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Simple Summary: Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and
abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in
clinical trials. Significant delays in progression free survival and overall survival are now docu-
mented with each agent in estrogen receptor positive and human epidermal growth factor receptor
two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven
by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components
(cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune
response. Molecular analysis of therapy resistant tumors may provide the rational basis for new
therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched
for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mech-
anisms governing chromosomal instability in luminal B breast cancer remain poorly understood.
Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms
that reduce the effectiveness of cyclin-dependent kinase inhibitors.

Abstract: Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for
cancer cell proliferation. Recent developments have illustrated nuanced important differences
between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The
CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively
inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio).
CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor
receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible
due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy
increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential
new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib,
including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing
progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions
is required. The impact of CDKI on the anti-tumor immune response represents an area of great
promise. CDKI therapy resistance that arises provides the opportunity for specific types of new
therapies currently in clinical trials.

Keywords: abemaciclib; advanced breast cancer; CDK4/6 inhibitor; hormone receptor-positive;
palbociclib; ribociclib
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1. Introduction

Despite the extensive use of anti-hormonal endocrine therapy and chemotherapy,
therapy resistance and long-term side effects have led to the introduction of alternative
treatments targeting the cell-cycle machinery. The essential role of CDKs in promoting cell
cycle progression (through phosphorylation of Retinoblastoma (Rb)) established CDK4/6Is
as a selective target therapy to influence outcomes in breast cancer, especially therapy-
resistant breast cancer [1]. In clinical practice, the most commonly used CDK4/6Is include
palbociclib, ribociclib, and abemaciclib for HR+ advanced breast malignancies. Develop-
ments of these agents derive from carefully controlled research trials. Three FDA-approved
CDK4/6 inhibitors are palbociclib, ribociclib, and abemaciclib. Ribociclib is very similar to
palbociclib in structure, but abemaciclib is different. In vitro studies indicated that palbo-
ciclib has an almost equivalent inhibition effect on CDK4 and CDK6, while abemaciclib
and ribociclib are more potent against CDK4 than CDK6 [2–4]. Other inhibitors of CDK
including CDK5 are in development and have been reviewed elsewhere [5]. The current
review focuses on CDK4/6 inhibitors, to provide a clinical update noting the recent disap-
pointments and a synopsis of the mechanisms governing therapy resistance and potential
alternative approaches for the treatment of such resistance.

Several clinical trials formed a platform upon which the clinical utility of CDKI are
based, including the PALOMA (Palbociclib Ongoing Trials in the Management of Breast
Cancer) studies, showed significant results for palbociclib use, whereas the “Mammary
Oncology assessment of LEE011’s (ribociclib’s) Efficacy and Safety” (MONALEESA) trials
have proven ribociclib therapy as a viable treatment option. In addition, the MONARCH
research studies have revealed improved survival outcomes on abemaciclib therapy in
ABC patients.

2. Breast Cancer and Existing Targeted Therapy

Only to certain dermatologic malignancies, breast cancer leads to female mortality in
the United States [6]. Breast cancer may be characterized based on coding [7] or non-coding
genome [8]. The three most common molecular subtypes of breast cancers based on the
coding genome are HR+ malignancies (estrogen receptor-positive (ER+) and progesterone
receptor positive (PR+) breast cancers) [9], HER2+, and triple-negative breast cancer (TNBC)
malignancies. HR+ breast cancer cells retain sensitivity to estrogen/progesterone-blocking
endocrine therapy. HR− breast cancer types are without a rational basis for endocrine
treatments. HER2+ breast cancer cells display amplified expression of HER2 receptors
that is targeted by antibodies, including the humanized monoclonal antibody trastuzumab
(Herceptin) [10–13]. In contrast, TNBC malignancies which have the worst prognosis, do
not express estrogen receptor (ER), progesterone receptor (PR), or HER2/neu, and are now
being assessed for new targeted therapies to PARP, Trop2, CCR5 [14], DNMT1, VEGF and
immune checkpoints [15,16].

Luminal A breast cancers express hormone receptors (ER+ and PR+/−) but lack ex-
pression of HER2 and have low levels of Ki-67 protein (a marker of proliferation). These
subtypes grow slowly, are low-grade, with the best prognosis, and are most likely to benefit
from hormone therapy but may not benefit from chemotherapy [17], and side effects from
chemotherapy may outweigh the value of chemotherapy in this population [18]. Luminal
B breast tumors are ER+ and PR+/− and HER2+/−, with increased levels of Ki-67. Such
subtypes grow faster with a slightly worse prognosis than Luminal A, with the best re-
sponse to endocrine therapy, chemotherapy, and targeted anti-HER2 therapy in HER2+

patients [17,19,20]. HER2+ tumors are HER2-enriched, PR−/HR−, and tend to grow faster
and benefit most from targeted therapies against HER2. Basal-like breast cancer, often
referred to as TNBC due to its lack of ER, PR, and HER2 expression, is the most common
subtype amongst patients with breast cancer gene 1 (BRCA1) mutations (early-onset) and
African American women [21].

Factors contributing to breast cancer development include strong family history,
BRCA1 and breast cancer gene 2 (BRCA2) gene mutations, a history of atypical hyperplasia,
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alcohol intake, and increased age. Ethnicity also plays a role, with TNBC being most preva-
lent in African American women. In contrast, Caucasian women are more susceptible to
other breast cancer subtypes, particularly infiltrating ductal carcinoma, lobular carcinoma,
and tubular adenocarcinoma [15]. In addition, higher estrogen exposure throughout a
patient’s lifetime (i.e., early menstruation, late menopause, nulliparity, postmenopausal
obesity, the elevated total number of menstrual cycles, absence of breastfeeding, later age
of first pregnancy, alcohol intake, Klinefelter syndrome in men, etc.) can increase the risk of
breast cancer [22].

Anti-estrogen treatments include aromatase inhibitors, such as letrozole, and estrogen
receptor antagonists, such as fulvestrant. However, a consequence of these long-term
therapies is acquired resistance. Therefore, additional agents are required to attenuate the
mechanisms of resistance and its associated rise in breast cancer mortality rates. To prevent
therapeutic resistance, long-term therapies for breast malignancies must be consistent,
stable, and, most importantly, selective to the target cancer cells [23]. The specificity of the
CDK4/6Is, and evidence for increased CDK activity in HR+ breast cancers suggested the
potential utility of CDK4/6Is in combination with endocrine therapy for therapy-specific
breast cancer subtypes [24,25] (Figure 1).
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3. The Regulatory Cyclin D Subunit Are Frequently Amplified in Human Breast Cancer

The cyclin regulatory subunit together with the catalytic CDK subunit generates
a holoenzyme that phosphorylates gatekeeper proteins coordinating cell cycle progres-
sion [26]. The cell cycle is divided into phases, controlled by checkpoint transitions that
proceed in an orderly and precise manner to ensure cellular growth and proliferation.
Cyclin/CDK complexes must be activated and inactivated at appropriate times to ensure
carefully timed progress through the cell cycle [26]. The holoenzymes are serine and
threonine kinases that regulate cell cycle progression via selective phosphorylation of
target substrates [27]. CDK4, and CDK6, together, with their cyclin-D regulatory subunits,
promote the G1/S phase progression of the cell cycle [28]. The cyclin-CDK holoenzyme
complexes phosphorylate the Rb protein to release elongation factor two (E2F) and promote
DNA synthesis [28].
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The CCND1 gene encodes cyclin D1 is frequently amplified in human breast can-
cers [2]. Analysis of 3617 samples, combining the METABRIC and TCGA (Firehose Legacy
data) showed amplification of CDK4 is a rare event (1.3%) co-occurring with cyclin D1
amplification (Figure 2). Cyclin D1 protein abundance is increased as a consequence of over-
expression, gene amplification, transcriptional induction or post-transcriptional induction,
in >50% of breast cancers [2].
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Figure 2. Infrequent CDK4/6 amplification in Breast Cancer therapy. Analysis of 3617 breast cancer
samples from CBIOPORTSAL, combining the METABRIC and TCGA (Firehose Legacy data) showed
amplification of CDK4 is a rare event (1.3%), co-occurring with cyclin D1 amplification. Frequent
amplification of the regulatory subunit of the cyclin D/CDK complexes (cyclin D1, CCND1) occurs
in human breast cancer. # number of samples. * percentage of patients in the population with the
particular genetic abnormality.

Cyclin D1 is overexpressed primarily in luminal breast cancer (luminal A and luminal B)
associated with ERα+ breast cancer (Figure 3A). Consistent with the model in which cyclin
D1 induces chromosomal instability, increased cyclin D1 correlates with the expression
of chromosomal instability signature (Figure 3B). In tissue culture, CDKI reduces RB
protein phosphorylation, reducing the release E2F from binding to Rb and G1 cell cy-
cle arrest [29–31]. In addition, CDKIs have additional anticancer effects in breast cancer,
including enhancing cancer cell immunogenicity and promoting cellular senescence [32].
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Figure 3. Chromosomal instability signature and cyclin D1 expression in breast cancer subtypes.
(A) Heatmap of breast cancer microarray datasets assigned to the breast cancer coding genome ex-
pression subtypes. The predicted ESR1, epidermal growth factor receptor (ERBB2), and progesterone
receptor (PGR) statuses are shown together with a chromosomal instability gene signature (CIN)
signature score and CCND1 expression level across the 5 subtypes. The CIN signature score, and
cyclin D1 expression level are outlined for the luminal B subtype. (B) CCND1 transcript level plotted
vs. CIN signature expression level show a correlation between high CIN score and high cyclin D1
expression in luminal B subtype specific (red circle).

4. CDK Inhibitors

Early efforts to produce CDKIs resulted in relatively non-selective targeting of sev-
eral CDKs. However, the current generation CDKIs more specifically target CDK4 and
CDK6, allowing for better toleration and reduced toxicity. The current FDA-approved
CDKIs decrease phosphorylation of the RB tumor suppressor, promoting cell cycle ar-
rest at the G1/S transition checkpoint. Current NCCN Guideline recommendations for
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metastatic HR+/HER2−, breast cancer include the addition of CDK4/6Is with hormonal
therapy (letrozole, fulvestrant) in postmenopausal and for premenopausal patients as a
preferred first-line treatment (Table 1, [33]). Palbociclib is a highly specific inhibitor of
cyclin-dependent kinase 4 (Cdk4) (IC50, 0.011 µM) and Cdk6 (IC50, 0.016 µM).

Table 1. Summary of FDA approved CDK4/6 Inhibitors.

Drug Mechanism of Action
IC50 (nM)

Recommended Dose
Half-Life
Tmax

Drug Interactions
IC50 against Bone Marrow
Mononuclear Cells (nM)

References

Palbociclib Similar potency against
cyclin D1/CDK4 and
cyclin D2/CDK6

125 mg po once a day for
21 days in a 28-day cycle
with food

CYP3A4 substrate
240 ± 43

[34–38]

CDK4–cyclin D1 11
CDK6–cyclin D1/2/3 16 Half-life
CDK1–cyclin B >10,000 26–27 h
CDK2–cyclin A/E >10,000 Tmax
CDK5–p25 >10,000 6–12 h

Ribociclib Greater potency against
CDK4 than CDK 6

600 mg po once daily for
21 days in a 28- day cycle
with or without food

CYP3A4 substrate
1700 ± 231

[39,40]

CDK4–cyclin D1 10
CDK6–cyclin D1/2/3 39 Half-life
CDK1–cyclin B 113,000 33–42 h
CDK2–cyclin A/E 76,000 Tmax
CDK5–p25 43,900 1–5 h

Abemaciclib Greater potency against
CDK4 than CDK 6 (CDK4
and CDK6 with IC50 of
2 nM and 10 nM

150 mg or 200 mg po BID
with or without food.

CYP3A4 substrate, BCRP, Pgp
230 ± 27

[4,41–43]

CDK4–cyclin D1 2
CDK6–cyclin D1/2/3 10 Half-life
CDK1–cyclin B 1627 17–38 h
CDK2–cyclin A/E 504 Tmax
CDK5–p25 355 4–6 h

Palbociclib. Palbociclib is a specific CDK4/6I. Palbociclib-responsive breast tumors
are ER+, Rb+ with cyclin D1 overexpression. Palbociclib is best used with an aromatase
inhibitor, frequently used in postmenopausal women and men who have not had prior
hormonal therapy [44]. The aromatase inhibitors regularly used in combination therapy
include Arimidex/anastrozole, Aromasin/exemestane, and Femara/letrozole. However,
in all patients with previous hormonal therapy, palbociclib is best combined with the ER
antagonist Faslodex/fulvestrant [45–52]. Female patients on this latter regimen must be on
an LHRH (luteinizing hormone releasing-hormone) agonist to suppress ovarian function as
the palbociclib/ER antagonist combination therapy results in continuous stimulation of the
hypothalamic–pituitary–ovarian axis feedback loop, thereby inhibiting ovarian estrogen
production, allowing tumor growth suppression [53].

PALOMA-1 was the first of many trials to analyze the therapeutic effects of com-
bination therapy with palbociclib and letrozole in advanced breast cancer (ABC). The
PALOMA-1 trial randomized postmenopausal women with ER+/HER2− ABC to letrozole
alone (2.5 milligrams (mg) daily) or in combination with palbociclib (125 mg daily). Palboci-
clib augmented progression-free survival (PFS) in the patients taking letrozole combination
therapy, (Table 2 [54]) resulting in FDA approval (April 2013 [37]).

PALOMA-2, a phase III double-blind research study, was performed to further evaluate
the outcomes of PALOMA-1. PALOMA-2 employed the exact dosage and scheduling of
Palbociclib as PALOMA-1. Palbociclib treatment resulted in the extension of PFS compared
to the placebo-controlled group, as shown in Table 2. Due to the greater number of patients,
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there was a more significant benefit observed in all breast cancer patient subgroups in
PALOMA-2. This includes patients with lobular carcinoma and those who developed
metastasis within 12 months of diagnosis, considered advanced breast cancer [55], resulting
in FDA accelerated approval for palbociclib in February 2015.

The double-blinded phase III PALOMA-3 trial sought to assess the potential for
combination therapy with palbociclib and the most common selective estrogen receptor
degraders, fulvestrant. The patients treated were ER+, HER2− breast cancers. The palbo-
ciclib group experienced extension to PFS and OS compared to placebo (Table 2) [56]. In
addition, although palbociclib toxicity was frequent, improvement in global quality of life
was noted [56–58].

Table 2. Summary of CDK4/6 Inhibitors and Corresponding Research Trials.

DRUG TRIAL TARGET POPULATION EXPERIMENTALGROUP CONTROL
GROUP CHANGE IN PFS CHANGE IN OS

PA
LB

O
C

IC
LI

B

PALOMA-1 165 postmenopausal

+Letrozole

Letrozole
monotherapy

20.2 vs. 12.9
months
[34,35,53,54,61]

[34,35,53,54,61]

PALOMA-2 666 postmenopausal Placebo +
Letrozole

24.8 vs. 14.5
months
[34,35,53,61]

PALOMA-3 521 pre/peri/post-
menopausal +Fulvestrant Placebo +

Fulvestrant
9.2 vs. 3.8 months
[34,35,53,57,61]

6 years OS, 19.1%
vs. 12.9% [62]

PALLAS 5796 (5761 included in
analysis) +Endocrine adjuvant Endocrine

adjuvant
N/A
[34,35,53,59]

PENELOPE-B 1250 included in analysis +standard endocrine
adjuvant

Placebo +
standard
endocrine
adjuvant

N/A
[60]

R
IB

O
C

IC
LI

B

MONALEESA-2 668 postmenopausal +Letrozole Placebo +
Letrozole 20.5 vs. 12.8

months
[53,61,63,64]
[53,63,64]MONALEESA-3

726 men and
postmenopausal women
with prior exposure to ET

+Fulvestrant Placebo +
Fulvestrant

42 months OS
57.8% vs. 45.9%
[65]

MONALEESA-7 672 pre/peri-menopausal +Fulvestrant +
Goserelin ET + Goserelin

23.8 vs. 13.0
months
[53,61,63,64]

A
B

EM
A

C
IC

LI
B MONARCH-1 132 with prior ET or

chemo exposure Monotherapy N/A 16.4 vs. 9.3
months
[42,53,61]
[53,66]MONARCH-2 669 with prior ET

exposure +Fulvestrant Placebo +
Fulvestrant

46.7 months OS
vs. 37.3 months
[67]

MONARCH-3 493 postmenopausal +Letrozole Placebo +
Letrozole

28.2 vs. 14.8
months
[53,61,68]

* ET = endocrine therapy [69]. N/A primary end point not achieved.

The “Palbociclib Collaborative Adjuvant Study” (PALLAS) was initiated in 2015.
to determine disease-free survival (iDFS) in patients who received palbociclib with an
endocrine therapy versus a standalone endocrine therapy. Ultimately, 5761 patients were
randomly assigned to either treatment group, with 2884 receiving palbociclib and endocrine
therapy, and 2877 received only endocrine therapy, with each group receiving treatment for
at least 5 years. The palbociclib was dosed at 125 mg orally given once daily for 21 days,
followed by a 7-day break from treatment in a cycle of 28 days, and this continued for
2 years, along with a standard endocrine adjuvant for 5 years. At the median follow-up
period of 31 months, the iDFS were compared for both treatment groups. The results
showed that iDFS occurred at a rate of 8.8% in the patients receiving palbociclib plus the
endocrine adjuvant and at a rate of 9.1% in patients just receiving the standard endocrine
therapy on its own. Palbociclib added to an adjuvant endocrine therapy did not significantly
improve compared to endocrine therapy on its own [59]. Palbociclib is not recommended
in the adjuvant setting of stage II/III h ERα+, HER2− breast cancer because the addition of
Palbociclib to standard endocrine therapy (ET) did not improve outcomes. The molecular
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mechanisms governing this outcome is investigated through assessment of the Trans-
PALLAS program samples.

The PENELOPE-B trials were conducted to assess the efficacy of combining palbociclib
with adjuvant chemotherapy in breast cancer treatment outcomes. The PENELOPE-B trials
randomly assigned patients to either 13 cycles for 4 weeks at a time of palbociclib or placebo
treatment. The palbociclib group received 125 mg given once daily given from days 1 to 21,
followed by a 7-day break in a 28-day cycle of treatment. The placebo group also followed
this dosing schedule. Both groups were also given standard neoadjuvant chemotherapy
alongside palbociclib or the placebo. The primary outcome of interest was iDFS based
on the random assignment of 1250 patients. The end of the trial showed that the use of
palbociclib did not improve the iDFS compared to the use of a placebo, ultimately leading to
the conclusion that the use of palbociclib for 1 year alongside estrogen therapy did not lead
to improvement in iDSF [60]. The primary endpoint, of improving invasive disease-free
survival (iDFS) in ERα+, HER2− breast cancer patients who had residual invasive disease
after completing neoadjuvant chemotherapy (the phase 3 PENELOPE-B) was not met.

Ribociclib. Ribociclib, the second CDK4/6I to become FDA approved, is structurally
and functionally similar to palbociclib, and can be used in premenopausal, perimenopausal
or postmenopausal women. It is most effective when combined with aromatase inhibitors,
including anastrozole, exemestane, and letrozole. Like palbociclib, ribociclib requires
fulvestrant adjunct therapy to suppress ovarian function, particularly in postmenopausal
patients without prior endocrine therapy [40,70–74]. The most concerning adverse effect of
ribociclib use is cardiotoxicity, monitored with electrocardiograms (EKGs).

The MONALEESA trial was a randomized, double-blinded study using oral dosing of
ribociclib [63]. The MONALEESA-2 trial examined the clinical benefits of ribociclib (600 mg
and higher) over standard therapy with letrozole in patients with advanced metastatic
disease (all subtypes and/or ≥1 lytic bone lesion) [39]. Patients were then stratified by
either the presence or absence of visceral malignant advancement.

The MONALEESA-3 study was a randomized, placebo-controlled phase III study
designed to assess the benefits of ribociclib in combination with fulvestrant for patients with
confirmed HR+/HER2− ABC, including men and postmenopausal women and patients
with advanced metastatic disease (all subtypes and/or ≥1 lytic bone lesion). Combination
therapy of ribociclib plus fulvestrant significantly prolonged PFS and OS compared to
placebo plus fulvestrant, (Table 2 [64]). The MONALEESA-7 trial extended these findings
to examine the effect of ribociclib on PFS rates in comparison to endocrine therapy alone in
premenopausal or perimenopausal patients with HR+/HER2− ABC [63].

Although CDKIs have been shown to have the best results in conjunction with en-
docrine therapy, palbociclib and ribociclib in particular, synergize well in combination
with phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) in-
hibitors. Similar to the effects of CDKIs, antagonism of protein kinase B (AKT) and
3-phosphoinositide-dependent protein kinase 1 (PDK1) produce a similar reduction in
tumor growth and progression via cancer cell senescence. Moreover, pairing ribociclib
with PI3K/mTOR inhibitors reduced ribociclib resistance, especially in ER+/HER2− breast
cancer patients, which is mediated by the PI3K/AKT pathway [75].

Abemaciclib. A third FDA-approved CDK4/6I for breast cancer management is
abemaciclib. Abemaciclib has different clinical features than other CDKIs, presumably
due to its more significant inhibition of CDK4 than CDK6 and inhibition of CDK9 [76].
Administration of abemaciclib is provided continuously daily if well tolerated (a twice-daily
regimen is permitted), which differs from the dosing schedule for other CDKIs [41,42].

The FDA approved abemaciclib for use in HR+/HER2− ABC treatment in 2017 as
either monotherapy in patients receiving endocrine therapy or chemotherapy or used
in conjunction with fulvestrant in those with prior exposure to hormonal therapy. The
MONARCH trials were initiated to investigate abemaciclib therapy’s results in different
potential breast cancer management regimens. MONARCH-1, a phase II research trial,
examined abemaciclib monotherapy (200 mg twice daily) in HR+/HER2− ABC patients
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with previously significant exposure to treatment with endocrine therapy and chemother-
apy [42].

The MONARCH-2 phase III trial randomized patients with HR+/HER2− ABC to
either fulvestrant plus abemaciclib (150 mg twice daily) or placebo [66]. PFS and OS of the
combined therapy group was significantly greater than placebo (Table 2). In addition, the
combination of fulvestrant with abemaciclib conveyed beneficial results in patients with
primary endocrine therapy resistance, significantly increasing overall survival [66]. The
MONARCH-3 trial demonstrated similar effectiveness of combination abemaciclib therapy
with aromatase inhibitors in the same patient demographic as MONARCH-2 [68].

The MONARCH trial indicated the use of abemaciclib with aromatase inhibitors
for postmenopausal women without prior hormonal therapy exposure. There was also
robust evidence for combining abemaciclib with fulvestrant to suppress ovarian functions
in premenopausal and perimenopausal women. Lastly, there was supporting evidence
that both male and female patients should receive abemaciclib as monotherapy after
ineffective use of anti-hormonal and chemotherapy for the management of metastatic
breast cancer [67].

Further differences between abemaciclib and other CDKIs result from its capacity
to cross the blood–brain barrier (BBB), thus allowing penetration into the cerebrospinal
fluid (CSF). This characteristic is essential for the treatment of brain metastasis in breast
cancer patients [77–82]. Abemaciclib’s ability to adequately reach the central nervous
system results in substantial improvement in morbidity of metastatic breast cancer patients
and potentially for other primary CNS malignancies. The ability of CDKIs to accumulate
in CSF depends on many factors, particularly the presence of p-glycoprotein (P-gp) and
breast cancer resistance proteins in the CNS. These proteins act to extract and dispose
of certain drugs from the brain, including palbociclib and abemaciclib [77]. Although
both these drugs can penetrate the BBB, they display different levels of accumulated CSF
concentrations due to palbociclib’s greater efflux by P-gp. Thus, abemaciclib is the most
effective CDKI to manage brain metastasis of breast malignancies [41]. Pharmacodynamic
markers are used to monitor patient response to abemaciclib therapy to observe treatment
efficacy. These markers include the expected decline in phosphorylated-Rb protein and
topoisomerase II-alpha, which are associated with treatment competence [41].

5. Dose-Limiting Side Effects

Although each CDKI can produce side effects, the most common ones seen with these
drugs include bone marrow suppression, cardiotoxicity, hepatotoxicity, and gastric toxicity,
and most are contraindicated in pregnant patients. Common side effects of CDKIs include
pancytopenia, particularly neutropenia, lethargy, fatigue, nausea, diarrhea, and low-grade
alopecia. The high rates of febrile neutropenia are monitored by complete blood counts
(CBCs) with differential. These effects are generally resolved after discontinuation of CDKI
therapy [34–36].

The PALOMA trials highlighted side effects and precise dosing as essential in obtaining
the most therapeutic value with palbociclib. The most significant side effect of palbociclib is
acute neutropenia (up to 62% of patients), resulting in immunosuppression and infections
managed with antibiotics [83]. The time taken for the appearance of neutropenia from
initiation of treatment was 20 days, with the recurrence slowly reducing over therapy
use [37]. Monitoring for adverse effects via CBCs with differential is conducted regularly,
recommended on day 14 and performed if any complications arise within the treatment
period [34–36].

Toxic effects of ribociclib are similar to those of palbociclib, with the addition of
cardiotoxic side effects with ribociclib. These effects are monitored with routine EKGs.
Dose-dependent prolongation of the QT interval is seen at a dose of 600 mg. Detection
of QT interval with Fridericia’s correction (QTcF) was observed to be >480 milliseconds
(ms), whereas the standard length of this period is ideally 400–440 ms. This conduction
abnormality can lead to irregular heartbeats and eventually life-threatening arrhythmias.
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As such, patients with prior cardiac disease, prolonged QTcF or those taking any other
medications that increase the risk of QT lengthening are not approved to be involved in this
study (30). Routine monitoring of hepatic transaminases with liver function tests (LFTs)
and bilirubin levels is required to prevent liver complications. These effects are generally
resolved after discontinuation of ribociclib (30).

A significant distinction between abemaciclib and other CDKIs is its minimal hema-
tologic adverse effects, with mild leukopenia seen in patients rather than the expected
high-grade neutropenia [4,41,42]. The more common and more favorable side effects seen
with abemaciclib use include fatigue and gastrointestinal toxicity, particularly abdominal
pain, diarrhea, and nausea [66]. These may lead to dehydration and infection; however,
management with Imodium (loperamide), greater fluid intake, and changes in diet can
relieve these symptoms. Abemaciclib is not recommended in patients with any underlying
gastrointestinal conditions such as irritable bowel syndrome, colitis, or diverticulitis [84,85].
Additionally, an observed elevation of creatinine is seen with abemaciclib use; however,
it may not be directly associated with renal impairment but due to drug interference
with creatinine tubular secretion [41]. These benign adverse effects are managed with
dose reductions or modifications, particularly during the first two months of initial ther-
apy. Intolerance to side effects may require a break from treatment, as with any serious
complications [86].

The dosage for palbociclib and ribociclib administration follows the same schedule,
with intake for three weeks (21 days) followed by a one-week (7-day) interval without
CDKI use to complete a 28-day cycle. However, letrozole (2.5 mg) is taken continuously
throughout the four weeks of the combination drug regimen. Initial palbociclib dosing
begins at 125 mg, and ribociclib is dosed at 600 mg (dispensed as three 200 mg tablets).
Fulvestrant administration is given intramuscularly (500 mg) on the first day of every
28-day cycle, administered as two injections in each gluteal muscle. Additionally, in
the first cycle, an extra fulvestrant dose is provided for day 15 [63,64,87]. Abemaciclib
administration is provided continuously daily, permitting a 150 to 200 mg dosing regimen
every 12 h (twice daily) if well tolerated [41,42].

6. Mechanisms of Resistance to CDK4/6 Inhibitors

A review of the clinical trials (Table 2) illustrates the vital impact the new generation
of CDK inhibitors has had, yet raises several important questions. Firstly, CDK activity
remains inhibited in the patients’ tumors, yet the tumors progress. The reduction in RB
phosphorylation as the tumor progress suggests CDK independent pathways maintain
tumor growth. The development of resistance to CDK4/6I is typical in most patients. The
tumors being treated have high levels of chromosomal instability, and consequent genomic
instability [29] as cyclin D1 overexpression is a driver of chromosomal instability [29,88,89].
Consistent with the high level of CIN, genomic alterations occur with CDKI therapy,
including loss of the RB gene, altered cyclin E1 expression [90], p27 inhibition [91], and
activation of the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
(PIK3CA) pathway [92].

Genetic loss and mutations of RB. RB is a tumor suppressor protein that acts as a
critical checkpoint regulator of the G1/S phase of the cell cycle and is, therefore the main
target of CDK4/6Is to cause cell-autonomous G1 arrest. Rb regulates E2F, a downstream
transcription factor. E2F bound to Rb restrains induction of the G1 to S phase cell cycle.
RB genetic loss or silencing causes CDKI resistance [93–96]. Loss of RB is associated with
increased E2F expression leading to constitutive activation of downstream proteins. E2F can
upregulate AKT signaling via GRB2 Associated Binding Protein 2 (Gab2) [97]. In tumors
where Rb is inactivated, the targeted inhibition of the cyclin E-CDK2 axis in combination
with CDK4/6Is may effectively overcome resistance to CDK4/6Is [54,98].

Cyclin E1 and cyclin E2 as biomarkers of response to CDK4/6 inhibitors. Cyclin E1
overexpression may constitute a resistance mechanism in patients treated with fulvestrant
+ palbociclib. CDK4/6 inhibitor resistance is associated with increased CDK2 activation (re-
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viewed in [99]. In such circumstances, CDK2/cyclin E inhibitors such as Cyclacel (CYC065)
may be of use [100]. The PALOMA-2 and PALOMA-3 trials showed that palbociclib ad-
dition to endocrine therapy benefited recurrence-free survival irrespective of CCNE1 and
CCNE2 levels in the pre-treated primary tumor samples. However, the expression of CCNE1
distinguished patients with the longest vs. the shortest recurrence-free survival. Cyclin
E1 is not amplified in ERα+ breast cancer, nor does amplification appear to occur during
progression to resistance [101]. In both the MONALEESA-2 (letrozole/ribociclib) and the
PALOMA-3 (fulvestrant/palbociclib) trials, high expression of CCNE1 mRNA was associ-
ated with poor progression-free survival [100]. In the PALOMA-3 trial, high pre-existing
CCNE2 mRNA expression was not associated with any difference in progression-free sur-
vival [101], nor did CCNE2 amplification increase during disease progression [102]. In the
MONALEESA-7 and CLEE011X2106 trials there was a trend for CCNE1-high patients to
have poor progression-free survival. Furthermore, patients expressing cytoplasmic cyclin
E1 protein, reflecting a low molecular weight form of cyclin E1, had worse survival than
patients expressing only nuclear cyclin E1 protein [103]. In the POP trial of pre-operative
palbociclib, CCNE2 expression was significantly decreased in antiproliferative responders
vs. non-responders measured over 15 days (p = 0.006) [104]. CCNE1 was high in patients
who maintained high Ki67 after 15 days of treatment in the NeoPalAna study [44] in the
PALOMA-3 trial [102].

p16 Amplification. The tumor suppressor p16INK4a, a member of the inhibitors of
the CDK4 (INK4) family and a natural inhibitor of CDK4, is involved in cell cycle control
and regulation [92]. Since CDK4/6 (a p16 target) requires Rb for its kinase activity, p16
acts as a tumor suppressor when functional Rb is present [105]. p16 overexpression oc-
curs during oncogenic stress in the presence or absence of Rb [106,107]. In human breast
cancer, p16INK4a is inversely correlated with cyclin D1 and ERα expression [108]. p16
expression lacked prognostic relevance in TNBC [109]. p16INK4a inactivation by DNA
methylation occurs in ≤30% of human breast cancers [110] however increased abundance
is also reported [109]. In mouse models of tumorigenesis Ink4a/Arf +/− mice have increased
Eµ-Myc-induced lymphomagenesis and epidermal growth factor receptor-induced glioma-
genesis. In ErbB2-induced mammary tumorigenesis, Ink4a/Arf +/− mice showed decreased
p16INK4a, increased Ki-67 expression, increased cyclin D1 protein but decreased mammary
tumor apoptosis [111]. Currently, two theories exist involving loss of Rb and amplification
of p16 [112]. Further studies might be beneficial in designing the strategies to overcome
acquired resistance to CDK4/6Is.

CDK6 Amplification. The catalytic subunit CDK6 conveys both kinase-dependent
and kinase-independent roles via gene transcription [113]. CDK6 upregulates p16INK4a in
the presence of STAT3 and cyclin D1 [114]. CDK6 increases vascular endothelial growth
factor A (VEGF-A) and c-Jun, promoting angiogenesis to allow the promotion of breast
cancer progression and CDK4/6I resistance [115] (Figure 4).

CDK4 Amplification. CDK4 can be amplified via gene amplification, mutations, and
epigenetic alterations, which allows overactivation of the cyclin D1-CDK4/6-Rb path-
ways. Although CDK4 overexpression has been seen in several cancers and may limit the
therapeutic efficacy of CDK4/6Is [116,117], this is an uncommon event in breast cancer.

Activation of the FGFR Pathway. The fibroblast growth factor receptor (FGFR) leads
to a signaling pathway that plays a vital role in proliferation, differentiation, and cell sur-
vival [118]. The FGFR pathways, particularly FGFR1-4, are overactivated in breast cancer
and other malignancies and are implicated in cancer progression [119]. Therefore, FGFR1
and FGFR2 are associated with CDK4/6I resistance development and endocrine therapy
resistance. FGFR1 amplification activates of the PI3K/AKT and RAS/MEK/ERK signaling
pathways, specifically in endocrine-resistant breast cancer cells [120,121]. Laboratory-
induced FGFR1 overexpression showed resistance to combination therapy with palboci-
clib/fulvestrant and fulvestrant monotherapy [122]. FGFR2 is the main activating factor of
the FGFR pathway and functions to promote endocrine resistance. Therefore, a potential
option in overcoming CDKI resistance may require combined inhibition of both CDK4/6
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and FGFR pathways by combining brivanib, an FGFR-1/VEGFR-2 kinase inhibitor, with
tamoxifen, which could potentially maximize the therapeutic efficacy and rescue cells’
sensitivity to endocrine therapy [121].
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Activation of the PI3K/AKT/mTOR Pathway. In approximately 30–40% of breast can-
cer cases, especially HR+ subtypes, activation of the PI3K/AKT/mTOR signaling pathways
are seen [93,122]. Dysregulation of this pathway can lead to critical resistance to endocrine
therapy and was recently reported to be associated with CDK4/6I resistance [75]. Patients
with CDKI-resistant breast cancer cells have become more dependent on PI3K/AKT/mTOR
signaling pathways rather than ERα signaling for oncogenesis. CDK4/6I phosphorylate
AKT via PDK1 to activate PI3K/AKT/mTOR pathways in ribociclib-resistant breast cancer
cells. CDK4/6I-resistant breast cancer cell lines show reactivation of phosphorylated-Rb
and E2F, which may occur via the CDK or the mTOR pathways [123]. A recent study sug-
gested that PI3K inhibitors may downregulate cyclin D1 expression and promote resistance
to CDK4/6Is. Therefore, there are potential therapeutic benefits in combination therapy of
PI3K/AKT/mTOR inhibitors and CDK4/6Is in addressing CDKI resistance and enhancing
the anticancer effect in CDKI-sensitive cases [93].

Loss of ERα or PR Expression. A critical factor in the progression of breast carcino-
genesis is cyclin D1-CDK4/6 activity which allows hormone-mediated activation of ER [37].
Abemaciclib-resistant breast cancer cell lines exhibited loss of ER/PR expression [115]. This
results in the loss of the estrogen-dependent driver of tumor growth; however, this can also
lead to a mechanism of resistance to CDK4/6I therapy. In addition, patients who develop
resistance mechanisms to CDKI treatment may require treatment methods beneficial in
HR− subtypes of breast cancers.

Higher transcriptional activity of AP-1 transcription factor. The structure of activa-
tor protein 1 (AP-1) is a heterodimer composed of proteins belonging to the c-Fos, c-Jun,
activation transcription factor (ATF), and transcription factor MAF sub-families [124].
Approximately 20–40% of breast cancers have increased c-Jun activity [125]. Selective
c-jun gene deletion in mice evidenced a role for c-Jun in maintaining breast epithelial cell
survival [126]. Laser capture microdissection demonstrated endogenous c-Jun inhibited
expression of apoptosis-inducing genes and reactive oxygen species (ROS)-reducing genes
(MnSOD, catalase) [126]. In breast tumors c-Jun is expressed at the invading edge [127],
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suggesting a role for c-Jun in tumor migration. Consistent with this clinical observation,
somatic deletion of the c-jun gene, conducted using floxed c-jun (c-junf/f) conditional knock-
out mice, showed c-Jun promoted cellular migration and invasion via increasing expression
of CCL5 [128] and stem cell factor (SCF) [129], increasing c-Src abundance and suppressing
Rock kinase signaling [130]. Increased transcriptional activity of AP-1 and increased c-Fos
levels were noted to lead to acquired resistance to palbociclib and tamoxifen (96). Inhibiting
AP-1 in combination with palbociclib and fulvestrant was ultimately more productive
dual or mono-treatment (96). One c-Fos/AP-1 inhibitor (T-5224) has reached Stage II of
trials [124].

Immune Mechanisms of CDKI therapy resistance. CDKi have significant and di-
verse effects on the breast cancer tumor immune microenvironment (reviewed in: [2]).
Stromal cyclin D1 is increased in human breast cancer, correlating with poor outcome,
and is known to augment the recruitment of macrophages into the breast cancer tumor
microenvironment [131]. Treatment with immune checkpoint inhibitors is being explored
for TNBC [132]. Compared with HER2-positive breast cancer and TNBC, ERα-positive
breast cancer is not an immunogenic cancer type. Luminal breast cancers have the lowest
level of tumor PD-L1 expression compared with basal-like and HER2-positive tumors.
However, CDK4/6I-resistant breast cancer cells demonstrated upregulation of IFN-α and
IFN-β activity in immune-related signaling pathways [125,133]. DNA methyltransferase
is an E2F target protein that promotes cytotoxic T-cell-mediated tumor inhibition when
CDK4/6Is inhibit its activity [134]. CDK6 phosphorylates and thereby inhibits the nuclear
factor of activated T-cell 4 (NFAT4), [135], reducing interleukin 2 (IL-2) levels. CDK4/6Is
dephosphorylate NFAT4, enhancing its activity and increasing IL-2 levels [135]. CDKIs can
potentiate anti-tumor immunity via augmenting the response to programmed cell death
protein 1 (PD-1) blockade. Combining therapy with CDK4/6Is and PD-1 inhibitors may be
a useful approach to overcome CDK4/6Is resistance.

7. Identifying Targeted Therapies for CDK4/6 Inhibitor-Resistant ER+ Breast Cancer

It has been proposed CDKI resistant cells have increased dependency upon the G2/M
checkpoint [136]. WEE1 is an important G2 checkpoint regulator. In ER+ breast cancer cell
models made resistant to ribociclib, the combination of AZD1775 (WEE1 inhibitor) and
ribociclib inhibited proliferation in resistant cells [136]. Inhibiting WEE1 kinase decreased
cell proliferation and increased G2/M arrest, apoptosis, and gamma H2AX levels (a marker
for DNA double-strand breaks), in resistant cells compared with sensitive cells [136]. WEE1
kinase is thus a promising anticancer target in therapy-resistant ERα+ breast cancer [136].

8. Conclusions

Breast cancers, particularly metastatic HR+/HER2− advanced breast carcinomas, are
currently treated with CDK4/6I [39,55,56]. However, tumor progression occurs frequently
despite CDKi therapy. Recent studies, including the phase 3 PENELOPE-B trial, which did
not meet the primary endpoint of improved invasive disease-free survival (iDFS) suggest
there is much more to be understood about the role of CDK in breast cancer.

The variety of distinct genetic mechanisms giving rise to therapy resistance may, in
part, reflect the intrinsic genomic instability of cyclin D1 overexpressing breast tumors [88]
(Figure 3A). Cyclin D1 induced chromosomal instability (CIN) in murine mammary ep-
ithelium [29,88], and in other species [89]. Cyclin D1 is induced early in breast cancer and
CIN is an early feature of tumorigenesis that may precede tumor suppressor loss [137,138].
Cyclin D1 [88] and cyclin E, are both capable of inducing CIN [139], and the induction
of cyclin E in CDKI-resistant tumors may sustain CIN. Cyclin D1 induction of CIN is in
mouse hepatocytes [140], lymphoid tumors [141] and bladder cancer [142]. The recent
identification of drugs targeting CIN [143,144] may provide a rational basis for therapeutic
substratification, supplementing with compounds targeting CIN in the luminal B subtype
of breast cancer.
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Multiple cell-cycle states have cell-cycle states have specific genetic and pharmaceutical
vulnerabilities and a high degree of heterogeneity within tumor types [145]. RB loss for
example, results in specific new vulnerabilities for therapeutic intervention, such as the use
of the XIAP/CIAP inhibitor birinapant [146]. Furthermore, the combination of AURK and
WEE1 inhibitors, yields synergistic cell death selectively in RB-deleted ERα+ breast cancer
cells. WEE1 is targeted to inhibit the growth of breast cancer cells resistant to endocrine
therapy and CDK4/6 inhibitors [136]. Although remarkable progress has been made in
understanding the utility of CDKI for breast cancer,
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