Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro. Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.M.; Cagney, D.N.; Catalano, P.J.; Warren, L.E.; Bellon, J.R.; Punglia, R.S.; Claus, E.B.; Lee, E.Q.; Wen, P.Y.; Haas-Kogan, D.A.; et al. Brain Metastases in Newly Diagnosed Breast Cancer: A Population-Based Study. JAMA Oncol. 2017, 3, 1069–1077. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients with Brain Metastases. J. Clin. Oncol. 2012, 30, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive Partitioning Analysis (RPA) of Prognostic Factors in Three Radiation Therapy Oncology Group (RTOG) Brain Metastases Trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef]
- Sperduto, P.W.; De, B.; Li, J.; Carpenter, D.; Kirkpatrick, J.; Milligan, M.; Shih, H.A.; Kutuk, T.; Kotecha, R.; Higaki, H.; et al. The Graded Prognostic Assessment (GPA) for Lung Cancer Patients with Brain Metastases: Initial Report of the Small Cell Lung Cancer GPA and Update of the Non-Small Cell Lung Cancer GPA Including the Effect of Programmed Death Ligand-1 (PD-L1) and Other Prognostic Factors. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 60–74. [Google Scholar] [PubMed]
- Sperduto, P.W.; Jiang, W.; Brown, P.D.; Braunstein, S.; Sneed, P.; Wattson, D.A.; Shih, H.A.; Bangdiwala, A.; Shanley, R.; Lockney, N.A.; et al. Estimating Survival in Melanoma Patients with Brain Metastases: An Update of the Graded Prognostic Assessment for Melanoma Using Molecular Markers (Melanoma-molGPA). Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 812–816. [Google Scholar] [CrossRef] [Green Version]
- Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Effect of Tumor Subtype on Survival and the Graded Prognostic Assessment for Patients with Breast Cancer and Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 2111–2117. [Google Scholar] [CrossRef] [Green Version]
- Vosoughi, E.; Lee, J.M.; Miller, J.R.; Nosrati, M.; Minor, D.R.; Abendroth, R.; Lee, J.W.; Andrews, B.T.; Leng, L.Z.; Wu, M.; et al. Survival and Clinical Outcomes of Patients with Melanoma Brain Metastasis in the Era of Checkpoint Inhibitors and Targeted Therapies. BMC Cancer 2018, 18, 490. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Soejima, K.; Mitsudomi, T. Brain Metastases in Oncogene-Driven Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2019, 8, S298–S307. [Google Scholar] [CrossRef] [PubMed]
- Nabors, L.B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S.; Butowski, N.; Campian, J.L.; Clark, S.W.; Fabiano, A.J.; et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 1537–1570. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B.D.; Rushing, C.N.; Cummings, M.A.; Jutzy, J.M.; Choudhury, K.R.; Moravan, M.J.; Fecci, P.E.; Adamson, J.; Chmura, S.J.; Milano, M.T.; et al. Predicting Intracranial Progression Following Stereotactic Radiosurgery for Brain Metastases: Implications for Post SRS Imaging. J. Radiosurg. SBRT 2019, 6, 179–187. [Google Scholar] [PubMed]
- Foster, C.C.; Pitroda, S.P.; Weichselbaum, R.R. Definition, Biology, and History of Oligometastatic and Oligoprogressive Disease. Cancer J. 2020, 26, 96–99. [Google Scholar] [CrossRef]
- Pichert, M.D.; Canavan, M.E.; Maduka, R.C.; Li, A.X.; Ermer, T.; Zhan, P.L.; Kaminski, M.; Udelsman, B.V.; Blasberg, J.D.; Mase, V.J.; et al. Brief Report: Revisiting Indications for Brain Imaging During the Clinical Staging Evaluation of Lung Cancer. JTO Clin. Res. Rep. 2022, 3, 100318. [Google Scholar] [PubMed]
- Page, S.; Milner-Watts, C.; Perna, M.; Janzic, U.; Vidal, N.; Kaudeer, N.; Ahmed, M.; McDonald, F.; Locke, I.; Minchom, A.; et al. Systemic Treatment of Brain Metastases in Non-Small Cell Lung Cancer. Eur. J. Cancer 2020, 132, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Atkinson, V.; Lo, S.; Sandhu, S.; Guminski, A.D.; Brown, M.P.; Wilmott, J.S.; Edwards, J.; Gonzalez, M.; Scolyer, R.A.; et al. Combination Nivolumab and Ipilimumab or Nivolumab Alone in Melanoma Brain Metastases: A Multicentre Randomised Phase 2 Study. Lancet Oncol. 2018, 19, 672–681. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.H.; Han, J.-Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; García Campelo, M.R.; Kim, D.-W.; et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol. 2020, 38, 3592–3603. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Yamamoto, M.; Bernhardt, D.; Smith, D.E.; Gao, D.; Serizawa, T.; Yomo, S.; Aiyama, H.; Higuchi, Y.; Shuto, T.; et al. Evaluation of First-Line Radiosurgery vs. Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020, 6, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.; Akhavan, D.; Sedrak, M.; Glaser, S.; Amini, A. Shifting Paradigms: Whole Brain Radiation Therapy versus Stereotactic Radiosurgery for Brain Metastases. CNS Oncol. 2019, 8, CNS27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G., 2nd; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs. Radiosurgery with Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative Stereotactic Radiosurgery Compared with Whole Brain Radiotherapy for Resected Metastatic Brain Disease (NCCTG N107C/CEC·3): A Multicentre, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; et al. Response Assessment Criteria for Brain Metastases: Proposal from the RANO Group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef]
- Gondi, V.; Meyer, J.; Shih, H.A. Advances in Radiotherapy for Brain Metastases. Neurooncol. Adv. 2021, 3, v26–v34. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Peacock, D.N.; Attia, A.; Braunstein, S.E.; Ahluwalia, M.S.; Hepel, J.; Chung, C.; Contessa, J.; McTyre, E.; Peiffer, A.M.; Lucas, J.T., Jr.; et al. Prediction of New Brain Metastases after Radiosurgery: Validation and Analysis of Performance of a Multi-Institutional Nomogram. J. Neurooncol. 2017, 135, 403–411. [Google Scholar] [CrossRef]
- Rodrigues, G.; Warner, A.; Zindler, J.; Slotman, B.; Lagerwaard, F. A Clinical Nomogram and Recursive Partitioning Analysis to Determine the Risk of Regional Failure after Radiosurgery Alone for Brain Metastases. Radiother. Oncol. 2014, 111, 52–58. [Google Scholar] [CrossRef]
- Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Kirshner, J.J.; Krop, I.E.; Levinson, J.; et al. Recommendations on Disease Management for Patients with Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 2804–2807. [Google Scholar] [CrossRef]
- Ammirati, M.; Nahed, B.V.; Andrews, D.; Chen, C.C.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Treatment Options for Adults with Multiple Metastatic Brain Tumors. Neurosurgery 2019, 84, E180–E182. [Google Scholar] [CrossRef] [Green Version]
- Glare, P.; Virik, K.; Jones, M.; Hudson, M.; Eychmuller, S.; Simes, J.; Christakis, N. A Systematic Review of Physicians’ Survival Predictions in Terminally Ill Cancer Patients. BMJ 2003, 327, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieder, C.; Mehta, M.P. Prognostic Indices for Brain Metastases—Usefulness and Challenges. Radiat. Oncol. 2009, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.-P.; et al. Whole Brain Radiation Therapy with or without Stereotactic Radiosurgery Boost for Patients with One to Three Brain Metastases: Phase III Results of the RTOG 9508 Randomised Trial. Lancet 2004, 363, 1665–1672. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S.; et al. Estimating Survival in Patients with Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA). JAMA Oncol. 2017, 3, 827–831. [Google Scholar] [CrossRef] [PubMed]
- McTyre, E.R.; Soike, M.H.; Farris, M.; Ayala-Peacock, D.N.; Hepel, J.T.; Page, B.R.; Shen, C.; Kleinberg, L.; Contessa, J.N.; Corso, C.; et al. Multi-Institutional Validation of Brain Metastasis Velocity, a Recently Defined Predictor of Outcomes Following Stereotactic Radiosurgery. Radiother. Oncol. 2020, 142, 168–174. [Google Scholar] [CrossRef] [PubMed]
Current Cohort (n = 890) | Natarajan 2019 (n = 755) | |
---|---|---|
N (%) | N (%) | |
Institution | - | |
1 | 162 (18) | |
2 | 728 (82) | |
Year of SRS | - | |
2020 | 266 (30) | |
2019 | 260 (29) | |
2018 | 265 (30) | |
2017 | 99 (11) | |
Median age at SRS (range) | 64 (22–92) | 60 (22–91) |
Sex | ||
Female | 491 (55) | 441 (58) |
Male | 399 (45) | 311 (41) |
Unknown | 0 (0) | 3 (0.4) |
Race | ||
White | 653 (73) | 566 (75) |
Black | 199 (22) | 103 (14) |
Other | 38 (4) | 13 (2) |
Unreported | 0 (0) | 72 (10) |
Karnofsky Performance Status | - | |
100 | 84 (9) | |
90 | 308 (35) | |
80 | 240 (27) | |
70 | 153 (17) | |
60 | 51 (6) | |
50 or less | 54 (6) | |
Primary Tumor Site | ||
NSCLC | 418 (47) | 337 (45) |
SCLC | 60 (7) | - |
Breast | 137 (15) | 146 (20) |
Skin/Melanoma | 69 (8) | 129 (17) |
Renal | 43 (5) | 54 (7) |
Other | 163 (18) | 85 (11) |
Unknown | 0 (0) | 3 (0.4) |
Extracranial disease at time of SRS | ||
Controlled/None | 289 (32) | 304 (54) |
Uncontrolled | 601 (68) | 309 (41) |
Unknown | 0 (0) | 42 (6) |
Months from cancer diagnosis to initial metastases | - | |
Median (range) | 0.0 (0.0–449.2) | |
Unknown | 0 (0) | |
Months to extracranial disease | ||
Median (range) | 0.0 (0.0–449.2) | 0.0 (range, 0.0–291.7) |
Unknown | 5 (0.6) | 1 (0.1) |
Months to intracranial disease | ||
Median (range) | 11.4 (0.0–472.1) | 14.5 (range, 0.0–291.7) |
Unknown | 0 (0) | 6 (0.8) |
Number of involved extracranial sites at time of SRS | - | |
Median (range) | 2 (0–6) | |
Nodal metastases | 349 (39) | - |
Pulmonary metastases | 391 (44) | - |
Bone metastases | 318 (36) | - |
Hepatic metastases | 178 (20) | - |
Adrenal metastases | 98 (11) | - |
Other metastases | 112 (13) | - |
Metastatic burden at SRS | - | |
Polymetastatic | 468 (53) | |
Oligometastatic | 422 (47) |
Current Cohort (n = 890) | Natarajan 2019 (n = 755) | |
---|---|---|
N (%) | N (%) | |
Prior surgical resection | ||
Yes | 232 (26) | 176 (23) |
No | 658 (74) | 579 (77) |
Prior whole brain radiotherapy | ||
Yes | 73 (8) | 282 (37) |
No | 817 (92) | 473 (63) |
Prior chemotherapy | ||
Yes | 450 (51) | 513 (68) |
No | 440 (49) | 227 (30) |
Unknown | 0 (0) | 15 (2) |
Prior immunotherapy | - | |
Yes | 245 (28) | |
No | 645 (72) | |
Prior targeted therapy | - | |
Yes | 196 (22) | |
No | 694 (78) | |
Number of intracranial metastases treated with SRS | ||
Total | 2891 | 1407 |
Median (range) | 2 (1–54) | 1 (1–9) |
SRS fractionation | (per patient) | (per lesion) |
Single fraction | 389 (44) | 1297 (92) |
Multi-fraction | 508 (56) | 103 (7) |
2-fraction | 39 (4) | 1 (0.1) |
3-fraction | 68 (8) | 21 (3) |
4-fraction | 15 (2) | 0 (0) |
5-fraction | 379 (43) | 81 (11) |
Unknown | 0 (0) | 7 (0.5) |
Total SRS dose (Gy) | ||
Single fraction median (range) | 20 (15–25) | 18 (5–25) |
Multi-fraction median (range) | 25 (18–35) | 25 (12–35) |
Nomogram Criteria | Current Report (n = 890) | Initial Testing Cohort (n = 248) |
---|---|---|
Treated brain metastases (Melanoma) | - | |
1 or 2: 35 points | 39 (4) | |
≥3: 100 points | 28 (3) | |
Treated brain metastases (Non-Melanoma) | - | |
1: 0 points | 378 (42) | |
≥2: 45 points | 445 (50) | |
History of whole brain radiotherapy | - | |
Yes: 0 points | 73 (8) | |
No: 15 points | 817 (92) | |
Time from Cancer Diagnosis to Initial Metastases | - | |
>5 years: 0 points | 84 (9%) | |
Within 5 years: 45 points | 806 (91%) | |
Total points | ||
0–85 points: Low Risk | 419 (47%) | 114 (46%) |
≥86 points: High Risk | 471 (53%) | 134 (54%) |
Low Risk (n = 419) | High Risk (n = 471) | p Value | |
---|---|---|---|
N (%) | N (%) | ||
Year of SRS | 0.89 | ||
2017 | 51 (12%) | 48 (10%) | |
2018 | 126 (30%) | 139 (30%) | |
2019 | 121 (29%) | 139 (30%) | |
2020 | 121 (29%) | 145 (31%) | |
Median age at SRS (IQR) | 64.4 (56.3–72.1) | 63.7 (54.6–72.0) | 0.42 |
Sex | 0.64 | ||
Female | 241 (58%) | 250 (53%) | |
Male | 178 (42%) | 221 (47%) | |
Race | 0.35 | ||
White | 306 (73%) | 347 (74%) | |
Black | 101 (24%) | 98 (21%) | |
Other | 12 (3%) | 26 (6%) | |
Karnofsky performance status | 0.25 | ||
100–90 | 193 (46%) | 199 (42%) | |
80 or less | 226 (54%) | 272 (58%) | |
Primary Tumor Origin | <0.01 | ||
Lung | 213 (51%) | 265 (56%) | |
Breast | 84 (20%) | 53 (11%) | |
Skin/Melanoma | 39 (9%) | 34 (7%) | |
Renal | 39 (9%) | 31 (7%) | |
Other | 44 (11%) | 88 (19%) | |
Extracranial disease at time of SRS | <0.01 | ||
Uncontrolled | 257 (61%) | 344 (73%) | |
Controlled/None | 162 (39%) | 127 (27%) | |
>5 years from cancer diagnosis to any metastases | <0.01 | ||
No | 339 (81%) | 467 (99%) | |
Yes | 80 (19%) | 4 (1%) | |
Metastatic burden at SRS | <0.01 | ||
Oligometastatic | 238 (57%) | 184 (39%) | |
Polymetastatic | 181 (43%) | 287 (61%) | |
Prior surgical resection | <0.01 | ||
No | 275 (66%) | 383 (81%) | |
Yes | 144 (34%) | 88 (19%) | |
Prior whole brain radiotherapy | 0.10 | ||
No | 390 (93%) | 427 (91%) | |
Yes | 29 (7%) | 44 (9%) | |
Prior chemotherapy | <0.01 | ||
No | 180 (43%) | 260 (55%) | |
Yes | 239 (57%) | 211 (45%) | |
Prior immunotherapy | 0.18 | ||
No | 287 (68%) | 330 (70%) | |
Yes | 132 (32%) | 141 (30%) | |
Prior targeted therapy | 0.28 | ||
No | 388 (93%) | 378 (80%) | |
Yes | 103 (25%) | 93 (20%) | |
Number of intracranial metastases treated with SRS | <0.01 | ||
1 | 381 (91%) | 17 (4%) | |
2 | 15 (4%) | 147 (31%) | |
3–5 | 14 (3%) | 175 (37%) | |
≥6 | 9 (2%) | 132 (28%) | |
Median PTV of all brain metastases (IQR) | 7.0 (1.2–23.9) | 8.6 (2.5–23.4) | 0.59 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Institution | ||||
1 | Ref | |||
2 | 0.83 (0.65–1.06) | 0.14 | ||
Year of SRS | ||||
2017 | Ref | |||
2018 | 1.13 (0.81–1.56) | 0.47 | ||
2019 | 1.08 (0.78–1.50) | 0.64 | ||
2020 | 0.98 (0.70–1.38) | 0.93 | ||
Age at SRS, per year | 0.989 (0.982–0.996) | <0.01 | 0.993 (0.985–1.000) | 0.06 |
Sex | ||||
Female | Ref | |||
Male | 0.95 (0.79–1.16) | 0.63 | ||
Race | ||||
White | Ref | |||
Black | 0.81 (0.64–1.02) | 0.08 | ||
Other | 0.95 (0.59–1.52) | 0.82 | ||
KPS | ||||
100–90 | Ref | |||
80 or less | 0.99 (0.82–1.19) | 0.91 | ||
Primary Tumor Origin | ||||
NSCLC | Ref | Ref | ||
SCLC | 1.27 (0.84–1.93) | 0.26 | 1.03 (0.65–1.63) | 0.91 |
Breast | 1.21 (0.93–1.57) | 0.15 | 0.96 (0.71–1.31) | 0.81 |
Skin/Melanoma | 1.73 (1.23–2.42) | <0.01 | 1.59 (1.09–2.31) | 0.01 |
Renal | 0.76 (0.46–1.25) | 0.28 | 0.94 (0.56–1.57) | 0.34 |
Other | 1.23 (0.94–1.60) | 0.12 | 1.15 (0.87–1.51) | 0.12 |
Extracranial disease at time of SRS | ||||
Uncontrolled | Ref | |||
Controlled/None | 1.04 (0.86–1.26) | 0.7 | ||
Months from cancer diagnosis to any metastases | 1.000 (0.998–1.002) | 0.96 | ||
Months to intracranial disease | 1.000 (0.998–1.002) | 0.81 | ||
Metastatic burden at SRS | ||||
Oligometastatic | Ref | |||
Polymetastatic | 1.16 (0.96–1.40) | 0.12 | ||
Prior surgical resection | ||||
No | Ref | Ref | ||
Yes | 0.77 (0.62–0.95) | 0.02 | 0.84 (0.67–1.05) | 0.12 |
Prior WBRT | ||||
No | Ref | Ref | ||
Yes | 1.50 (1.08–2.09) | 0.02 | 1.12 (0.77–1.62) | 0.56 |
Prior chemotherapy | ||||
No | Ref | Ref | ||
Yes | 1.41 (1.17–1.70) | <0.01 | 1.42 (1.13–1.80) | <0.01 |
Prior immunotherapy | ||||
No | Ref | Ref | ||
Yes | 1.40 (1.21–1.85) | <0.01 | 1.21 (0.95–1.54) | 0.12 |
Prior targeted therapy | ||||
No | Ref | |||
Yes | 1.06 (0.84–1.32) | 0.64 | ||
Number of intracranial metastases treated with SRS | ||||
1 | Ref | Ref | ||
2 | 1.65 (1.27–2.14) | <0.01 | 1.50 (1.14–1.96) | <0.01 |
3–5 | 1.70 (1.33–2.17) | <0.01 | 1.58 (1.23–2.03) | <0.01 |
≥6 | 1.64 (1.25–2.15) | <0.01 | 1.52 (1.14–2.02) | <0.01 |
SRS fractionation | ||||
Single fraction | Ref | |||
Multi-fraction | 0.95 (0.79–1.14) | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpenter, D.J.; Natarajan, B.; Arshad, M.; Natesan, D.; Schultz, O.; Moravan, M.J.; Read, C.; Lafata, K.J.; Giles, W.; Fecci, P.; et al. Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study. Cancers 2022, 14, 5186. https://doi.org/10.3390/cancers14215186
Carpenter DJ, Natarajan B, Arshad M, Natesan D, Schultz O, Moravan MJ, Read C, Lafata KJ, Giles W, Fecci P, et al. Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study. Cancers. 2022; 14(21):5186. https://doi.org/10.3390/cancers14215186
Chicago/Turabian StyleCarpenter, David J., Brahma Natarajan, Muzamil Arshad, Divya Natesan, Olivia Schultz, Michael J. Moravan, Charlotte Read, Kyle J. Lafata, Will Giles, Peter Fecci, and et al. 2022. "Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study" Cancers 14, no. 21: 5186. https://doi.org/10.3390/cancers14215186
APA StyleCarpenter, D. J., Natarajan, B., Arshad, M., Natesan, D., Schultz, O., Moravan, M. J., Read, C., Lafata, K. J., Giles, W., Fecci, P., Mullikin, T. C., Reitman, Z. J., Kirkpatrick, J. P., Floyd, S. R., Chmura, S. J., Hong, J. C., & Salama, J. K. (2022). Prognostic Model for Intracranial Progression after Stereotactic Radiosurgery: A Multicenter Validation Study. Cancers, 14(21), 5186. https://doi.org/10.3390/cancers14215186