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Simple Summary: Despite the success in hematology, chimeric antigen receptor T cell therapies have
shown, to date, unsatisfactory results in other clinical settings. A remarkable number of different CAR-
based approaches have been developed, varying not only the specific antigen to be targeted, but also
the type of cell to be modified, the costimulatory domain, and the additional signals incorporated to
overcome solid-tumor-specific challenges. This variety of options has created a broad diversification
of CAR approaches that, on one hand, may accelerate the identification of successful strategies, but
on the other hand, may hamper the interpretation of clinical results and the overall advancement of
the field. In this review, we present the most promising approaches under development and discuss
their specific advantages and challenges to facilitate the identification of winning strategies.

Abstract: Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of
hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena.
Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of
defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies
developed by solid tumors are considered among the major ones. Currently, several CAR therapies
are being investigated in preclinical and early clinical trials against solid tumors differing in the
type of construct, the cells that are engineered, and the additional signals included with the CAR
constructs to overcome solid tumor barriers. Additionally, novel approaches in development aim at
overcoming some of the limitations that emerged with the approved therapies, such as large-scale
manufacturing, duration of manufacturing, and logistical issues. In this review, we analyze the
advantages and challenges of the different approaches under development, balancing the scientific
evidences supporting specific choices with the manufacturing and regulatory issues that are essential
for their further clinical development.
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1. Introduction

The adoptive transfer of T cells genetically engineered to express chimeric antigen
receptors (CAR) has conquered striking and long-lasting clinical responses in B cell malig-
nancies and multiple myeloma, leading to the approval of six different CAR-based therapies
in the last 5 years [1–6]. These results, together with a large body of preclinical literature,
have fueled the development of an enormous amount of CAR-based therapies directed
against solid tumors [7]. However, the rapid adaptation of current CAR technologies to
solid tumors has to date failed the clinical challenge, highlighting the need to potentiate
these adoptive therapies for the solid-tumor battlefield. A wide set of improvements have
been hypothesized and are being evaluated in both preclinical and early clinical trials, but
no consensus has been reached on the essential features needed to strengthen the clinical
success of CAR-based therapies.
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CAR-based therapies are the most complex advanced therapy medicinal products
(ATMP) as they are the result of the introduction of a synthetic multi-domain protein (i.e.,
the CAR construct) into a population (more or less purified) of immune cells that need to
be expanded and activated ex vivo before being administered to patients. In addition to the
CAR construct, that provides the tumor antigen specificity, it is now clear that additional
factors should be introduced into the immune cells to potentiate their anti-tumor activity
in solid tumors. Moreover, the logistical and manufacturing constraints that emerged
from the first CAR-based therapies in hematology have pointed to the need for novel
manufacturing approaches [8]. Therefore, the technology behind CAR-based therapies lies
in the intersection of different fields.

Herein, we aim to highlight the different approaches that are being developed in the
CAR-based immunotherapies, including the manufacturing and regulatory issues that may
surge during their clinical advancement. Single features of CAR-based therapies will be
analyzed in view of their exploitation and increase the biological activity of CAR-based
therapies against solid tumors.

2. The Challenges of Solid Tumors against CAR-Based Therapies (and Other Cell
Immunotherapies)

Thanks to the knowledge collected in the last 20 years on cancer immunology, several
immune escape mechanisms have been unraveled [9]. Most of these mechanisms are also
behind the limited efficacy of CAR-based therapies in solid tumors [10,11] and should be
bypassed to unleash CAR potentials.

One of the main challenges for CAR-based immunotherapy against solid tumors is the
identification of a selective and reliable antigen to target. An ideal tumor antigen should be
selectively expressed on tumor cells and not in normal tissues. In real life, tumor-restricted
antigens are rare, and tumor-associated antigens (TAA) are often shared with nonmalignant
tissues. Therefore, non-cancerous cells with low-level of TAA expression cannot escape the
cytotoxic activity of the infused cells, the so-called on-target/off-tumor toxicity. Several
cases of this phenomenon have been reported, the most notorious and fatal one occurred
during the early development of anti-HER2 CAR-T, where the recognition of lung ERBB2+
epithelial cells by the infused cells caused massive cytokine release resulting in patient
death [12] Of note, while in hematological malignancies several therapies allowing for the
replenishment of immune cells can help in managing normal cells toxicity, it is difficult to
contain healthy tissues damage in solid tumors.

The possibility of addressing this issue by fine-tuning the activation capacity of CAR
cells based on the different levels of antigen expression between normal and cancer cells
is hindered by the observation that solid tumors exhibit heterogeneous expression of tu-
mor antigens per se. While CAR-based immunotherapy requires a certain, albeit variable,
threshold of antigen expression to clear tumor cells, immune escape in solid tumors oc-
curs through the downregulation or even loss of tumor antigens [13,14]. In fact, even
oncogenic drivers can become unnecessary to tumor growth after tumor malignant trans-
formation and be lost under selective pressure, thus impairing the long-term efficacy of
CAR immunotherapies and increasing the risks of relapse.

Another issue to be overcome is that immune cell trafficking is impaired by several fea-
tures typical of solid tumors. While in hematological malignancies the encounter between
tumor cells and intravenously administered CAR-T is facilitated by being in the same pe-
ripheral blood compartment, solid tumors can be difficult to infiltrate. First, extravasation
of immune cells is limited by the downregulation of specific adhesion molecules, such as
ICAM-1 and VCAM-1, by tumor endothelial cells [15]. Second, malignant tissues are often
dense due to enrichment in ECM components, such as hyaluronic acid and collagen that,
in addition to creating a physical barrier against immune cells penetration, may inhibit T
cells cytotoxic activity [16].

Finally, CAR-based therapies have to face and counteract the hostile solid tumor
microenvironment (TME). Tumor cells express several molecules that exert inhibitory
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effects on anti-tumor immunity. Among them, immune checkpoint ligands play a pivotal
role in regulating the cytotoxic activity and proliferation of infiltrating T and NK cells [17].
PD-1, LAG3, TIM3, TIGIT, KIR, CTLA, and VISTA are all targeted differently by cancer
cells and other cells present in TME to silence anti-tumor responses [17]. Moreover, TME is
populated by immune cells with immunosuppressive functions, such as regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages
(TAMs) [18]. Their pro-tumoral effect is mediated by the secretion of growth factors,
chemokines, and cytokines that, in addition to supporting tumor cells proliferation, inhibit
the cytotoxic activity of immune cells, including CAR cells of any type.

Additionally, solid tumor masses are characterized by a low level of oxygen (hy-
poxia) and restricted nutrient availability. These limitations strongly limit the vitality and
anti-tumor activity of naturally occurring immune cells and, similarly, affect CAR-based
therapies.

3. The Experience with CAR-Based Therapies in Solid Tumors

Initial attempts of using CAR-based T cells in solid tumors date even before those in
the hematological fields [19–23]. These pioneer studies were based on the so-called “first-
generation” CAR constructs, as they contained the sole CD3z domain in the cytoplasmic
side. T cells modified with these CAR constructs were able to show antigen-specific cellular
cytotoxicity, cytokine production, and favor T cell proliferation both in vitro and in animal
models. However, the results collected in these clinical trials were largely disappointing [24],
mostly due to limited proliferation and persistence of engineered cells.

Propelled by the results of second-generation CD19-CAR products against hematolog-
ical malignancies, a second wave of clinical trials in solid tumors had started and continues
to grow, as shown by the increasing number of active clinical trials worldwide [25]. Table 1
summarizes a selection of these studies, illustrating the variety of tumors and targets that
have been explored. Despite the differences in clinical setting, tumor target, and type
of construct, some common traits can be highlighted. In several studies, conditioning
chemotherapy prior to CAR therapy improved the persistence of CAR engineered cells, in
line with the observations in hematology and other adoptive cell transfer approaches [26,27].
The inclusion of a costimulatory domain in the CAR construct (i.e., second-generation CAR
constructs) also resulted in longer persistence of engineered T cells. Moreover, an increase
in serum cytokine levels, considered a CAR-associated clinical manifestation, was observed
in several patients. Notably, in addition to some traits in common, some relevant differences
with past experience in hematological CAR-based therapies emerged. For example, Haas
at al. compared the expansion and persistence of anti-mesothelin CAR T cells with the
results observed with anti-CD19 CAR T cells generated with the same construct (except for
the recognized target) and manufacturing process. Notably, anti-mesothelin CAR T cells
experienced a 10-fold less expansion and a significantly shorter persistence in vivo with
respect to the CD19 counterpart. Interestingly, T cell expansion did not always correlate
with increased serum cytokines after CAR cell infusion [28]. Even when T cells were engi-
neered to be insensitive to the inhibitory signal transforming growth factor (TGF)-β, the
observed CAR-associated increased serum cytokine levels did not consistently appear to
be related to in vivo CAR T cell expansion over time [29]. This phenomenon was observed
although engineered cell proliferation reached the same level seen in the hematological
field. These evidences raise the question whether successful CAR-based therapies for solid
tumors should closely mimic evidences collected in hematological CAR-based therapies or
should follow a different path.
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Table 1. Selected clinical trials utilizing second- and third-generation CAR T cells in solid tumors.

Disease Trial Phase No. of pt Target CAR Construct Additional Strategies Ref.

HER2+ solid tumors I/II 19 HER2 CD28, CD3z None [30]

Liver metastases I 6 CEA CD28, CD3z None [31]

Non-Small Cell Lung
Cancer I 11 EGFR 4-1BB, CD3z None, Cy * alone or Cy with

additional cytotoxic drugs [32]

Biliary tract cancer I 19 EGFR 4-1BB, CD3z Cy/nab-paclitaxel [33]

Metastatic colorectal
cancer I 10 CEA CD28, CD3z Cy [34]

Breast cancer 0 6 MET 4-1BB, CD3z None [35]

Neuroblastoma I 11 GD2 CD28, OX40, CD3z None, Flu/Cy,
Flu/Cy+PD-1 inhibitor [36]

Glioblastoma I 10 EGFR 4-1BB, CD3z None [37]

Glioblastoma I 17 HER2 CD28, CD3z None [38]

Biliary tract cancer and
pancreatic carcinoma I 11 HER2 4-1BB, CD3z Cy/nab-paclitaxel [39]

Pancreatic ductal
adenocarcinoma I 6 mesothelin 4-1BB, CD3z None [40]

Mesothelioma, Ovarian
carcinoma, Pancreatic

ductal carcinoma
I 15 mesothelin 4-1BB, CD3z None or Cy [28]

Prostate carcinoma,
pancreatic carcinoma I 13 PSMA 4-1BB, CD3z + TGFBDN None or Flu/Cy [29]

Mesothelin+ Solid
tumor I 27 mesothelin CD28, CD3z None, Cy, Cy+ PD-1

inhibitor [41]

Glioblastoma I 18 EGFR CD28, 4-1BB, CD3z Flu/Cy + IL-2 [42]

Liver metastases Ib 6 CEA CD28, CD3z Selective intra-arterial
radiation with SIR spheres [43]

Hepatocellular
carcinoma I 13 GPC3 CD28, CD3z Cy alone or Flu/Cy [44]

Neuroblastoma I 17 GD2 CD28, CD3z None, Cy, Flu/Cy [45]

Mesothelin+ Solid
tumor I 15 mesothelin CD28, CD3z None [46]

Neuroblastoma I 3 GD2 CD28, CD3z + IL15 Flu/C [47,48]

* Cy: Cyclophosphamide; Flu: Fludarabine; SIR: Selective internal radiation.

The analysis of TME performed in some of these clinical studies provided new infor-
mation on the mechanisms developed by solid tumors to escape cytotoxicity of CAR cells.
Heczey et al. reported that the blood of neuroblastoma patients treated with anti-GD2
CAR T cells showed a marked increase in M2-polarized macrophages after CAR cell infu-
sion [36]. Whether this blood phenomenon reflects a parallel change in TME with increased
M2 macrophages infiltration was not addressed, but can be considered highly reasonable.
O’Rourke et al. analyzed glioblastoma samples resected 2 weeks after anti-EGFR CAR
T cells infusion, and reported a significant increase in the levels of immunosuppressive
molecules indoleamine 2,3-dioxygenase 1 (IDO1), TGF-b, IL-10, together with increased
expression of PD-L1 and infiltration of Treg, thus suggesting that multifactorial immuno-
suppressive mechanisms are rapidly developed in situ following CAR T therapy [37]. On
the other hand, the analysis of tumor samples after the infusion of CAR-engineered T cells
also suggested the occurrence of epitope spreading [37,40,41].

In contrast to the anti-CD19 CAR experience, no clear observations can be highlighted
regarding the costimulatory signal which is more functional against solid tumors. Of the
eighteen studies reported in Table 1, eight employed the use of CAR construct containing
CD28 costimulatory domain, eight had 4-1BB instead, and two studies used third- genera-
tion CAR construct containing CD28 costimulatory domain and 4-1BB or OX-40. Due to
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the differences in clinical setting, CAR target, and additional therapies in these studies, it is
not possible to clearly establish the advantages and challenges of the different costimula-
tory signals for optimal anti-tumor activity of engineered cells. Similarly, no convincing
evidences can be traced on which of the additional tools explored in these studies can boost
CAR-based therapies in solid tumor settings. In two studies, inhibitors of the PD-1/PD-L1
axis were included without resulting in clear clinical benefit [28,41]. Similarly, in the only
study where a dominant negative receptor for TGF-b was included into the CAR construct,
high CAR T cell expansion and long persistence were recorded, without being associated
with meaningful and durable clinical responses [29]. Finally, one study combined CAR
engineering of T cells with CRISPR/cas9 mediated knock-out of TCRα subunit constant
(TRAC) and PDCD1 genes that encodes for PD-1 [46]. These engineered cells infiltrated
tumors, but still showed limited persistence.

More encouraging results were reported by Heczey et al. in patients with relapsed or
refractory neuroblastoma using NKT cells [47]. In fact, the interim analysis of anti-GD2
CAR NKT cell trial of the lowest dose cohort showed high tumor infiltration of engineered
cells and some indication of clinical benefit. Of the twelve treated patients, four had stable
disease (SD), two had a partial response (PR), and one achieved complete response [48].

Therefore, despite these studies highlighted with some relevant preliminary observa-
tions, the optimal solutions to achieve effective CAR-based therapies against solid tumors
still need to be identified. In the next paragraphs, the different parts composing CAR-based
therapies will be discussed together with the different solutions under development.

4. The Cells to Engineer

One of the most debated aspects of CAR-based therapies is the choice of the cell
population to be genetically engineered for the expression of CAR. Since CAR-engineered
cells will represent the active substance of final product, the choice of cell population has a
deep impact on large-scale manufacturing and “off-the-shelf” potential of the CAR therapy:
Two critical points that will strongly dictate the future of CAR-based therapies for solid
tumors in terms of clinical availability and economic sustainability (Figure 1) [49,50]. More-
over, since different immune cells exhibit different mechanisms of action and subsequent
antitumor activity, each carrying advantages and challenges, the choice of the cell type will
affect the in vivo clinical efficacy of CAR-based immunotherapy.
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Figure 1. Characteristics of the different cells engineered with CAR constructs in solid tumors. As
discussed in the main text, some of these characteristics can be acquired through additional gene
manipulation. The Figure was partly generated using Servier Medical Art, provided by Servier,
licensed under a Creative Commons Attribution 3.0 unported license.
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4.1. Bulk T Cells

The first preclinical and clinical studies, and currently the only CAR immunotherapies
authorized for clinical use are based on bulk T cells. The only exception is lisocabtagene
maraleucel, a CD19-directed CAR T cell product containing defined amounts of CD8+ and
CD4+ cells.

CAR-based therapies using bulk T cells can rely on well-established safety profiles.
With the exception of the on-target/off-tumor toxicity that is product specific, most of the
safety concerns on bulk CAR-T relate to the occurrence of cytokine release syndrome (CRS)
and immune effector cell-associated neurotoxicity syndrome (ICANS). CRS is triggered
by the rapid and massive increase in serum cytokine levels upon T cell activation in vivo
and may cause severe multi-organ dysfunction. Notably, the reported cases of CRS in solid
tumors appeared to be milder and less frequent than the ones occurring in hematological
malignancies [37,51,52]. Nevertheless, severe deadly cases of ICANS have been reported in
patients with prostate cancer [53].

On the other hand, the antitumor activity of bulk T cells solely relies on CAR signaling.
Therefore, the efficacy of bulk T cells engineered with current CAR constructs is hindered
by the heterogeneity of antigen expression typical of some solid tumors, as well as by the
antigen escape phenomena causing antigen loss.

As T cell phenotype and functionality are known to be significantly impacted by
patient age, tumor burden, and previous cancer treatments [54,55], autologous CAR-
engineered bulk T cells can significantly be impaired in their antitumor activity. One
of the possible strategies to circumvent these limitations is the development of allogeneic
CAR-T cells, in which the use of healthy third-party donors as a cell source guarantees
better T cells fitness. Several genetically engineered allogeneic T cells are currently in
the early phase of clinical testing on hematological malignancies and solid tumors. In
addition to the clear advantages of these “off-the-shelf” products in terms of manufacturing
standardization and timing, cost-effectiveness and potential efficacy, some significant chal-
lenges need to be carefully considered and evaluated before their widespread use. Among
them, the increased risks of alloreactivity, in terms of graft-versus-host disease (GVHD),
rejection due to immunogenicity, and poor persistence [56].

4.2. Specific T Cells Subsets

Despite the success of CAR-engineered bulk T cells in the hematological field, many
groups have questioned whether other immune cells or specific T cell subsets may exert
more potent antitumor activity and overcome some of their limitations [57–60]. In fact,
CD3+ T cells comprehend a variety of subpopulations characterized by different cytotoxic
activities, cytokine production, and proliferation potentials. Due to the differences in the
phenotypic composition of the cell therapy tested in clinical trials, the potential impact of
the different T cells subsects on bulk CAR-T efficacy and toxicity cannot be systematically
assessed. Nevertheless, accumulating evidences point to the frequency within the infused
product of a CD8+CD45RA+CCR7+ subset, closely resembling “T-memory stem cells” as
a key factor for CAR-T in vivo expansion and persistence after the infusion [61]. Stem
memory T cells are a rare subset of T cells firstly described by Gattinoni et al. in 2011
for being endowed with potent stem cell-like ability to self-renew and the multipotent
ability to originate central memory, effector memory, and effector T cells [62]. Tscm cells are
currently stimulating a big interest for their possible exploitation in adoptive immunother-
apy, while facing the difficulties related to the ex vivo manipulation and expansion of
this rare cell subset. Recently, preclinical data reported the superiority of Tscm CAR-T
cells (CD4+CD8+CD62L+CD45RA+) with respect to bulk T cells (CD4+CD8+) in terms of
antitumor activity and expansion capacity in xenograft mouse models of leukemia [63]
and lymphoma [64]. Furthermore, Tscm cells were less prone to induce CRS in mice, thus
holding promise for a more effective and safer cell product [63].

Other T cell subsets undergoing preclinical and clinical evaluation as reliable sources
for CAR-based therapies are two rare populations at the intersection between adaptive and
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innate immunity: Gammadelta (γδ) T cells and invariant natural killer T (iNKT) cells. γδ T
cells bear a TCR made of a γ chain and a δ chain and are more abundant in epithelial sites,
such as skin, tongue, and intestine, than in peripheral blood [60]. Since γδ T cells recognize
their non-peptide phosphorylated metabolic intermediates called “phosphoantigens” at
the earliest signs of tumor cell modification and independently from MHC restriction,
they can be considered part of the innate immune response. Nevertheless, γδT can create
an immunological memory, such as the adaptive immune response. Another advantage
of γδT cells is that these cells secrete lower levels of proinflammatory cytokines with
respect to αβT cells, thus are supposed to be less prone to induce CRS. Moreover, they are
endowed with an increased tropism for tumor microenvironment. Altogether, these features
combined with the reduced risk of GVHD, make them particularly suited for allogeneic
immunotherapy and “off-the shelf” CAR-T generation. One of the major bottlenecks of
their clinical application is the large-scale expansion of this scarce cell population. CAR-
modified expanded γδ T cells were tested against CD19- or GD2-expressing tumors and
other tumor antigens in vitro and in clinical trials [65]. In hematological setting, CAR-γδ
T cells showed the ability to cross-present tumor antigens to αβ T cells in vitro, as well
as antigen-dependent and independent cytotoxicity. More recently, the feasibility and
antitumor activity of allogeneic Vδ1, the subset more frequent within TIL, was reported in a
mouse model of hepatocellular carcinoma [66], and a similar approach is now undergoing
clinical trial testing [65].

The iNKT cells are a subset of lipid and glycolipid-reactive T lymphocytes that ex-
press an invariant TCRα chain rearrangement paired with a restricted repertoire of TCRβ
chains [67]. Upon recognition of glycolipid antigens expressed on CD1d molecules, iNKT
cells rapidly secrete immunomodulatory cytokines and directly mediate cell cytotoxic-
ity through the secretion of perforins and granzymes. In addition to this direct natural
anti-tumor activity, iNKT cells can reshape TME by polarizing TAM and MDSC toward
immune-stimulating cells. The iNKT cells actively localize to tumors in response to CCL2
and CCL20 [68]. Therefore, they represent a valuable cell source to overcome some solid
tumor pitfalls. Moreover, iNKT cells have been successfully isolated from peripheral blood
and engineered to express CAR both in preclinical and clinical studies [47,57,69–71]. As
mentioned in the previous paragraph, anti-GD2/IL15-expressing iNKT cells have shown
promising results in neuroblastoma patients with high tumor infiltration and evidences on
clinical responses [47,48].

4.3. Natural Killer Cells

NK cells play a crucial role in the innate immune response, since they are endowed
with the ability to differentially sense healthy cells vs. cells showing signs of stress as a
consequence of infection, damage, and malignant transformation. Circulating NK cells
represent 5 to 15% of human leukocytes and are armed with an array of receptors, whose
delicate balance determine NK ability to recognize and rapidly act against malignant cells
without prior sensitization. Activated NK cells can exert their cytotoxic activity through
perforin and granzymes granules release or use their FcγRIIIA (CD16) receptor to recognize
antibody-coated cells and activate antibody-dependent cellular cytotoxicity (ADCC) and
cytokine production.

Some features of NK cells make them particularly promising for CAR-based therapy.
When compared to bulk T cells, CAR-NK showed in both preclinical and clinical settings a
better safety profile, with minimal cytokine release syndrome or severe neurotoxicity [72].
Moreover, the ability to kill tumor cells by CAR-independent mechanisms represents an
extra weapon against tumors with an uneven expression of CAR-targeted antigen.

From a safety point-of-view, the short half-life of NK cells in vivo is a “mixed blessing”
for CAR-NK therapy: While it guarantees limited long-term toxicity, it also demands re-
peated administrations to achieve clinical durable response. Studies are currently exploring
the possibility to prolong CAR-NK persistence in vivo by armoring them with cytokines-
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encoding genes [72] or by adding to the manufacturing process a pre-activating step with
IL-12/15/18 to induce differentiation into cytokine-induced memory-like NK cells [73].

Since NK cells have a very limited risk of graft versus host disease when used in
allogeneic settings (as confirmed in [72]), CAR-NK can be manufactured as “off-the shelf”
products from several allogeneic NK sources, such as donor PBMC, immortalized cell lines,
and cord blood induced pluripotent stem cells (iPSCs). Some groups have explored the
well-established NK cell lines NK92 as a cell source in early clinical testing, and collected
promising results in patients with leukemia [74]. However, the use of NK92 requires
irradiation of CAR-NK before infusion as a safety measure to limit the oncogenic potential
of this transformed cell line, thus further shortening the in vivo persistence of the infused
cells. The use of donor PBMC combines the advantages of increased safety and maximum
cytotoxic activity, but holds some difficulties in expansion and transduction efficacy. Efforts
are ongoing to identify best culture conditions for high expansion and activation [75,76].

4.4. Macrophages

Macrophages are innate cells of the immune system that depending on the external
signals polarize into specific subsets and exert pro-inflammatory (M1 macrophages) or
anti-inflammatory/tissue repairing effects (M2 macrophages). They represent the most
abundant immune cells subtype within the tumor. M1 macrophages are crucial for immune
response against infected and malignant cells, such as phagocyitic and cytotoxic activity,
antigen presentation, as well as cytokines and chemokines secretion for immune cells
recruitment. However, macrophages resident at the tumor site, so-called tumor associated
macrophages, are often polarized toward an immunosuppressive phenotype closely related
to an M2 phenotype. The possibility to exploit and potentiate the innate phagocytic activity
of macrophages in immunotherapy strategies was first exploited with the development
of a CD-19-directed CAR construct bearing phagocytic receptor signaling domains (CAR-
P) [77]. Since then, another strategy involved the creation of CAR macrophages secreting
metalloproteinases to target the ECM, showing antitumor efficacy in a mouse model of
HER2+ breast cancer [78]. Klichinsky et al. established a CAR-M platform capable of
polarizing engineered macrophages toward an M1 phenotype, with improved capacity to
direct anti-tumor activity as well as perform cross-presentation and T cell costimulation [79].
A clinical study is currently testing the safety of autologous HER2-directed CAR-M obtained
with this technology against HER2 expressing solid tumors (NCT04660929).

Due to their ability to sense and reject foreign antigens and genetic material and their
limited proliferation potential, manufacturing of CAR-M still poses several challenges.

5. The Gene Engineering Tools

A broad array of technological solutions for cell gene engineering are now avail-
able [80]. Viral vectors have longer and wider clinical track record, whereas transposon-
based editing and crispr/cas9 approach have emerged in the last decade. Each tool has its
own intrinsic advantages and challenges.

5.1. Cell Transduction Using Viral Vectors

Viral vector-based gene engineering represents the most consolidated approach for
gene therapy. Viral vectors used for CAR engineering belong to three major families:
Gammaretroviral, lentiviral, and adenoviral vectors. While the first two allow for the
integration of the construct into the cell genome for stable expression in cell progeny of
proliferating cells and represent the choice solution for T and NK cells, adenovirus vectors
are mainly indicated for expression in low-proliferating cells and have been only used to
engineer macrophages [81].

Four of the six FDA/EMA approved CAR-based therapies (i.e., Abecma, Breyanzi,
Carvikty, and Kymriah) utilize lentiviral vectors for CAR integration, whereas the remain-
ing two, Tecartus and Yescarta, rely on gammaretroviral vector for CAR delivery. The major
differences of the two families of vectors are in regard to when and where they integrate
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into the host genome [80]. DNA integration of gammaretroviral vectors take place only
during cell division, whereas lentiviral vector can integrate even in non-proliferating cells.
Moreover, gammaretroviral vectors show an integration bias for promoter regions and
growth control genes [82], while DNA integration of lentiviral vectors usually occurs in
the introns of transcriptionally active genes. As a consequence, gammaretroviral vectors
have shown a higher genotoxicity in hematopoietic stem cell gene therapy. However, no
oncogenic T cell transformation has been observed to date with gammaretroviral trans-
duced T cells [83]. Nevertheless, lentiviral vectors have collected a wider preference for
CAR transduction by the research community for safety concerns [84].

Both families of vectors show high transduction efficiency in T cells, in NK cells, and
to a limited extent in macrophages. Their large packaging size enables the delivery of
CAR construct in addition to multicistronic transgenes, thus representing valuable tools to
incorporate additional modifications to the cytotoxic cells [84]. In fact, vectors containing
8–9 kb can be generated with both backbones at good titers, whereas longer constructs
have logarithmically reduced titers [85].

Despite the large packaging size and the high transduction efficiency, viral vectors
show some challenges as compared to other gene therapy platforms. First, GMP-compliant
manufacturing of these vectors is complex and expensive. Second, safety concerns dictate
deeper characterization both of the vector used and of the transduced cells, thus further
increasing the cost of manufacturing.

5.2. Transposons for Gene Therapy of CAR

In nature, transposons are genetic elements that can change their positions within a
genome thanks to the activity of a transposase protein. This enzyme, encoded within the
transposon sequence, recognizes specific genome sequences, so-called the terminal inverted
regions. In addition, it mediates the excision of the element from the genome and allows its
integration into another locus containing the same terminal inverted regions [86]. Since
they combine the desired stable integration and transgene expression (typical of integrating
viral vectors) with lower immunogenicity and reduced costs for GMP manufacturing [80],
transposon-based gene therapy systems represent a valuable alternative to viral vectors.
Notably, while the piggyBac transposon system has an integration profile similar to the one
of gammaretroviral vectors (with the same risk of genotoxicity and related safety concerns),
the sleeping beauty (SB) transposon system has a significantly safer profile of viral vectors
as it mediates construct integration in a close-to-random fashion [84].

In contrast to viral vectors that are inherently capable of entering into target cells,
transposon-based vectors require cell electroporation to allow for the DNA to enter into
target cell nucleus. While short constructs can be easily electroporated into target cells,
larger constructs enter the cell with lower efficiency and can reduce cell viability due
to cytotoxicity phenomena [87]. Therefore, some additional optimization steps are re-
quired to maximize viability and efficiency of SB-based multicistronic constructs for CAR
engineering.

A variety of approaches utilizing the SB transposon system have been described.
The classical and simplest two vector-based approaches (where one vector contains the
CAR construct with the terminal inverted regions and one vector encodes the transposase)
has been already used in CAR clinical trials in the hematology and showed high CAR
integration efficiency, a good safety profile, and clinical response [88,89]. More recently, a
novel approach that utilizes one mRNA encoding for an high-active transposase and one
minicircle DNA as the vector to be integrated has been developed [90]. This strategy offers
the advantage of ensuring a fast and transient expression of transposase, thus limiting the
genotoxic risk of transgene remobilization. Moreover, the reduced length of minicircle DNA
increases the efficiency of electroporation and results in higher post-electroporation cell
viability. This solution has been already implemented in CAR-based gene therapy products
and is currently being investigated in a clinical trial in multiple myeloma patients [91].
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In conclusion, although the safety profile of viral vectors relies on a significantly larger
number of patients as compared to newly developed engineering systems, the continuous
advancement and refinement of more efficient transposases and the encouraging clinical
results collected to date make the SB transposon system a valuable and practical solution
particularly promising for CAR cell engineering.

5.3. Gene Editing Using CRISPR/cas for CAR Engineering

CRISPR/cas technology is revolutionizing the gene engineering field permitting an
unprecedented manipulation of genomic DNA [92]. Discovered only 10 years ago, this
technology takes advantage of an ancient bacterial/archea defense mechanism against
viruses and plasmids [93]. Basically, CRISPR/cas can recognize specific genomic sequences
and catalyze their cleavage. Depending on the specific type of cas protein, a single-stranded
nick, staggered or blunt double strand breaks (DSB) can be generated [92]. Currently, the
CRISPR/cas9 protein is the most studied for gene engineering of cells for clinical use. In
fact, CRISPR/cas9 generates DSB in specific genes of interest (as indicated by the guide
RNA, gRNA). Then, these DSB can be used for gene deletion or gene insertion, depending
on the DNA repair mechanism involved. In fact, the majority of DSB are resolved by the
error-prone non-homologous end joining (NHEJ) pathway. This pathway introduces small
insertions or deletions that result in frameshift mutations and premature stop codons of
the gene of interest. The other repair mechanism is the homology-directed repair (HDR)
that enables transgene integration at the break site when the transgene sequence (as linear
dsDNA) is provided together with flanked homology arms [92]. Notably, despite the
fact that improved in silico tools have been developed to design/select optimal gRNA,
off-target modifications can occur, warrying the deep characterization of the safety profile
of selected gRNA.

As mentioned, CRISPR/cas technology has already been used in one clinical trial in
solid tumors expressing mesothelin [46] targeting PD-1 and TRAC genes to block tumor in-
hibitory signaling (PD-1) and to reduce the risk of autoimmune responses as a consequence
of PD-1 KO (TRAC), but no improvements in terms of persistence or clinical benefit was
registered. Other than being limited to inhibitory pathways, the targeted gene deletion has
also been explored to generate “universal” CAR T cells by deleting the TCR receptor. This
approach has already been tested in hematological clinical trials by means of the older gene
editing tool, TALEN [94].

The use of CRISPR/cas to insert the CAR construct in specific regions of the genome
has been explored in pre-clinical studies aiming at introducing the CAR in replacement of
natural TCR, thus aiming at a more physiological CAR expression [95]. Notably, the authors
observed that this genetic modification induced a decrease in T cells antigen-independent
activation status, the so-called tonic signaling. Of note, lower tonic signaling resulted in
reduced cell differentiation and exhaustion, thus increasing the potency of the engineered
cells. Alternatively, it has been proposed to insert the CAR construct in genes that could
have an inhibitory signal, such as the abovementioned PD-1 [80].

Although CRISPR/cas genetic manipulation has already reached the clinical arena
with the cas9 protein derived from Streptococcus pyogenes, other more advanced cas protein-
based approaches, natural or synthetic, have shown superior specificity and reduced
off-target modifications [92,96]. These novel tools will probably replace former ones for
targeted gene engineering of CAR-based therapies; notwithstanding, only larger clinical
studies will reveal their long-term safety profile.

6. Designing the Best CAR Construct against Solid Tumors

As schematically shown in Figure 2a, a typical CAR contains: The antigen-recognition
domain (usually a single-chain variable fragment, scFv), the hinge domain (that connects
the scFv to the transmembrane portion), one transmembrane domain, and the intracellular
signaling region that is usually composed of one or more costimulatory domain(s) and
a CD3ζ T cell activation domain. While most of the research has focused on the scFv
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and on the costimulatory signals, changes in the hinge and transmembrane domains also
affect cell activity, and thus should be more carefully characterized [97]. Moreover, it has
been clearly shown how the CAR expression level affects cell proliferation and antitumor
activity through the antigen-independent tonic signaling, thus underlining the relevance of
CAR promoter in regulating the activity and the toxicity of CAR-based therapies [98,99].
Therefore, it is reasonable to hypothesize that each CAR domain should be differently
chosen depending on several variables, including the tumor antigen expression level, the
affinity and the avidity of the scFv and, of course, depending on the cell to be engineered.
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6.1. Tuning the Expression Level of CAR

In contrast to gene therapies that aim at replacing a disease-causing gene where
broader ranges of transgene expression levels can still result in clinical benefit, the intro-
duction of CAR requires a finer tuning as its expression dictates the fate of engineered
cells, their long-term efficacy, and their toxicity. While most of the developed CAR rely on
strong promoters to ensure a constitutive high transgene expression, several clues support
modifications to this paradigm.
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In T cells, it has been shown that the high expression of CAR can result in tonic signal-
ing, a constitutive signaling that can exert different effects depending on the costimulatory
signal contained in the CAR. In fact, CD28-driven tonic signaling drives T cell differen-
tiation and exhaustion, thus strongly limiting anti-tumoral activity [98]. Although tonic
signaling of 4-1BB-containing CAR was shown to be associated with reduced exhaustion
as compared to CD28-containing CAR [98,100], 4-1BB-driven tonic signaling can induce
T cell apoptosis [101]. Moreover, lowering CAR expression using weaker promoters can
result in increased in vivo anti-tumor activity [101,102]. Less is known regarding how CAR
expression can affect the activity of engineered NK cells or macrophages. How CAR sig-
naling interacts with the complex array of stimulatory and inhibitory signals that regulate
NK cells activity and to what extent the CAR expression level affects NK cell anti-tumor
activity have been poorly analyzed, but are of extreme importance. The expression level
of CAR on macrophages is expected to play a less relevant role considering the reduced
proliferation and persistence of macrophages [79], but specific studies characterizing the
effect of CAR signaling on the development of “memory”-like traits in macrophages should
be encouraged.

A fine tune of CAR expression should also be faced with one of the major hallmarks
of solid tumors: Hypoxia. Considering the activation of specific transcription programs
during hypoxia, several groups exploited the advantages of including hypoxia-driven
promoters into the CAR construct [103–105]. This approach may have wide applications in
limiting the on-target/off-tumor toxicity, thus opening a wider choice of tumor antigens to
be targeted by CAR. This strategy has not yet reached clinical testing, but it could represent
an added tool for CAR-based therapies in solid tumors.

6.2. Defining Which Antigen to Target and How

As mentioned in Section 2, the selection of specific antigens against which redirect
immune system is a major challenge for CAR-therapies against solid tumors, that often lack
a universal, specific, and unique marker and share the risk of undergoing antigen loss. In
particular, the expression of TAA by non-cancerous cells do represent a major safety issue
for CAR-based therapies, as strong on-target/off-tumor toxicities can be generated [12,106].
To bypass this toxicity, it has been shown that selecting low-affinity scFv strongly reduces or
completely eliminates the on-target/off-tumor reactivity of engineered cells while sparing
their anti-tumoral activity [107–109]. Interestingly, it has been hypothesized that the
reduced affinity of CAR may also positively impact T cell activation and differentiation by
mimicking more closely the dynamics of TCR-MHC interactions [109].

In parallel, CAR-based therapies for solid tumors can strongly benefit from targeting
multiple TAA. On one hand, this approach has been explored to overcome the heteroge-
neous expression of one single TAA. Using tandem CAR or utilizing constructs coding
for multiple fully-functional CAR, several groups have shown a broader ability of engi-
neered cells to recognize and kill tumor cells [110,111]. For example, Hedge et al. reported
preclinical data on engineering T cells to express CAR against HER2 or IL-13Ra2: Upon
encountering both antigens, a superadditive T cell activation was observed together with
reduced antigen escape mechanisms in preclinical models. This approach achieved high
response rates even in patients with high tumor burden and aggressive disease in the hema-
tology fields and is currently under evaluation in solid tumor clinical trials [25,112,113].
On the other hand, the targeting of multiple antigens can be utilized for redirecting the
antitumor activity of engineered cells only to cells expressing both antigens. This has
been achieved by engineering cells with conditional-CAR or utilizing one CAR lacking
the costimulatory domain with a chimeric costimulatory domain (see Figure 2b) [114–117].
Notably, the above-described approaches apply more to engineering T cells than other cell
types that have an innate ability to recognize tumor cells (e.g., NK cells and γδ T cells) or
can reshape TME (such as, macrophages and iNKT cells).
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6.3. Choosing the Costimulation Signal

In nature, immune cell activation is usually the result of several signals that cooperate
to trigger finely-tuned downstream signaling cascades, ultimately leading to the induction
of cytotoxicity against the target cells, metabolic rewiring, and the induction of differen-
tiation/proliferation processes [118–120]. Therefore, it is not surprising that an ongoing
debate on which the signal is sufficient for optimized anti-tumor activity of engineered
cells has continued since the first studies of second-generation CAR [24,121–124]. Due to
historical reasons, the vast majority of preclinical and clinical evidences have been collected
on costimulation signals for CAR T cells and, in particular, on CD28 and 4-1BB- derived
costimulatory domains. All the approved CAR-based therapies do contain CD28 or 4-1BB
costimulatory domain in their constructs.

CD28 is a costimulatory receptor that coclusterizes with TCR in the immunological
synapses and potentiate TCR signaling, enabling large cytokine production, cell prolifera-
tion and differentiation, and metabolic rewiring. 4-1BB is one of the costimulatory receptors
that is rapidly expressed by activated T cells [24]. Moreover, its signaling enhances T cell
proliferation, cytokine secretion, and cytolytic activity, but it has a more profound effect
in favoring the development and maintenance of memory CD8 T cells [125]. However,
although the detailed signaling and functional role of both native proteins has been well
characterized, it is not possible to extrapolate these effects onto CAR containing those
domains as timing, kinetic, and spatial aspects strongly differ [126]. Despite the large
body of preclinical and clinical data, no clear conclusions can be inferred regarding which
costimulatory domain is preferable. As clearly reviewed by Cappell and Kochenderfer [24],
most preclinical studies point to CD28-containing CAR T cells as producing higher levels
of cytokines, whereas 4-1BB-containing ones have greater persistence. Similarly, clinical ev-
idences highlighted higher percentage of patients experiencing cytokine release syndrome
after receiving CD28-containing CAR T cells and longer persistence of engineered T cells
was observed in clinical trials with CAR T cells containing the 4-1BB costimulatory domain,
while no clear differences in efficacy can be established [24]. Some preclinical results point
to CD28 costimulation as more useful in the solid TME, as the large cytokine production can
counteract the immunosuppressive milieu of TME [127]. Analyzing the inhibitory effect
of Treg cells to CAR T cells harboring CD28 or 4-1BB costimulation domain, Kegler et al.
showed a reduced inhibition of CD28-containing CAR cells in vitro and in vivo, possibly
due to the high cytokine production.

Additionally, it has to be noted that confusing data exist on the combination of both
CD28 and 4-1BB costimulatory domains into the same construct (the so-called third-
generation CAR) [128]. In fact, while CAR T cells engineered with both costimulatory
domains have strong anti-tumor activity in vitro, clinical evidences have not shown strik-
ing advantages over second-generation CAR therapies. Of note, one recent report suggests
a superior activity of third-generation constructs containing 4-1BB signaling domain to-
gether with a mutated CD28 one [24,129]. Therefore, it is not possible to rule out that more
advanced third-generation CAR constructs will be among the key elements for the success
of CAR-T cells in solid tumors.

Significant limited knowledge has been collected on the optimal costimulation sig-
nals needed for CAR-NK and CAR-M. Although good clinical results were observed in
lymphoid tumor patients treated with NK cells engineered with a CD28-containing con-
struct [72], several preclinical studies suggest that NK cells engineered with “natural”
costimulatory signals outperform those engineered with T cell-derived ones [130–132]. In
these studies, in fact, by replacing CD28 or 4-1BB domains with 2B4, DNAM1, DAP10 or
DAP12, engineered NK cells showed improved in vitro and in vivo anti-tumor activity in
animal models.

6.4. The Additional Signals to Overcome Solid Tumor Resistance

As already mentioned, several groups are exploring the added value of blocking by
different means the PD-1/PD-L1 axis to unleash T cell activity [133–136]. Disrupting PD-1
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gene, furnishing a dominant negative PD-1 receptor, secreting PD-1 blocking scFv or fur-
nishing a chimeric switch receptor (i.e., a receptor that upon ligand interaction transmits an
intracellular signaling of an immune activating receptor) have all increased the anti-tumor
activity of engineered T cells in preclinical setting. However, more controversial is the real
advantage of this approach over combining CAR cells administration with pharmacological
treatment with the PD-1/PD-L1 inhibitors for the worrisome considerations regarding
the possible increased toxicity of these engineered cells. Similar approaches have been
proposed also against other immunosuppressive signals [29,137].

Other groups are optimizing the ability of engineered cells to infiltrate the physical
barrier of ECM that strongly limit infiltration of immune cells into solid tumors. It has been
reported that the ex vivo expansion of T cells significantly reduces their capacity to degrade
ECM. To bypass this point, Caruana et al. showed that an improved ability to degrade
tumor ECM can be restored in T cells by inducing the expression of heparinase [138].
Other strategies exploit tumor ability to attract suppressive immune cells through the
chemokine-receptor axis to increase CAR cells tumor infiltration. In recent years, the
attempts performed with chemokine receptors CCR2, CCR4, CXCR2, CXCR3, CXCR4, and
CX3CR1 (reviewed in [139]) showed promising results in preclinical settings. However,
CXCR2 and CCR4 are the only chemokine receptors undergoing clinical trials to date. To
easily bypass this bottleneck, several groups are exploring the locoregional delivery of CAR
cells (reviewed in [140]). Data collected in clinical trials (mainly phase I) indicate that this
can be considered a feasible strategy to improve CAR cell penetration into tumors while
reducing the risks of systemic toxicity. The results of many clinical trials currently ongoing
will further assess the safety and efficacy of this strategy.

Another line of promising direction is the inclusion of cytokine genes into the construct
that can act by autocrine signaling to potentiate CAR-cell activation and by paracrine
signaling activating other immune cells within TME [141]. Several studies have analyzed
the addition of one or two cytokines into the construct. The most explored cytokines are
IL-7, IL-12, IL-15, IL-18, and IL-23 with different rationales. CAR-T cells secreting IL-12
showed increased antitumor activity against ovarian cancer xenografts with prolonged cell
persistence, higher levels of IFNγ, resistance to Treg immunosuppression, and expansion
of natural antitumor responses through the activation of infiltrating macrophages [142,143].
Similar observations were also recorded with IL-18 expressing CAR T cells [141]. IL-7 or
IL-15 are explored for their ability to increase the persistence of CAR engineered cells (T
cells or NK cells) and preserve a less differentiated Tscm phenotype. Of particular interest
are the combination of IL-7 with the C-C chemokine ligand 19 (CCL19) and CCL21 [144,145].
Both approaches resulted in an increased antitumor activity thanks to the higher tumor
infiltration not only of the engineered cells, but also of dendritic cells.

Finally, to counteract the harsh TME, some groups have analyzed the added value of
engineering proteins for metabolic resistance of engineered cells. The low amount of key
nutrients, such as arginine, strongly impact the ability of T cells to mount a strong response.
For this reason, Fultang et al. engineered CAR T cells with the arginine resynthesis
pathway enzymes ASS and OTC [146]. CAR T cells with this metabolic engineering
showed preserved proliferation and anti-tumor activity also in low-arginine settings. On
the other hand, Ligtenberg et al. showed the direct and indirect benefits of adding catalase
enzyme to counteract the increased levels of reactive oxygen species (ROS) often observed
in TME [147]. In fact, the expression of catalase resulted not only in the preservation of the
activity of engineered cells, but also of infiltrating T and NK cells.

7. Manufacturing and Regulatory Aspects to Consider

Prior to reaching marketing authorization or even phase I clinical trial (depending
on the local regulatory agency), CAR-based therapies have to be manufactured according
to the good manufacturing practice (GMP). GMP requirements include the validation of
manufacturing processes, including ancillary and starting materials, and the establishment
of a quality control strategy across the whole process from the collection of starting cells
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up to the infusion of final product. Both aspects can represent challenges for complex
CAR-based therapies. As the scientific research of more promising CAR-based therapies
against solid tumors rapidly progresses, big efforts on large-scale manufacturing and
process optimization are needed to ensure the rapid transfer of the collected knowledge
into the clinical routine.

Other issues hamper the clinical translation of potential candidates during all phases
of CAR product development. During the collection of non-clinical data to be included in
the ATMP dossier, there is limited availability of suitable preclinical and animal models
to predict the safety and efficacy of CAR-based therapies. In fact, in addition to the inter-
species differences affecting reliable toxicology evaluations, no animal model can faithfully
recapitulate the complexity of tumor-immune cells interactions occurring in TME of solid
tumors. More advanced humanized mice and 3D organoid in vitro models are under
development, and should be carefully evaluated and selected.

During CAR product clinical development, the setup and maintenance of GMP-
compliant manufacturing processes and relative QC strategies may be laborious and
expensive, and a variety of logistical issues have to be managed. In this light, one of the
major lessons learned after the FDA/EMA marketing authorization of the first CAR-T cell
therapy is that the manufacturing of autologous products in centralized facilities has clear
limits of scalability [148,149]. This issue is pushing towards two directions: The design
and development of allogeneic/universal products, and the implementation of CAR-based
therapies with minimized manufacturing. These two directions strongly differ in terms
of the type of product that can be manufactured, the regulatory requirements it has to
fulfill, and the manufacturing capacity. Allogeneic/universal CAR-based therapies hold
the promise to strongly decrease the burden of manufacturing, the costs of production and
quality control, and could be used as “off-the-shelf” therapies. These types of products
can start from healthy donor samples, have an higher complexity in terms of gene ma-
nipulations (with the consequent complications of QC for safety assessment), should rely
on large cell expansion processes allowing for the generation of high number of cells that
preserve the functionality, and can be manufactured in centralized facilities, similarly to
traditional drug manufacturing. This approach can be easily envisioned with cells more
suited for allogeneic use (such as NK and specific T cell subsets), but with appropriate gene
manipulations, this approach has been applied to bulk T cells, as well [76,148,150].

On the other hand, there is a growing interest in point-of-care (POC) manufacturing,
although the term is often mistakenly used in academic clinical trials with one or few
manufacturing sites [151]. POC manufacturing has the clear advantages of eliminating
the need for transporting patient cells to centralized facilities for manufacturing and back
to the administration site, but poses many challenges in terms of standardization and
reproducibility. In fact, it should represent a novel model for decentralized manufacturing
of CAR therapies and other products. Despite the fact that a specific regulatory frame-
work for this approach is still lacking, an initial consultation has been opened by the UK
NHRA and both FDA and EMA are planning to carry this out in the near future [152,153].
Therefore, POC manufacturing should rely on automated cell processing devices and isola-
tors, highly-standardized manufacturing procedures and quality control assays, as well
as robust pharmaceutical quality systems at each POC. As a result, simplified methods
of manufacturing in terms of gene manipulations and in product turnaround time will
maximally benefit POC manufacturing.

8. Conclusions

Since solid tumors are equipped with an ample armamentarium to evade and resist
anti-tumor immune responses, a large variety of approaches to improve CAR-based ther-
apies against solid tumors are under development and evaluation. Although the results
collected to date were disappointing, clinical translation of the most recent advancements is
expected to show some improvements. An accurate evaluation should guide the choice of
cell types which are more suitable for exerting their antitumor activity in a specific clinical
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setting (i.e., NK to face possible antigen loss, Tscm for longer persistence) or more appro-
priately, for the preparation of allogeneic CARs (γδT, iNKT, NK). The use of refined CAR
constructs, including the proper costimulatory signal, will help in balancing the optimal
CAR expression and signaling with additional features specifically designed to overcome
the harshness of TME. Adding the expression of chemokine receptors to improve tumor
infiltration, of proteins interfering with the immune checkpoint axis, of immunomodulating
cytokines, and/or of proteins ensuring a better metabolic fitness are a few examples of the
possibilities to empower CAR-based therapies against solid tumors. Given the large amount
of factors taking place on CAR product design and on patient tumor heterogeneity, it is
reasonable to expect that employing multiple combinations of these features can broaden
the chances to collect higher and longer response rates in treated patients. However, only
joint coordinated efforts tackling the many variables involved with a multidisciplinary
approach will definitively expedite the identification of the best solutions to be included in
the CAR-based therapies.

Recent technical and technological advancements, such as the automation of manu-
facturing and the development of precise and safe gene engineering tools, can potentially
pull forward novel concepts applicable to CAR-based therapies. Some of the most recent
discoveries and developments have been discussed in this review, but surely additional
others still have to be developed. Additional efforts should be placed on the development of
fast in vitro assays for the evaluation of safety of engineered cells. Finally, pharmaceutical
companies and regulatory agencies have to continue developing the layout for innovative
and sustainable manufacturing of this complex type of drug to ensure that once the efficacy
of novel CAR-based therapies will be proved, its rapid global clinical adoption can be
foreseen.
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