 | 82.1 |
Missing | 14.1 | 3.7 |
High-risk cytogenetics (%) | 19.7 | 20.1 |
(A) | Alteration | PPV | NPV | Sensitivity | Specificity | Global Accuracy |
Tx + CNVs | 0.90 | 0.90 | 0.62 | 0.98 | 0.90 | |
High-risk | 0.88 | 0.91 | 0.65 | 0.98 | 0.91 | |
Tx | 0.92 | 0.93 | 0.65 | 0.99 | 0.92 | |
t(4,14) | 0.92 | 0.91 | 0.61 | 0.99 | 0.91 | |
t(11,14) | 0.90 | 0.85 | 0.82 | 0.92 | 0.87 | |
t(14,16) | 1.00 | 0.96 | 0.40 | 1.00 | 0.96 | |
(B) | Alteration | PPV | NPV | Sensitivity | Specificity | Global Accuracy |
CNVs | 0.97 | 0.96 | 0.85 | 0.99 | 0.96 | |
chr1p | 1 | 0.93 | 0.73 | 1 | 0.94 | |
chr1q | 1 | 0.94 | 0.88 | 1 | 0.96 | |
chr17 | 0.83 | 1 | 1 | 0.98 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa-Rosa, J.M.; Cuenca, I.; Medina, A.; Vázquez, I.; Sánchez-delaCruz, A.; Buenache, N.; Sánchez, R.; Jiménez, C.; Rosiñol, L.; Gutiérrez, N.C.; et al. NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial. Cancers 2022, 14, 5169. https://doi.org/10.3390/cancers14205169
Rosa-Rosa JM, Cuenca I, Medina A, Vázquez I, Sánchez-delaCruz A, Buenache N, Sánchez R, Jiménez C, Rosiñol L, Gutiérrez NC, et al. NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial. Cancers. 2022; 14(20):5169. https://doi.org/10.3390/cancers14205169
Chicago/Turabian StyleRosa-Rosa, Juan Manuel, Isabel Cuenca, Alejandro Medina, Iria Vázquez, Andrea Sánchez-delaCruz, Natalia Buenache, Ricardo Sánchez, Cristina Jiménez, Laura Rosiñol, Norma C. Gutiérrez, and et al. 2022. "NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial" Cancers 14, no. 20: 5169. https://doi.org/10.3390/cancers14205169
APA StyleRosa-Rosa, J. M., Cuenca, I., Medina, A., Vázquez, I., Sánchez-delaCruz, A., Buenache, N., Sánchez, R., Jiménez, C., Rosiñol, L., Gutiérrez, N. C., Ruiz-Heredia, Y., Barrio, S., Oriol, A., Martin-Ramos, M. -L., Blanchard, M. -J., Ayala, R., Ríos-Tamayo, R., Sureda, A., Hernández, M. -T., ... Martínez-Lopez, J. (2022). NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial. Cancers, 14(20), 5169. https://doi.org/10.3390/cancers14205169