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Simple Summary: It is known that doxorubicin is one of the standards for chemotherapy treatment
against Ewing sarcoma. Despite its widespread use, doxorubicin treatment initiates tumor escape
mechanisms and disease relapse. Our study aims to identify the potential biomarkers of doxorubicin
resistance in primary cultures of Ewing sarcoma cells using single-cell transcriptomic and proteomic
analyses. To assess the specificity of identified gene biomarkers, we used publicly available datasets
to represent mRNA profiles of patient samples and short-lived cultures of tumor cells, established
earlier. Through our investigation, we confirmed that MGST1 and the new marker COL6A2 are both
produced by doxorubicin-resistant cells and demonstrated clinical significance for the survival of
patients with Ewing sarcoma.

Abstract: Background: Ewing sarcoma (ES) cells exhibit extreme plasticity that contributes to the
cell’s survival and recurrence. Although multiple studies reveal various signaling pathways mediated
by the EWSR1/FLI1 fusion, the specific transcriptional control of tumor cell resistance to doxorubicin
is unknown. Understanding the molecular hubs that contribute to this behavior provides a new
perspective on valuable therapeutic options against tumor cells. Methods: Single-cell RNA sequenc-
ing and LC-MS/MS-based quantitative proteomics were used. Results: A goal of this study was to
identify protein hubs that would help elucidate tumor resistance which prompted ES to relapse or
metastasize. Several differentially expressed genes and proteins, including adhesion, cytoskeletal,
and signaling molecules, were observed between embryonic fibroblasts and control and doxorubicin-
treated tumor cell lines. While several cancer-associated genes/proteins exhibited similar expression
across fibroblasts and non-treated cells, upregulation of some proteins belonging to metabolic, stress
response, and growth pathway activation was uniquely observed in doxorubicin-treated sarcoma
cells, respectively. The novel information on differentially expressed genes/proteins provides insights
into the biology of ES cells, which could help elucidate mechanisms of their recurrence. Conclu-
sions: Collectively, our results identify a novel role of cellular proteins in contributing to tumor cell
resistance and escape from doxorubicin therapy and contributing to ES progression.

Keywords: Ewing sarcoma; scRNA-seq; proteomics; doxorubicin; cell resistances

1. Background

Ewing sarcoma (ES) is a primary tumor that affects bones [1]—and much less often,
soft tissues [2]—with a greater incidence in young people aged 10–15 years. The survival
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rate for ES patients has improved significantly with combined treatment, including surgery,
chemotherapy, and radiation; however, this harsh treatment leaves patients with disabilities.
Additionally, most of the time this disease occurs locally, with 5-year event-free survival up
to 78% [3], but almost 20% of patients will experience localized disease relapse and later
produce metastases (with an overall survival rate of around 28% [4,5]). Although the lung
is the most prevalent location for ES metastases (85% of all patients), a recent investigation
suggests that bone metastases become a valuable predictor for lung metastases during ES
progression [6]. Therefore, understanding the mechanisms of tumor escape from therapy
will lead to the development of better therapeutic options that are needed to elevate the
therapeutic effect of current modalities and improve the outcome.

Progression and metastasis of ES is a complex biological process that involves bone
lytic destruction and tumor cell propagation. It has been demonstrated that ES cells initiate
osteolysis on the border between normal and neoplastic tissue via increased immobilization
of macrophages, since they have been involved in the destruction of the bone extracellular
collagen-containing matrix (ECCM) [7]. Along with the activation of osteoclast differen-
tiation [8], ECCM destruction lays a foundation for tumor vascularization in the area of
bone resorption and activation of angiogenesis [9]. The last step is critical for tumor cell
spread and dissemination to the nearby tissue. The development of distant metastases
requires the tumor cells to have an elevated level of matrix-cell adhesion proteins that allow
tumor cells to attach and penetrate tissue. Several studies, particularly in the last decade,
hypothesized that proteins of the carbonic anhydrase group, more specifically CA9 [10]
and cadherin-11 [11], act as regulators of processes associated with sarcoma migration,
invasion, and metastasis. Although recent studies provided further evidence for these [12]
and other [13] proteins, such as MGST1 [14], to be involved in tumor dissemination, these
proteins appeared to share an ability to regulate the formation of metastases in various
cancers [15]. Despite scientific reports that various chemotherapeutic drugs [16,17] induce
prometastatic proteins, therefore the tumor escape molecular mechanisms are not fully
understood and have limited therapeutic efficacies against ES.

To understand the processes that are responsible for tumor cell survival, and compare
our findings with data published in the field of ES resistance to DOX [18], we aim to
identify the molecular basis for the cellular reaction in response to doxorubicin stress,
which precedes most ES escapes from stress and generates tumor tissue growth. In this
study, we used RNA-seq analysis to assess differentially expressed genes (DEGs) using the
Gene Expression Omnibus (GEO) database. We observed the upregulation of 992 genes.
To validate the specificity of gene expression and their attribution to the tumor cells,
we performed single-cell RNA-seq and tandem mass tag (TMT) proteomic approaches
to investigate the transcriptome and proteome changes of patient-derived ES culture in
comparison to embryonic fibroblasts (M19). Through transcriptomic analysis, we found
45 (27 up- and 18 downregulated) DEGs, and at the protein level, we found 124 (44 up-
and 78 downregulated) differentially expressed proteins (DEPs) in doxorubicin-treated
ES cells vs. doxorubicin-treated M19 cells. Furthermore, a comparison of proteomic data
of doxorubicin-treated fibroblasts and doxorubicin-treated ES cells identified a unique
protein signature of 11 markers, among which COL6A2, PSME1 and FLNC demonstrated
clinical significance by survival analysis GSE63155 for ES patients. Our results highlight key
regulatory proteins that coordinate the response of ES cells to the doxorubicin treatment
by integrating signaling from MGST1 cellular metabolism, and the COL6A2 molecule,
whose interactions were underappreciated in the previous investigations. This adds to
our knowledge of the molecular regulatory network of doxorubicin resistance and the
transcriptional hub that governs tumor escape from doxorubicin, and might hold promise
as a future therapeutic target.
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2. Materials and Methods
2.1. Materials

DMEM media, glutamine, fetal bovine serums (FBS) and protease inhibitor cocktail
tablets (EDTA-free) were purchased from Roche Diagnostics (GmbH, Mannheim, Germany).

2.2. Primary Tissue Samples

Our study included 14 tumor tissue specimens with a confirmed diagnosis of ES
and treated in 2020–2021 at the clinical facility of NIMC N.N. Blokhin. All parents of
sick children gave written informed consent to use their clinical data in agreement with
approval by the institutional ethics committee (Research Institute of Pediatric Oncology
and Hematology at N.N. Blokhin National Medical Research Center of Oncology). Based
on an agreement between Sechenov First Moscow State Medical University and NIMC
N.N. Blokhin, the clinical specimens were available to isolate tumor samples. Under this
agreement, we established a few primary cultures from ES tumor samples; however, for
the current study, we used only ES36 cells. The percentage of tumor cells in each resected
tissue was more than 80% (pathologist assessment). The patient who was a donor for ES36
sarcoma cells developed a tumor mass around the tibia and later received pilot anti-relapse
treatment under EE2008 protocol. However, around 1 year later this patient still relapsed.

2.3. Cell Cultures

Human primary Ewing sarcoma ES36 cells and human embryonic fibroblasts M19
were established as described [19]. All cell lines were routinely tested for purity and
mycoplasma contamination. Human sarcoma cell line ES36 (from a 4-year-old male) and
M19 (from a 9-year-old female) were grown in DMEM media, supplemented with 10%
FBS and l-glutamine (1%) at 37◦, 5% CO2. M19 cells were received from colleagues at
the National Research Center for Epidemiology and Microbiology named after Honorary
Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation. The
patient-derived ES sarcoma was used in passage 3. ES36 and M19 were authenticated using
STR protocol (24 markers) at Sistema Biotech (Moscow, Russia). The multiplex analysis was
conducted using the 3500 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA) and
data were assessed via GeneMapper ID-X v1.4 (Applied Biosystems, Waltham, MA, USA).
The received profiles of cells were matched against ATCC-based STR profiles. Additionally,
EWSR1/FLI1 fusion was PCR-amplified using primers, visualized with agarose gel, and
sequenced. ES36 and M19 cells were used to titrate Doxorubicin (10 Mm stock), and to
obtain IC50. We further selected a dose of Dox 10-fold lower than IC50 at ES36, and with
no impact on M19 proliferation. Under these conditions, we incubated ES36 and M19 for
7 days with Dox(0.125 mkM) before analysis.

2.4. cDNA Library Preparation and Single-Cell RNA-Seq

Single-cell cDNA libraries were prepared using Single Cell 3′ Reagent Kit v3.1 and
a 10× Genomics Chromium Controller. The number of cells in each channel of the
Single-Cell Chip G did not exceed 5000. The dsDNA High Sensitivity kit measured
the concentration of cDNA libraries on a Qubit 4.0 fluorometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). The quality of cDNA libraries was assessed using High Sen-
sitivity D1000 ScreenTape on a 4150 TapeStation (Agilent, Santa Clara, CA, USA). The
ready cDNA libraries were pooled, denatured, and sequenced on NextSeq 2000 (Illumina,
San Diego, CA, USA) using pair-end reads (28 cycles for reading 1, 91 cycles for read-
ing 2, and 8 cycles for the i7 index). Cell Ranger software (version 6.1.1) provided by
10× Genomics (version 6.1.1) (Pleasanton, CA, USA) was used to perform sample demul-
tiplexing, alignment to the GRCh38 transcriptome, filtering, barcode counting, and UMI
counting. The resulting datasets, M19 and ES36, were subjected to quality control. The
subset was produced at a mark of 25% for mitochondrial material and recorded duplicates
for each of the samples. Functional annotation was performed using R gProfiler2 gene
ontology analysis [20].



Cancers 2022, 14, 5498 4 of 20

2.5. Proteomic Data Generation and Analysis

We extracted proteins from the live ES36 patient-derived ES adherent cells grown in
DMSO (n = 3) or doxorubicin (n = 3) using the methanol–chloroform method. Then, each
sample was treated with 100 mM (NH4)2CO3 (pH 7.8) in the presence of 0.2% ProteaseMax
solution (Promega, Madison, WI USA), before sonication for 10 min, followed by treatment
with 100 µM Tris(2-carboxyethyl)phosphine during 1 h incubation at 55 ◦C and 100 µM
Iodoacetamide (1 h incubation at room temperature). A digestion mix of 0.1% of trypsin
and 0.2% of Protease Mix were added to each reaction for a further 3 hours of incubation
and then the reaction was terminated. The protein concentration was measured using
a «BCA protein assay kit» (EMD Millipore, Billerica, MA, USA) and the rest of the sample
was dry-vacuumed using Centrivap (Labconco, Kansas City, MO, USA) at +45 ◦C. The
digested and enriched peptides were dried in a speed vacuum and reconstituted with 0.1%
formic acid in water for liquid chromatography-mass spectrometry (LC-MS/MS) analysis.
An Q Exactive HF-X Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA),
coupled to a Dionex 3000 RS Nano (Thermo Fisher Scientific, Waltham, MA, USA), was
used to analyze digested peptides. We performed MS/MS data acquisition, converted
data using an mzML format (XML (eXtensible Markup Language)-based common file
format for proteomics mass spectrometric data), and processed with ThermoRawFileParser
software (Thermo Fisher Scientific, Waltham, MA, USA) based on two protocols: the
first used Identipy + Biosaur + Scavager to distinguish hybrid spectra. In the second
we used MSFragger + Philosopher(peptideprophet/proteinprophet) + IonQuant for data
quantification. Spectra were searched against species-specific TrEMBL protein databases
generated from the human genome and bovine serum proteins, detected early by us in fetal
bovine serum samples.

The study of relative changes in protein quantities was carried out using the DEP
software package, which is based on the LIMMA statistical package (an empirical Bayesian
method developed initially for the analysis of microchip data). For protein quantification,
counts from peptide spectrum matches (PSM) were normalized and filtered using the
MNAR (missed-not-at-random) method, log2-transformed, and hierarchically clustered by
expression patterns through the time series in R., using the entire protein-coding gene set
as a background.

2.6. Data Source, Data Processing, and Data Distribution

The RNA-seq data and the corresponding clinical data of overall survival (OS) were
downloaded from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/
data portal. Gene expression profiles of 46 samples with primary ES deposed at GSE63155
(n = 46) were used (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63155
(accessed on 2 February 2021)) [21]. Due to the lack of data on relapses, information
about the end of the experiment (treatment) for patients with the status of “survivor” was
regarded as definitively true. For the analysis, gene expression data from all 46 patients
was used without censorship. The normalized data were uploaded by the authors and
retrieved from the data portal mentioned above. The LIMMA R package was used to
identify differentially expressed genes (DEGs). Gene probe IDs for which an “-/NA”
notation was not available were removed. To obtain differential expression profiles, the
GEO data were divided into two groups with respect to survivorship (n = 32, survivors)
and non-survivors (n = 14) after receiving treatment.

2.7. Functional GO Enrichment Analysis

Relative DEG lists were analyzed by a web server for functional enrichment analysis.
g:Profiler Datasets with adjusted p < 0.05 (Bonferroni correction) were deemed meaning-
ful enrichment pathways. The “Cluster Profiler” R package was used to combine gene
annotation and gene expression analysis results. The results are visualized in a dot-plot.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63155
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2.8. Experimental Validation of Fold-Change Values Using Semiquantitative RT-PCR Analysis

QIAzol lysis reagent (Qiagen, Germantown, MD, USA) was used to isolate total
RNA from 14 ES patients (6 females and 8 males). RNAase-free DNAase1 (Invitrogen,
Waltham, MA, USA) was used to remove residual genomic DNA in isolated total RNA.
Total RNA was quantified using a Nanodrop spectrophotometer (Beckman Coulter, Inc.,
Brea, CA USA). Once quantified, 10 ng of total RNA per sample was used to synthesize
single-strand cDNA with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA USA)
for one-step RT-PCR analysis. The synthesized single-strand cDNA of 100 and 50 ng per
sample was utilized as a template for semi-quantitative PCR analysis with an Encyclo Plus
PCR kit (Evrogen, Moscow, Russia) following the manufacturer’s instructions (https://
evrogen.com/products/Encyclo-PCR-kit/Encyclo-PCR-kit.shtml (accessed on 2 February
2021). Primer pairs for PCR analyses were selected from previous studies [22]. All PCRs
were performed on three replicates per cDNA sample. To obtain the fold change, MGST1
and COL6A2 values of analyzed samples were normalized to β-Actin mRNA expression,
as an endogenous reference gene.

2.9. Statistical Analyses

GSE63155 includes an analysis of whole-genome expression, whereas GSE146221 is
a single-cell analysis of three established ES cell lines (TC71, CHLA9, and CHLA10). The
GSE146221 data were generated by 10× Genomics single-cell RNA-sequencing, whereas
GSE63155 was generated using Affymetrix platforms. Cox regression analysis was per-
formed for GSE63155 and gene expression correlation analysis for GSE146221. DEGs
analysis was performed between groups of survivors and non-survivors, and between
individuals with UMAP clusters for GSE63155 and GSE146221 datasets, respectively. Using
proteomic profiles of ES36, ES36-DOX, M19, and M19-DOX, we compared DEPs between
the following groups: ES36 vs. M19, ES36 vs. ES36-DOX, and M19-DOX vs. ES36-DOX
samples, respectively. Our single-cell transcriptomic dataset was used to compare DEGs
between clusters 11 and 15 of ES36 vs. M19, ES36 vs. M19 cells and individual UMAP
clusters. All analysis was conducted with a statistical significance limit of p = 0.05. DEGs
analysis of scRNA clusters was performed by the Seurat package R with a statistical signifi-
cance limit of p adjusted = 0.05. All statistical analyses were performed using GraphPad
Prism 8.3.0 and R stat Version 4.0.2 (R-project.org (accessed on 25 January, 2022)), and R
packages were obtained from the Bioconductor project (www.bioconductor.org (accessed
on 25 January 2021)). Statistical significance was set at p < 0.05.

2.10. Availability of Data and Materials

The datasets (SRA transcriptomic access data: PRJNA846952 and proteomic access
data: in progress) used and/or analyzed during the current study are available.

3. Results

A significant number of genes are elevated in ES tumor tissue.
To identify DEGs that are relevant to tumor cell survival, we analyzed the GSE63155

microarray database after normalization. Based on the patient survival status (survivors
(n = 32) vs. non-survivors (n = 16)), we applied the univariate and multivariate Cox propor-
tional hazards regression methods for 48 tumor tissues available for analysis (Table 1).

Both analyses showed that an event-free survival (EFS) event was a risk factor, while
gender, age, primary tumor site, and tumor content did not correlate with OS. Keeping
the cutoff value strict among 17,634 genes, genes with p-value < 0.05 of their expression
between the two groups produced DEGs and the data were depicted in a volcano plot
(Figure 1A). Using one-way analysis of variance, we found that multiple transcripts were
upregulated in the non-survivor tumor samples. Overall, the Cox regression revealed
812 and 194 genes that were up- or downregulated during the analysis, respectively. As-
suming that benefits for ES patient survival occurred from the inhibition of neoplastic
signaling inside tumors, we performed GO term analysis. As shown in Figure 1B,C, the

https://evrogen.com/products/Encyclo-PCR-kit/Encyclo-PCR-kit.shtml
https://evrogen.com/products/Encyclo-PCR-kit/Encyclo-PCR-kit.shtml
www.bioconductor.org
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GO analysis of upregulated genes revealed an association of DEGs with blood vessel
formation, angiogenesis (PECAM1/TGFBI/CD34/THY1/SEMA6A) and cell migration
(MMP9/CCL21/MMP2/AKT3/ITGA6/FLT1). At the same time, GO analysis indicates
that DEGs mainly regulate cellular metabolism, including cytochrome P450 and glutathione
transferase (Table 2).

Table 1. Univariate and multivariate Cox analysis of the correlation clinical factors with OS in patients
with ES.

Univariate Multivariate

Beta HR
(95% CI) p.Value Beta HR

(95% CI) p.Value

Sex −0.47 0.62 (0.21–1.9) 0.4 −2.358 0.095
(0.005–1.84) 0.120

Age_at_enrollment_days 0.00033 1 (1–1) 0.07 −0.004 0.996 (0.98–1.0) 0.465

Age 0.11 1.1 (0.99–1.3) 0.075 1.637 5.14
(0.085–309.385) 0.433

Primary_tumor_site −0.28 0.76 (0.35–1.6) 0.47 1.502 4.492
(0.377–53.53) 0.235

Efs_event 2 7.7 (3.4–17) 9.5e-07 3.941 51.476
(3.736–709.32) 0.003

Tumor_content 0.77 2.2 (0.57–8.2) 0.26 −0.562 0.57
(0.088–3.676) 0.554

Abbreviations: ES, Ewing sarcoma; EFS event; HR, hazard ratio; 95% CI, 95% confidence interval.

To investigate further whether some of these genetic traits are related to clinical
prognosis, clinical information was extracted from the GSE63155 database. Based on
that information, the top 30 genes overexpressed in the non-survivor group were CCL18,
LUM, SPP1, VCAN, LPL, MMP9, FAP, TSPAN7, THBS1, CHN1, LYZ, HBB, EFEMP1,
CTSC, COL12A1, VCAM1, C8orf4, NETO2, FAM198B, LAPTM5, LOX, COL3A1, TM4SF18,
PAX3, GPNMB, AHR, DOCK11, RASGRP3, CDH2, and COL11A1, mostly responsible for
extracellular matrix organization (GO:0030198) and cell adhesion (GO:0007155). Among
the abundant genes with high mRNA expression, significantly worse OS was detected for
SPP1 (Hazard Ratio, log-rank 8.3), VCAM1 (7.9), CCL18 (5.1), CTSC (4.6), THBS1 (4.5),
and the log-rank p-values were: 7 × 10−5, 12 × 10−5, 5 × 10−4, 1 × 10−4 and 1 × 10−4

relatively. No statistically significant difference in prognosis was obtained in GEO-deposed
patient tumor samples with high and low expressions for LUM (0.056), LYZ (0.18), HBB
(0.095), EFEMP1 (0.127), and COL12A1 (0.25) markers. Although previously for ES patients,
SPP1 [23], MGST1 [18], and miR34a [24] were considered as markers of ES progression
and ES cell sensitivity towards doxorubicin, no additional prognostic factors have been
proposed based on individualized treatment options. As chemotherapeutic stress in normal
and neoplastic cells results in the production of stress signals, we aimed to establish
markers for pathological state and doxorubicin resistance using patient-derived ES cells
and embryonic fibroblasts as controls and determine the clinical significance of biomarkers
using scRNA-seq and mass-spectroscopy.
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Figure 1. Differentially regulated genes (DEGs) in ES patients with various survival statuses. (A) Vol-
cano plot diagram of differentially regulated genes in the tumor tissue from survivor (n = 32) vs.
nonsurvivor (n = 14) patient samples (data were extracted from GSE63155). The data were extracted
from GSE63155 and resulted in 1006 genes. Differentially regulated genes with p ≤ 0.05 are labeled
red. The x-axis represents Log2 fold change; the y-axis represents negative log10-transformed p-
values. Dots on the left side represent transcripts upregulated in survivors, and dots on the right side
represent transcripts upregulated in non-survivors. Blue dots represent most and downregulated
genes by log2fold change. (B) a GO analysis of DEGs associated with ES patient survival. The node
sizes indicate gene counts enriched in the pathway and the color shows the p-value from low (red)
to high (blue) level. Significance was set at p < 0.05. DEGs, differentially expressed genes; GO,
gene ontology. The plot was created using the R gProfiler2. (C) Significant enrichment of molecular
function of interacting proteins; gene-ontology-based GSEA analysis indicates the top 30 genes most
expressed in non-survivor vs. survivor patient samples. The heatmap indicates a log2 fold change in
mRNA expression. The colors for different evidence codes in the table: red: inferred from experi-
ment, direct assay, mutant phenotype, genetic interaction, physical interaction; purple: inferred from
experiment, direct assay, mutant phenotype, genetic interaction, physical interaction; green: traceable
author, non-traceable author, inferred by a curator; orange: expression pattern, sequence or structural
similarity, genomic context, sequence model, sequence alignment, sequence ontology, the biological
aspect of the ancestor, rapid divergence; blue: reviewed computational analysis, electronic annotation.
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Table 2. The biological process and pathways regulated by DEGs.

Description ID p Value Count/Gene ID

D
ow

nr
eg

ul
at

ed

locomotion
G

O
:0

04
00

11
1.14 × 10−26

CCL18/VCAN/MMP9/FAP/THBS1/CHN1/VCAM1/LOX/
COL3A1/GPNMB/CDH2/SULF1/GJA1/ACTA2/TGFBR2/

SMOC2/CCL21/MMP2/DCLK1/AKT3/CD200/MAP1B/RND3/
KDR/MCC/LEF1/SGK1/SDC2/ENPP2/PECAM1/KITLG/
CCR1/ADAMTS1/ITGA6/EPS8/ADAMTS9/EFNB2/CD34/

THY1/SEMA6A/LYN/ALX1/S100A8/ITGA9/MTUS1/NRP1/
PLVAP/PRKD1/ETS1/LYVE1/CDH5/PLXNC1/PODXL/ITGA2/
FCER1G/TLR4/TEK/NRP2/PDGFRB/LAMB1/ELMO1/EMP2/

MCTP1/FLT1/DOCK2/PTPRC/XBP1/CHL1/SATB2/
PLXNA2/DLC1

angiogenesis

G
O

:0
00

15
25

4.39 × 10−26

FAP/THBS1/GPNMB/SULF1/THBS2/PTPRB/TGFBR2/SMOC2/
MMP2/CALCRL/CYBB/ADAM12/AKT3/ANPEP/KDR/LEF1/

ENPP2/COL15A1/CEMIP2/TGFBI/APLNR/ADAMTS1/
ADAMTS9/EFNB2/CD34/THY1/SEMA6A/SAT1/NRP1/

PRKD1/ETS1/COL4A1/CDH5/EMCN/EPAS1/TEK/COL4A2/
NRP2/PDGFRB/EMP2/FLT1/XBP1

positive regulation of
cell migration

G
O

:0
03

03
35

2.52 × 10−19

MMP9/THBS1/GPNMB/ACTA2/TGFBR2/SMOC2/CCL21/
MMP2/AKT3/KDR/LEF1/ENPP2/PECAM1/KITLG/CCR1/

ADAMTS1/ITGA6/THY1/SEMA6A/LYN/NRP1/PLVAP/
PRKD1/ETS1/LYVE1/CDH5/PODXL/ITGA2/TLR4/TEK/

NRP2/PDGFRB/LAMB1/FLT1/PTPRC/XBP1

cell differentiation

G
O

:0
03

01
54

6.24 × 10−16

SPP1/VCAN/LPL/MMP9/CHN1/EFEMP1/COL12A1/
VCAM1/LOX/COL3A1/DOCK11/CDH2/COL11A1/KRT10/

SULF1/STEAP4/GJA1/A2M/ACTA2/TGFBR2/CCL21/MMP2/
CD53/GPM6B/DCLK1/ADAM12/PLEK/MAP1B/ANPEP/KDR/
ESRP1/LEF1/SGK1/SDC2/PECAM1/COL15A1/KITLG/CCR1/

TGFBI/APLNR/ITGA6/MAP2/ADAMTS9/MTSS1/EFNB2/
CD34/CD36/THY1/SEMA6A/LYN/HEY2/RAI14/ALX1/

S100A8/RPS6KA2/SPRY4/NRP1/PRKD1/TMEM119/ETS1/
PRICKLE1/COL4A1/CDH5/PLXNC1/PODXL/ITGA2/SLC6A6/
EPAS1/FCER1G/TLR4/TEK/COL4A2/FRMD6/NRP2/PDGFRB/

LAMB1/EMP2/FLT1/FARP1/DOCK2/PTPRC/XBP1/CHL1/
RPS6KA3/SATB2/PLXNA2/TAGLN/BHLHE40

extracellular
matrix organization

G
O

:0
03

01
98

8.07 × 10−14

LUM/MMP9/FAP/COL12A1/LOX/COL3A1/COL11A1/SULF1/
SMOC2/MMP2/GPM6B/COL14A1/MMP16/COL15A1/TGFBI/
ADAMTS1/ITGA6/ADAMTS9/ITGA9/FBLN5/COL4A1/ITGA2/

COL4A2/LAMB1/NID2

cell-substrate adhesion

G
O

:0
03

15
89

7.69 × 10−11
THBS1/VCAM1/COL3A1/EDIL3/CCL21/GPM6B/VWF/KDR/
ITGA6/ADAMTS9/CD34/CD36/THY1/SPRY4/NRP1/FBLN5/

LYVE1/ITGA2/TEK/LAMB1/EMP2/NID2/DLC1

chemotaxis

G
O

:0
00

69
35

7.74 × 10−11

CCL18/THBS1/CHN1/VCAM1/LOX/GPNMB/SMOC2/CCL21/
KDR/LEF1/ENPP2/CCR1/EFNB2/SEMA6A/LYN/S100A8/
ITGA9/MTUS1/NRP1/PRKD1/PLXNC1/ITGA2/FCER1G/

NRP2/PDGFRB/FLT1/DOCK2/CHL1/PLXNA2

cell-matrix adhesion

G
O

:0
00

71
60

1.55 × 10−9
THBS1/VCAM1/COL3A1/CCL21/GPM6B/KDR/ADAMTS9/

CD34/CD36/THY1/NRP1/FBLN5/LYVE1/ITGA2/TEK/EMP2/
NID2/DLC1

cell-substrate
junction assembly

G
O

:0
00

70
44

0.0002 THBS1/GPM6B/KDR/ITGA6/THY1/NRP1/ITGA2/TEK/DLC1
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Table 2. Cont.

Description ID p Value Count/Gene ID

collagen-containing
extracellular matrix

G
O

:0
06

20
23

3.43 × 10−21

LUM/VCAN/MMP9/THBS1/EFEMP1/COL12A1/CTSC/
COL3A1/CDH2/COL11A1/EDIL3/SULF1/A2M/THBS2/

SMOC2/MMP2/VWF/COL14A1/SDC2/SPON1/PCOLCE/
COL15A1/TGFBI/ADAMTS1/SPARCL/ADAMTS9/S100A8/
BGN/HAPLN1/FBLN5/COL4A1/COL4A2/LAMB1/NID2

extracellular exosome

G
O

:0
07

00
62

6.20 × 10−10

LUM/SPP1/MMP9/THBS1/LYZ/HBB/EFEMP1/COL12A1/
CTSC/VCAM1/PPIC/EDIL3/KRT10/STEAP4/A2M/ACTA2/

CD53/VWF/ANPEP/MAN1A1/PECAM1/PCOLCE/COL15A1/
CEMIP2/TGFBI/EPS8/PRSS23/THY1/LYN/S100A8/CD14/

BGN/PLVAP/MYO1B/ENTPD1/FBLN5/LYVE1/RFTN1/
PODXL/NT5E/FCGR3A/COL4A2/LAMB1/DOCK2/RAB27B/

PTPRC/MARCKS/CHL1/NID2/TNFSF10/PYGL

collagen trimer

G
O

:0
00

55
81

1.90 × 10−6 LUM/COL12A1/LOX/COL3A1/COL11A1/COL14A1/
COL15A1/CD36/COL4A1/COL4A2

collagen binding

G
O

:0
00

55
18

1.53 × 10−8 LUM/MMP9/THBS1/LOX/VWF/COL14A1/PCOLCE/TGFBI/
SPARCL1/ITGA2/NID2

glycosaminoglycan
binding

G
O

:0
00

55
39

3.92 × 10−8
VCAN/LPL/THBS1/GPNMB/COL11A1/SULF1/THBS2/

TGFBR2/SMOC2/PCOLCE/ADAMTS1/NRP1/BGN/HAPLN1/
LYVE1/NRP2/PTPRC

Degradation of the
extracellular matrix

R
EA

C
:R

-H
SA

-1
47

42
28

6.00 × 10−8
SPP1/MMP9/COL12A1/COL3A1/COL11A1/A2M/MMP2/

COL14A1/MMP16/COL15A1/ADAMTS1/ADAMTS9/COL4A1/
COL4A2/LAMB1

Collagen formation

R
EA

C
:R

-H
SA

-1
47

42
90

4.10 × 10−6 MMP9/COL12A1/LOX/COL3A1/COL11A1/COL14A1/
PCOLCE/COL15A1/ITGA6/COL4A1/COL4A2

Collagen degradation

R
EA

C
:R

-H
SA

-1
44

24
90

2.99 × 10−5 MMP9/COL12A1/COL3A1/COL11A1/MMP2/COL14A1/
COL15A1/COL4A1/COL4A2
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Table 2. Cont.

Description ID p Value Count/Gene ID

Collagen chain
trimerization

R
EA

C
:R

-H
SA

-8
94

82
16

0.0004 COL12A1/COL3A1/COL11A1/COL14A1/COL15A1/
COL4A1/COL4A2

3.1. Hypoxia and Metastatic Traits Distinguish Tumor Cells from Non-Neoplastic Cells

To further investigate the function and significance of differentially expressed genes
in the ES cell culture, we conducted a scRNA-seq analysis of ES36 cells (patient-derived
ES cells) vs. M19 embryonic fibroblasts. We produced samples’ cDNA libraries using
a commercial droplet-based system and sequenced the libraries to obtain transcriptomes
covering 500–5000 genes per cell. In total, 5000 cells from each sample were included in
the analysis (Figure 2A,L). Overall, we detected an average of 5000 (range 0–10,000) as
highly variable genes in the ES36 sample and 5000 (range 0–10,000) in the M19 cells. The
GO annotations showed that the functions of genes mainly enriched in tumor cells were
related to cell proliferation (GO: 0008283, 37 counts, p = 1 × 10−6) and cellular adhesion
(GO: 0007155, 17 counts, p = 7.1× 10−6). Inhibited genes were mostly represented by respi-
ratory chain complex I (gamma subunit) mitochondrial (CORUM: 2919, 2 counts, p = 0.004)
signaling. Our results found that the top 20 highly variable genes in the tumor populations
were: CLSPN, CDCA8, CDC20, ISG15, KIF2C, ALPL, STMN1, IFI6, HMGN2, NASP, FABP3,
DHRS3, HSPB7, ID3, PDPN, ERRFI1, SRARP, COL8A2, LINC00337, and SERINC2, and
in the M19 populations they were: RHBDL2, CDC20, CDCA8, CLSPN, KIF2C, FABP3,
ISG15, STMN1, SFN, CDA, DRAXIN, SNHG12, ERRFI1, E2F2, AL590434.1, PDPN, CCDC30,
EPHB2, KLF17, and SERINC2. Of note, M19 and ES36 shared some of the mRNA signatures
for CLSPN, CDCA8, CDC20, ISG15, KIF2C, STMN, FABP3, PDPN, ERRFI1, and SERINC2
genes. After filtering the sample’s data (Figure 2A through 2E, and 2F through 2J), we ap-
plied the Seurat algorithm to further gene clustering. Fibroblasts and ES cell transcriptomes
were visualized with a Uniform Manifold Approximation Projection (UMAP) employing
ten principal components.

The multiple sequencing runs from M19 and ES36 cells were combined into a single
uniform manifold approximation and projection (UMAP) for visualization (Figure 3A) and
clusterization (Figure 3B). Comparable trends of subset colocalization between M19 and
ES36 cultured cells remained, reinforcing the conclusion that common gene expression
by each cell type is a shared phenomenon regardless of cell type. Across the UMAP plot,
we found a distinct number of clusters in which a majority of cells consisted of ES36
(clusters 11, and 15), or mixed (clusters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, and 15) cells.
Furthermore, analysis of C11 and C15 revealed a unique distribution of upregulated genes
(Figure 3C,D). Thus, C11 mostly accumulates cells with genes responsible for cell motility,
cell adhesion, and migration; in C15, most upregulated genes participate in HIF1 signaling,
and downregulated genes are involved in cell adhesion. Overall, in ES cells, MALAT1,
FTH1, FTL, VIM, MT-CO1, TMSB4X, FN1, MT-CO2, NEAT1, S100A6, EEF1A1, CALD1,
MT-CYB, TPT1, RPL41, TAGLN, RPLP1, LGALS1, TMSB10, CD63, RPS2, ACTB, RPS18,
RPS8, RPL37A, RPL13, ANXA2, COL1A2, RPL10, and ACTG1 were most upregulated
compared to their expression in M19 cells.
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The multiple sequencing runs from M19 and ES36 cells were combined into a single 
uniform manifold approximation and projection (UMAP) for visualization (Figure 3A) 

Figure 2. UMAPs of single-cell transcriptome data. Quality control filtering of embryonic fibroblasts
(A–E) and ES36 tumor sample (F–J). Comparison of 10× Genomics-annotated doublets, singlets, and
negatives was assessed using gene expression that was log-transformed using Seurat and presented
as violin-box plots with highlighted median values. Violin plots showing the counts of each gene in
each cell (A,F). Violin plots of the sum of the expression levels of all genes in each cell (B,G). Violin
plots of the percentage of mitochondrial genes (C,H). Scatter plots for the percentage of mitochondrial
genes in the sum of the expression levels of all genes in each cell (D,I). Scatter plots for the counts of
genes (E,J). Embryonic human fibroblasts (K) and patient-derived ES (L) color-coded by cell identity.
Colors show different cell clusters resulting from UMAP clustering using the SEURAT algorithm.
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types of cells and identify potential targets for future therapeutic interventions. We iden-
tified a total of 1069 (47.5%) and 1238 (55%) proteins in ES36 and M19, respectively, out of 

Figure 3. A single-cell ecosystem of embryonic fibroblasts and ES 36 cells. (A) Datasets for
10× Genomics analysis were derived from M19 fibroblasts and short-lived patient-derived ES culture
(ES36). The 10× Genomics plots identify groups of cells with similar expression patterns. The
average of 5000 cultured M19 cells and ES36 cells were green or red color-coded. (B) Distribution of
single-cell population for each type of cell in the UMAP plot (first two dimensions) in accordance
with the clusters made using the Seurat algorithm. Arrows point to the unique clusters that present
in ES-patient-derived ES36 tumor culture; GO term analysis that summarizes the biological function
and cellular component was performed for DEGs in ES36 tumor cells cluster 11 (n = 131 cells) (C) or
cluster 15 (n = 18 cells) (D) vs. M19 cells, and also between these ES36 clusters (11 vs. 15), respectively
(E). The specificity of gene expression value has been normalized and visualized as a circle that
corresponds with the ratio of gene expression in ES36 cells vs. M19. The size of nodes indicates the
number of cells in each cluster with that ratio.
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3.2. Embryonic Fibroblasts (M19) and ES (ES36) Cells Are Genetically Close

To investigate whether transcriptional regulation in ES cells cooperates with protein
expression, we performed a proteomic analysis of fibroblasts and ES tumor cells (Figure 4A).
Specifically, we analyzed protein expression in mock or DOX-treated M19 and ES36- tumor
cells to identify potential signature proteins and pathways that distinguish two types of
cells and identify potential targets for future therapeutic interventions. We identified a total
of 1069 (47.5%) and 1238 (55%) proteins in ES36 and M19, respectively, out of 2250 possible
proteins (Figure 4A,B). For the identification of DEPs, we used a p-value ≤ 0.05. This
proteome coverage was highly reproducible across the three biological replicates. Proteins
that were identified in only one or two biological replicates (1415 (62.9%) of all identified
proteins in ES36 and 1454 (64.6%) in M19) were excluded from downstream analysis.
Comparative proteomic analysis revealed a subset of 979 proteins common to ES36 (out
of 1765) and M19 (out of 1642). A protein signature associated with the cellular amide
metabolic process (GO: 0043603) and translation (GO: 0006412) was revealed by the GO
term category.
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Figure 4. Human fibroblasts and ES cells ES36 display distinct protein compositions. (A,D,G) Venn
diagram showing common and unique proteins in mock- or doxorubicin (DOX)-treated M19 and
patient-derived ES36 cells. Overlapped proteins were identified in three replicates per each sample.
Unique proteins for each type of cell and/or treatment are marked in bold and italics inside small
circles. Created using Microsoft Office 2010. (B,E,H) Differential protein expressions between M19
and ES36 samples. Volcano plots of protein abundance between samples showing the distribution of
proteins identified in ES36 and M19 during mock or doxorubicin treatment. Data presented as Log2
fold ratio between samples. The most significant genes are highlighted in red and we used an absolute
threshold q(FDR) ≤ 0.05 and |log2(FC)| ≥ 1 (C,F,I) Gene ontology (GO) enrichment analysis for 60
potential targets (30 upregulated and 30 downregulated) of ES36 vs. M19, ES36-DOX vs. ES36-mock
treated, and ES36-DOX vs.M19-DOX samples with p < 0.05 and most value of |log2(FC)| for more
complete enrichment. The dot-plot of top-upregulated and downregulated biological functions was
performed using p adjusted < 0.05. Hierarchical clustering of the protein molecular signature of ES36
and M19 was generated by the computational tool R gProfiler2. Supplemental Tables S1–S3 provide
details of all molecular signatures.
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From a unique protein perspective, M19 and ES36 cells possess 259 and 90 proteins,
respectively. Further comparative pathway analysis revealed significant activation of pro-
teins which regulate the enzyme activity (hydrolase, proteolysis, and peptidases) pathways
in ES36-cultured cells, while organic acid and carbohydrate metabolism signaling pathways
were found to be mostly regulated in M19-cultured cells. In M19 cells, we observed that of
130 proteins, most were involved in cellular catabolism (Figure 5A,D). Remarkably, whereas
the extracellular matrix and cytoplasm become locations for the majority of upregulated
proteins in ES36 and M19, the downregulated proteins in these types of cells reside mostly
in the cytoplasm. Of note, the majority of most regulated proteins (GAPDH, LDHA, PGK1,
TPI1, ENO1, ALDOA, GPI, PGAM1, ALDOC) responsible for the purine, glycolytic, pyru-
vate or ribonucleoside diphosphate metabolism of ES36 cells were inhibited (Figure 4C).
For the top upregulated proteins of ES36 cells, R gProfiler2 reported “protein metabolism”
(GO: 0051246), “response to stress” (GO: 0006950), and “regulation of cell death” (GO:
0010941) as unique GO term enrichments, and for the most downregulated proteins, the
only GO term enrichments were “catabolic process” (GO: 0008104) and “response to growth
factor stimulus” (GO: 0090287). At M19, the top 979 proteins with high expression were
involved in “program cell death” (GO: 0012501) and “response to stress” (GO: 006950), and
with low expression, the GO terms were “translation” (GO: 0006412) and “intracellular
transport” (GO: 0046907). Using the analysis approach, we identified several proteins with
differential expression between M19 and ES36. All these proteins are of particular interest
since their roles in promoting metastases [25,26] and sarcoma progression [27,28] have
been demonstrated.

3.3. Proteomic Profiling of DOX-Treated ES36 Cells Provides a Unique Signature

By proteome-based MS analysis, the composition of cytoplasmic proteins from fibrob-
lasts and ES cells after doxorubicin treatment was investigated. First, we analyzed protein
signatures between DOX-treated ES36 and mock-treated ES36 (Figure 4D,E). Compared
with control cells, 980 common and 164 (p < 0.05) variable proteins were detected in DOX-
treated ES cells. Among the 164 variable proteins in DOX-treated ES36 cells, 107 were
upregulated and 57 were downregulated. The GO term analysis for downregulated pro-
teins in the tumor-treated cells with DOX suggests suppression of chromatin remodeling
and assembly, and vascular development and angiogenesis process, as top upregulated bio-
logical functions, can dictate the behavior of tumor cells in the presence of DOX (Figure 4F).
We also looked for proteins that demonstrated a negative or positive trend in the presence
of DOX in ES36 cells vs. mock-treated ES36. The top 30 of these DEPs with high expression
were ACTG1, ACTC1, FN1, HSPB1, NNMT, GLS, ACTN1, SLC25A3, HTRA1, RTN4, PLS3,
TGM2, ATP5F1A, SLC25A6, FHL2, MYH9, CNN2, VDAC1, MDH2, ALDOA, CKAP4,
LIMA1, ATP5F1B, VDAC2, FLNA, CLIC4, CNN3, GARS1, and DSTN; and the top 30 with
low expression were: H2AC11, H4C1, H2BC12, H1-2, AHNAK, TFRC, HSPA8, ENO1,
CFL1, COL6A1, COL1A1, COL6A3, TUBB4B, COL6A2, COL1A2, COTL1, CAPG, FASN,
COL3A1, HNRNPM, PCBP1, KHSRP, LRP1, MTHFD1, FLNC, CUTA, HNRNPH3, SLC1A5,
SEPTIN9, and RAB5C. The cellular components for several DEPs, such as HSPA8, YWHAZ,
CAPG, COTL1, PDCD6IP, ACLY, ARPC5, PYGB, AK1, SLC25A3, CAPNS1, ARHGAP1,
ATP6V1E1, TLN1, LAP3, DCTN2, NAGK, and USP14, were extracellular exosomes, with
molecular components such as protein-containing complex binding (GO:MF 0044877) and
cadherin binding (GO:MF 0045296). The differential expression suggests a decrease in
complementary binding mediated by disordered protein domains of neoplastic cells to the
other globular domains, including the core binding region of E-cad [29].
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GSE146221). Data presented as violin plots are based on relative mRNA expression and clusteriza-
tion of TC71, CHLA9, and CHLA10 with ES36 cells. Blue and black arrows indicate the association 
of MGST1 and COL6A2 with cluster 11 of ES36 cells. (D) Correlations between COL6A2 and 
MGIST1 expression in various ES cells. A significant positive correlation between COL6A2 and 
MGIST1 mRNA expression was detected in relapsed ES-based patient-derived cells and no such 
correlation was seen in PNET was considered significant. (E) mRNA levels of MGST1 and COL6A2 
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ble) obtained from Federal State Budgetary Institution National Medical Research Center of Oncol-
ogy named after N.N. Blokhin of the Ministry of Health of Russia. Semiquantitative PCR analysis 

Figure 5. Validation of COL6A2 and MGST1 as markers for ES resistance and progression. (A) Group
of 46 patients with ES was divided based on their marker expressions. Kaplan–Meier plot of OS for
ES patients (GEO datasets GSE63155) stratified by transcriptomic data. The p-value was calculated
using a two-sided log-rank test. (B,C) Single-cell RNA sequence discriminates a subset of tumor cells
enriched with COL6A2 and MGIST1 markers across subclusters at ES36 and M19 cells (B) and in
comparison with cellular subsets from TC71, CHLA9, and CHLA10 (C) (GEO dataset GSE146221).
Data presented as violin plots are based on relative mRNA expression and clusterization of TC71,
CHLA9, and CHLA10 with ES36 cells. Blue and black arrows indicate the association of MGST1 and
COL6A2 with cluster 11 of ES36 cells. (D) Correlations between COL6A2 and MGIST1 expression in
various ES cells. A significant positive correlation between COL6A2 and MGIST1 mRNA expression
was detected in relapsed ES-based patient-derived cells and no such correlation was seen in PNET
was considered significant. (E) mRNA levels of MGST1 and COL6A2 in selected primary patient
samples (with/without recurrence, based on clinical information available) obtained from Federal
State Budgetary Institution National Medical Research Center of Oncology named after N.N. Blokhin
of the Ministry of Health of Russia. Semiquantitative PCR analysis of copy numbers of MGST1
and COL6A2 mRNAs obtained from absolute quantification using after normalization to b-actin.
An unpaired t-test with Welch’s correction, p-value difference between groups is presented.
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We performed comparative proteomics to distinguish the metabolic and functional
changes between embryonic fibroblasts and ES ES36 cells during DOX treatment. DOX ex-
posure induces the expression of 707 common proteins in addition to 33 and 552 unique to
fibroblasts or tumor cells, respectively (Figure 4G,H). Among 153 DEPs in the DOX-treated
ES36 cells vs. M19, 100 proteins were upregulated and 53 were downregulated. The top
30 proteins with the most differences in means were: ACTB, ACTG1, TAGLN, ACTC1,
FN1, HBA, TPM1, LDHA, HBB, HSPB1, NNMT, GLS, CSRP1, PLS3, ACTN1, HTRA1,
CALU, CNN2, SLC25A3, MYH9, TGM2, FHL2, ANXA2, LIMA1, SLC25A6, MDH2, EEF1G,
PEA15, CNN3, and CLIC4, and the top 30 with decreased expression were: AHNAK,
TFRC, HSPA8, COL6A1, COL6A3, PDIA6, TUBB4B, KRT1, KRT10, COL6A2, COL1A1,
CTTN, NAMPT, PDIA4, YWHAQ, P4HA2, GANAB, PSME1, PSME2, ITGB1, RANGAP1,
PRKCSH, SEPTIN9, LRP1, COL3A1, FLNC, CPNE3, PLOD1, ATP1A1, and ANXA11. The
GO term analysis for downregulated proteins in ES36 cells treated with DOX showed
peptide cross-linking (GO:0018149); in particular, fibrillar collagen trimer (GO:0005583), col-
lagen chain trimerization (REAC: R-HSA-8948216) and focal adhesion (KEGG:04510). The
GO term analysis for upregulated proteins was: platelet aggregation (GO:0070527), platelet
activation (GO:0030168), homotypic cell–cell adhesion (GO:0034109), actin cytoskeleton
organization (GO:0030036), coagulation (GO:0050817), hemostasis (GO:0007599), cytoskele-
ton organization (GO:0007010), cell adhesion (GO:0007155) (Figure 4I). Of the regulated
proteins, eight out of eleven proteins such as SLC25A6, EEF1G, PEA15, TUBB4, SEPTIN9,
COL3A1, HBB, and HBA did not have any probes in the GEO dataset (GSE 63155). At
the same time, PSME1 expression was associated with the improvement of ES patient
survival (Log-rank test, p = 0.031), and COL6A2 and FLNC (Figure 5A) showed a negative
impact on the survival of ES patients (Log-rank test, p = 0.046, and p = 0.035 relatively),
and involvement in the regulation of integrin and ERK pathways (www.genecards.com
(accessed on 1 February 2021)). Of note, the MGST1 marker was detected in two out of
three samples in ES36-DOX and three out of three samples in M19-DOX. Although our
strict policy on replicates excludes MGST1 from proteomic analysis, we compared COL6A2,
PSME1, FLCN, and MGST1 for their clinical significance, correlation with clinical signs,
and correlation against each other. We noticed that MGST1 expression was unique to
ES36 Cluster 11 (C11), the same cluster where the gene’s subset enriched with COL6A2
(Figure 5B). Furthermore, cluster assignment and overlay of the gene profiles between
ES36 and CHLA10 patient-derived ES cells suggest sharing of the small gene population,
including MGST1 and COL6A2 genes (Figure 5C). Therefore, mRNA expression of these
biomarkers is straightforward in GEO datasets using TC71 and ES36 profiles (ES cells).
Using randomly selected ES primary specimens with known clinical history, we analyzed
the expression of COL6A2 and MGST1. Validation of scRNA-seq differentially expressed
genes (DEGs) through semiquantitative real-time-polymerase chain reaction (RT-PCR) sug-
gests the direct association of COL6A2 and MGST1 mRNAs with ES relapse, demonstrating
a direct link between ES36 resistance, tumor regrowth, and increased tumor cell survival
due to tumor resistance.

4. Discussion

We provide fresh evidence for tumor-cell-signaling activity generated from the inter-
play of metabolism, stress, and growth pathways that control ES treatment (Figure 4C).
Our findings identify key regulatory transcription factors and kinases, as well as novel in-
teractions between these pathways that drive distinct phases of this response in fibroblasts
and tumor cells, and link well-characterized signaling mechanisms across cells of the same
origin (embryonic fibroblasts and primary short-lived tumor cell cultures of ES36). To avoid
the impact of interpatient heterogeneity of the cell signaling, our findings also suggest
that it may be necessary to obtain fibroblasts and tumor cells from the same patient with
Ewing sarcoma and carefully assess their transcription programs to validate differences in
cellular signaling.

www.genecards.com
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The treatment of ES is complicated by heterogeneity both internally and between
tumors. To develop an effective anticancer therapeutic, a better understanding of tumor
response is necessary. In this regard, reliable biomarkers may represent a source of therapy
efficacy against tumor cells. Previous genomic analysis indicates several biomarkers
relevant to glutathione metabolism (MGST1) [18] and cell-cycle upregulation mediated by
ectopic mir34a [24] overexpression, supporting our GEO analysis of surviving patients with
resected tumor samples enriched with cellular metabolism, including cytochrome P450 and
glutathione transferase DEGs. Although these studies allow us to explore the intertumoral
response to the therapeutic options, mainly chemotherapy, they also utilize responses from
normal healthy cells that are present among tumor cell populations. To distinguish cells, we
compared the first basal level of DEG expression between patient-derived ES36 and M19
embryonic fibroblasts and then we clustered the single-cell transcriptome which allowed
us to detect 14 and 8 clusters, respectively. As a result of M19 and ES transcriptomics
mixing, we detected a few unique clusters in ES36 cells (C11 and C15). Using the GO
term biological functions, a member of a gene family that is relevant to migration was
associated with the C11 cluster. Among genes, the highest expression detected in C11
and C15 of ES cells were: FTL, SERPINE2, CCDC80, CALD, and COL1A2 or FTL, TIMP1,
TAGLN, SH3BGRL3, and CALD1 relatively. Despite the involvement of migration for
the hub of eight genes, only COL1A2 was previously related to the OS of patients with
ES [30]. On the molecular level, a reduced level of COL1A2 was inversely correlated with
osteosarcoma proliferation and migration under cisplatin restriction [31]. Besides COL1A2,
the ferritin light chain (FTL) expression was shown in association with the response to
chemotherapy [32] and contributed to the proliferation, migration, and invasion [33]
of osteosarcoma cells. SERPINE2 may drive self-proliferation and drug resistance in
osteosarcoma [34], and has poor prognosis for patients with bladder [35] and ovarian [36]
cancer with high COL1A2 expressions.

It is noteworthy that in the case of ES36 DOX vs. ES36 MOCK, we found a significant
decrease in the expression of all three alpha-helices of the COL6 protein (Figure 4E),
including COL6A2. This effect means a more complex effect of doxorubicin therapy
on ES36, mainly, changing the content and 3D structure of the extracellular collagen
matrix. At the same time, the expression of COL6A1 and COL6A2 is also significantly
reduced in ES36 DOX versus M19 DOX (Figure 4H), which also indicates a specialized
and unique functional nature of the decreasing COL6 level in ES36 cells in response to
DOX. This may indicate the involvement of COL6 in the formation of vulnerability to
doxorubicin, similar to breast cancer cells [37]. Whether the expression of MGST1 alone or
in combination with COL6A2 is required for metastatic development has yet to be seen.
However, our working hypothesis is that ES metastatic development might require multiple
gene activation depending on the tumor stage. For instance, whereas MSGT1 and COL6A2
expression is required for ES cell survival during chemotherapeutic stress mediated by
Doxorubicin, SOX2, KL4 and/or Oct4 [38] are vital for maintaining the stemness of ES
cells and for the ES seeding and survival, as second-nodule activation of ZEB2 [39] and
IGF-1R [40] transcriptional programs are most helpful. Among those, at some points
of ES, such as seeding and cells making decisions to colonize bone or lung, additional
proteins become influential, such as neuropeptide Y [41] or Caveolin-1 [42]. However,
some studies [43] demonstrated the involvement of ES-based cellular proteins in the ability
of ES to metastasize in vitro; the ultimate test for metastatic progression has required the
presence of a microenvironment to support the invasion, migration, internalization and
seeding of ES tumor cells. Therefore, in vivo tail injection [42,44] or injection into a muscle
such as a calf [45] or gastrocnemius muscle [41,46] with tumor cells, or the use of the
metastatic Ewing sarcoma mouse model [47] may hold the answers on ES seeding and
metastasis development.

DOX-mediated stress is a complex cellular reaction produced by sarcoma cells. It
is unclear why tumor cells express two proteins, one of each encoded alpha chain of
collagen type VI and the second a protein with high glutathione transferase activity. It is
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generally agreed that MGST1 possesses a protein homodimerization activity, suggesting
that stress response employs the MGST1 expression signal as a stressor signal for collagen
filament re-engagement. It is also plausible that COL6A2 serves as an adapt messenger
function to unify the cellular response during DOX stress and disrupt cellular adaptation via
cooperation with other proteins. A possible degree of cooperation has been demonstrated
previously for DSCAM and COL6A2 in the H9C2 cardiac cell line. In these cells, the
transcriptional analysis of that interaction points to genes involved in adhesion and cardiac
hypertrophy [48] that cause severe physiological and morphological defects in the heart of
Drosophila. Further evidence suggests that glutathione and glutathione-related enzymes
are at the forefront of the adaptive detoxification cellular response [49] to stress during
DOX-mediated ROS production. Considering that DOX-resistant cervical cancer cells
also display activation of GSH signaling, including MGST1 gene expression isoforms [50],
activation of such proteins might represent a DOX-specific stress network that elaborates
cellular function during the stress and becomes a common feature for various tumor cells.
Crosstalk between various cellular functions mediated by COL6A2 and MGST1 coordinates
tumor cell vulnerability and might define the severity of the ES cells’ damage.

5. Conclusions

Based on the results of our study, by clustering scRNA-seq and subsequent DEG
analysis, we were able to perform genotypic profiling of ES cells. Further proteomic and
DEGs of GSE63155 analysis identified and showed the main differences in the expression of
metastatic and primary-tumor markers that can be considered for targeted chemotherapy.
Our data suggest that doxorubicin treatment mediates the induction of collagen remodeling
and activation of glutathione metabolism, which allows premetastatic phenotype changes
in ES tumor cells.
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