Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Differential Expression of SULF1 and SULF2 mRNAs in 32 TCGA Studies
2.2. Differential Expression of SULF Proteins in 10 CPTAC Studies
2.3. Pan-Cancer Survival Analysis Based on SULF1 and SULF2 mRNA
2.4. Cell-Specific Expression of SULF1 and SULF2 in HNSC
2.5. Correlation Studies of the SULF Enzymes with CAFs and Other Proteins
2.6. RNAscope Analysis of SULF1 and SULF2 in OSCC Tissues
2.7. Expression of SULF1 and SULF2 in a PDX Model of OSCC
3. Results
3.1. SULF1 and SULF2 mRNA Expression in Different Cancer Types
3.2. SULF1 and SULF2 Proteins in 10 CPTAC Studies
3.3. Association of SULF1 and SULF2 mRNA Expression with Survival Outcomes
3.4. Survival Impact of SULF1 and SULF2 in HNSC Differs by Pathological Tumor Stage
3.5. Cell-Specific Expression of SULF Enzymes in HNSC
3.6. SULF1 Expression in Cancer-Associated Fibroblasts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morimoto-Tomita, M.; Uchimura, K.; Werb, Z.; Hemmerich, S.; Rosen, S.D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 2002, 277, 49175–49185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, M.J.; Bertozzi, C.R. Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications. ACS Chem. Biol. 2015, 10, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, S.R.; Best, M.D.; Wong, C.-H. Sulfatases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. Engl. 2004, 43, 5736–5763. [Google Scholar] [CrossRef] [PubMed]
- Morimoto-Tomita, M.; Uchimura, K.; Bistrup, A.; Lum, D.H.; Egeblad, M.; Boudreau, N.; Werb, Z.; Rosen, S.D. Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 2005, 7, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habuchi, H.; Habuchi, O.; Kimata, K. Sulfation pattern in glycosaminoglycan: Does it have a code? Glycoconj. J. 2004, 21, 47–52. [Google Scholar] [CrossRef]
- Bishop, J.R.; Schuksz, M.; Esko, J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446, 1030–1037. [Google Scholar] [CrossRef]
- Rosen, S.D.; Lemjabbar-Alaoui, H. Sulf-2: An extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets 2010, 14, 935–949. [Google Scholar] [CrossRef] [Green Version]
- Ai, X.; Do, A.-T.; Lozynska, O.; Kusche-Gullberg, M.; Lindahl, U.; Emerson, C.P., Jr. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 2003, 162, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [Green Version]
- Uchimura, K.; Morimoto-Tomita, M.; Bistrup, A.; Li, J.; Lyon, M.; Gallagher, J.; Werb, Z.; Rosen, S.D. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: Effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 2006, 7, 2. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Nakamura, I.; Hu, C.; Chen, G.; Oseini, A.M.; Seven, E.S.; Miamen, A.G.; Moser, C.D.; Zhou, W.; van Kuppevelt, T.H.; et al. Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology 2015, 61, 1269–1283. [Google Scholar] [CrossRef] [Green Version]
- Chopra, P.; Joshi, A.; Wu, J.; Lu, W.; Yadavalli, T.; Wolfert, M.A.; Shukla, D.; Zaia, J.; Boons, G.-J. The 3-O-sulfation of heparan sulfate modulates protein binding and lyase degradation. Proc. Natl. Acad. Sci. USA 2021, 118, e2012935118. [Google Scholar] [CrossRef]
- Nagarajan, B.; Holmes, S.G.; Sankaranarayanan, N.V.; Desai, U.R. Molecular dynamics simulations to understand glycosaminoglycan interactions in the free- and protein-bound states. Curr. Opin. Struct. Biol. 2022, 74, 102356. [Google Scholar] [CrossRef]
- Qiu, H.; Shi, S.; Yue, J.; Xin, M.; Nairn, A.; Lin, L.; Liu, X.; Li, G.; Archer-Hartmann, S.A.; Rosa, M.D.; et al. A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat. Methods 2018, 15, 889–899. [Google Scholar] [CrossRef]
- El Masri, R.; Seffouh, A.; Lortat-Jacob, H.; Vivès, R.R. The “in and out” of glucosamine 6-O-sulfation: The 6th sense of heparan sulfate. Glycoconj. J. 2017, 34, 285–298. [Google Scholar] [CrossRef]
- Bret, C.; Moreaux, J.; Schved, J.-F.; Hose, D.; Klein, B. SULFs in human neoplasia: Implication as progression and prognosis factors. J. Transl. Med. 2011, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.; Reis, C.A.; Vivès, R.R.; Magalhães, A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front. Oncol. 2021, 11, 778752. [Google Scholar] [CrossRef]
- Holmes, R. Comparative and evolutionary studies of vertebrate extracellular sulfatase genes and proteins: SULF1 and SULF2. J. Proteom. Bioinform. 2017, 10, 32–40. [Google Scholar] [CrossRef]
- Luo, X.; Campbell, N.A.; He, L.; O’Brien, D.R.; Singer, M.S.; Lemjabbar-Alaoui, H.; Ahn, K.S.; Smoot, R.; Torbenson, M.S.; Rosen, S.D.; et al. SULF2 monoclonal antibody 5D5 suppresses human cholangiocarcinoma xenograft growth via regulation of a SULF2-PDGFRβ-YAP signaling axis. Hepatology 2021, 74, 1411–1428. [Google Scholar] [CrossRef]
- Yang, Y.-W.; Phillips, J.J.; Jablons, D.M.; Lemjabbar-Alaoui, H. Development of novel monoclonal antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2021, 1865, 129802. [Google Scholar] [CrossRef]
- Lai, J.; Chien, J.; Staub, J.; Avula, R.; Greene, E.L.; Matthews, T.A.; Smith, D.I.; Kaufmann, S.H.; Roberts, L.R.; Shridhar, V. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J. Biol. Chem. 2003, 278, 23107–23117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-Y.; Yeh, B.-W.; Chan, T.-C.; Yang, K.-F.; Li, W.-M.; Huang, C.-N.; Ke, H.-L.; Li, C.-C.; Yeh, H.-C.; Liang, P.-I.; et al. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget 2017, 8, 47216–47229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Ahn, J.; Raghunathan, R.; Kallakury, B.V.; Davidson, B.; Kennedy, Z.B.; Zaia, J.; Goldman, R. Expression of the Extracellular Sulfatase SULF2 Affects Survival of Head and Neck Squamous Cell Carcinoma Patients. Front. Oncol. 2020, 10, 582827. [Google Scholar] [CrossRef]
- Edwards, N.J.; Oberti, M.; Thangudu, R.R.; Cai, S.; McGarvey, P.B.; Jacob, S.; Madhavan, S.; Ketchum, K.A. The CPTAC Data Portal: A Resource for Cancer Proteomics Research. J. Proteome Res. 2015, 14, 2707–2713. [Google Scholar] [CrossRef]
- Rudnick, P.A.; Markey, S.P.; Roth, J.; Mirokhin, Y.; Yan, X.; Tchekhovskoi, D.V.; Edwards, N.J.; Thangudu, R.R.; Ketchum, K.A.; Kinsinger, C.R.; et al. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline. J. Proteome Res. 2016, 15, 1023–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Lichtenberg, T.M.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.e11. [Google Scholar] [CrossRef] [Green Version]
- Puram, S.V.; Tirosh, I.; Parikh, A.S.; Patel, A.P.; Yizhak, K.; Gillespie, S.; Rodman, C.; Luo, C.L.; Mroz, E.A.; Emerick, K.S.; et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171, 1611–1624.e24. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, L.; Savage, S.R.; Eguez, R.V.; Dou, Y.; Li, Y.; da Veiga Leprevost, F.; Jaehnig, E.J.; Lei, J.T.; Wen, B.; et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021, 39, 361–379.e16. [Google Scholar] [CrossRef]
- Kim, H.; Watkinson, J.; Varadan, V.; Anastassiou, D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med. Genom. 2010, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Cai, L.; Cui, C.; Toyos, J.R.D.L.; Anastassiou, D. Single-cell analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing cancer-associated fibroblasts. PLoS Comput. Biol. 2021, 17, e1009228. [Google Scholar] [CrossRef]
- Karamboulas, C.; Bruce, J.P.; Hope, A.J.; Meens, J.; Huang, S.H.; Erdmann, N.; Hyatt, E.; Pereira, K.; Goldstein, D.P.; Weinreb, I.; et al. Patient-Derived Xenografts for Prognostication and Personalized Treatment for Head and Neck Squamous Cell Carcinoma. Cell Rep. 2018, 25, 1318–1331.e4. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, Z.; Yu, Y.; Liu, Q.; Pu, F. HSulf-1 and palbociclib exert synergistic antitumor effects on RB-positive triple-negative breast cancer. Int. J. Oncol. 2020, 57, 223–236. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Luo, H.; Song, W.; Yang, J. Differential Expression of COL1A1, COL1A2, COL6A3, and SULF1 as Prognostic Biomarkers in Gastric Cancer. Int. J. Gen. Med. 2021, 14, 5835–5843. [Google Scholar] [CrossRef]
- Lui, N.S.; van Zante, A.; Rosen, S.D.; Jablons, D.M.; Lemjabbar-Alaoui, H. SULF2 expression by immunohistochemistry and overall survival in oesophageal cancer: A cohort study. BMJ Open 2012, 2, e001624. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, S.; Ishibashi, K.; Kataoka, M.; Oguro, T.; Kiko, Y.; Yanagida, T.; Aikawa, K.; Kojima, Y. Impact of Sulfatase-2 on cancer progression and prognosis in patients with renal cell carcinoma. Cancer Sci. 2016, 107, 1632–1641. [Google Scholar] [CrossRef]
- Lai, J.-P.; Sandhu, D.S.; Yu, C.; Han, T.; Moser, C.D.; Jackson, K.K.; Guerrero, R.B.; Aderca, I.; Isomoto, H.; Garrity-Park, M.M.; et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 2008, 47, 1211–1222. [Google Scholar] [CrossRef] [Green Version]
- Lui, N.S.; Yang, Y.-W.; Van Zante, A.; Buchanan, P.; Jablons, D.M.; Lemjabbar-Alaoui, H. SULF2 Expression Is a Potential Diagnostic and Prognostic Marker in Lung Cancer. PLoS ONE 2016, 11, e0148911. [Google Scholar] [CrossRef]
- Alhasan, S.F.; Haugk, B.; Ogle, L.F.; Beale, G.S.; Long, A.; Burt, A.D.; Tiniakos, D.; Televantou, D.; Coxon, F.; Newell, D.R.; et al. Sulfatase-2: A prognostic biomarker and candidate therapeutic target in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 2016, 115, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.-P.; Sandhu, D.S.; Shire, A.M.; Roberts, L.R. The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J. Gastrointest. Cancer 2008, 39, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Ehammond, E.; Ekhurana, A.; Eshridhar, V.; Edredge, K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front. Oncol. 2014, 4, 195. [Google Scholar] [CrossRef]
- Hussain, A.; Voisin, V.; Poon, S.; Karamboulas, C.; Bui, N.H.B.; Meens, J.; Dmytryshyn, J.; Ho, V.W.; Tang, K.H.; Paterson, J.; et al. Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. J. Exp. Med. 2020, 217, e20191094. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, A.; Khan, L.; Bensler, N.P.; Bose, P.; De Carvalho, D.D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 2018, 9, 4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 2021, 18, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Almangush, A.; Alabi, R.O.; Troiano, G.; Coletta, R.D.; Salo, T.; Pirinen, M.; Mäkitie, A.A.; Leivo, I. Clinical significance of tumor-stroma ratio in head and neck cancer: A systematic review and meta-analysis. BMC Cancer 2021, 21, 480. [Google Scholar] [CrossRef]
- Marsh, D.; Suchak, K.; A Moutasim, K.; Vallath, S.; Hopper, C.; Jerjes, W.; Upile, T.; Kalavrezos, N.; Violette, S.M.; Weinreb, P.H.; et al. Stromal features are predictive of disease mortality in oral cancer patients. J. Pathol. 2011, 223, 470–481. [Google Scholar] [CrossRef]
- El Masri, R.; Seffouh, A.; Roelants, C.; Seffouh, I.; Gout, E.; Pérard, J.; Dalonneau, F.; Nishitsuji, K.; Noborn, F.; Nikpour, M.; et al. Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Rep. 2022, 38, 110516. [Google Scholar] [CrossRef]
- Lemjabbar-Alaoui, H.; Van Zante, A.; Singer, M.S.; Xue, Q.; Wang, Y.-Q.; Tsay, D.; He, B.; Jablons, D.M.; Rosen, S.D. Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis. Oncogene 2010, 29, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Nawroth, R.; Van Zante, A.; Cervantes, S.; McManus, M.; Hebrok, M.; Rosen, S.D. Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE 2007, 2, e392. [Google Scholar] [CrossRef]
TCGA Study | SULF1 | SULF2 | ||||
---|---|---|---|---|---|---|
Project | Primary Name | No. Pairs | log2FC | FDR | log2FC | FDR |
LUAD | lung adenocarcinoma | 58 | 2.78 | 5.73 × 10−12 | 0.74 | 8.52 × 10−4 |
ESCA | esophageal carcinoma | 13 | 2.76 | 6.50 × 10−3 | 2.65 | 8.52 × 10−4 |
LUSC | lung squamous cell carcinoma | 50 | 2.62 | 8.70 × 10−13 | 1.58 | 1.31 × 10−8 |
COAD | colon adenocarcinoma | 26 | 2.55 | 7.78 × 10−5 | 0.50 | 2.12 × 10−2 |
HNSC | head and neck squamous cell carcinoma | 43 | 2.52 | 5.20 × 10−7 | 1.32 | 3.44 × 10−5 |
STAD | stomach adenocarcinoma | 33 | 2.46 | 1.48 × 10−5 | 1.22 | 8.52 × 10−4 |
BLCA | bladder urothelial carcinoma | 19 | 2.14 | 2.80 × 10−4 | 0.56 | 2.75 × 10−1 |
BRCA | breast invasive carcinoma | 112 | 2.03 | 1.08 × 10−25 | 0.82 | 1.31 × 10−8 |
KIRC | kidney renal clear cell carcinoma | 72 | 1.31 | 1.85 × 10−6 | 0.98 | 4.47 × 10−7 |
LIHC | liver hepatocellular carcinoma | 50 | 0.90 | 1.07 × 10−1 | −0.48 | 1.16 × 10−1 |
KIRP | kidney renal papillary cell carcinoma | 32 | 0.23 | 8.75 × 10−1 | 1.31 | 4.45 × 10−5 |
PRAD | prostate adenocarcinoma | 51 | −0.15 | 1.07 × 10−1 | −0.75 | 4.45 × 10−5 |
THCA | thyroid carcinoma | 59 | −0.51 | 4.98 × 10−3 | 0.26 | 4.01 × 10−2 |
KICH | kidney chromophobe | 25 | −0.60 | 1.23 × 10−2 | −0.77 | 9.36 × 10−2 |
CPTAC Study | SULF1 | SULF2 | ||||
---|---|---|---|---|---|---|
Project | Primary Name | No. Pairs | log2FC | FDR | log2FC | FDR |
HNSC | head and neck squamous cell carcinoma | 68 | 1.59 | 1.90 × 10−15 | 0.5 | 5.37 × 10−7 |
BRCA | breast invasive carcinoma | 17 | 1.51 | 2.80 × 10−5 | 0.87 | 2.14 × 10−3 |
PDAC | pancreatic ductal adenocarcinoma | 66 | 1.49 | 5.47 × 10−18 | 1.14 | 1.45 × 10−16 |
LUSC | lung squamous cell carcinoma | 102 | 1.35 | 3.82 × 10−28 | 0.45 | 1.62 × 10−11 |
LUAD | lung adenocarcinoma | 100 | 0.95 | 5.47 × 10−18 | 0.19 | 5.37 × 10−3 |
COAD | colon adenocarcinoma | 96 | 0.73 | 2.16 × 10−14 | ND | ND |
UCEC | uterine corpus endometrial carcinoma | 30 | 0.5 | 1.69 × 10−3 | −0.43 | 1.09 × 10−2 |
KIRC | clear cell renal cell carcinoma | 84 | 0.46 | 4.16 × 10−4 | 0.26 | 5.22 × 10−3 |
HBV-HCC | HBV-related hepatocellular carcinoma | 160 | 0.23 | 5.69 × 10−2 | −0.33 | 6.83 × 10−7 |
OSC_JHU | ovarian serous cystadenocarcinoma | 12 | 0.43 | 7.04 × 10−2 | 0.44 | 3.80 × 10−2 |
OSC_PNNL | ovarian serous cystadenocarcinoma | 10 | 0.07 | 4.32 × 10−1 | −0.58 | 3.13 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Ahn, J.; Edwards, N.J.; Benicky, J.; Rozeboom, A.M.; Davidson, B.; Karamboulas, C.; Nixon, K.C.J.; Ailles, L.; Goldman, R. Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers 2022, 14, 5553. https://doi.org/10.3390/cancers14225553
Yang Y, Ahn J, Edwards NJ, Benicky J, Rozeboom AM, Davidson B, Karamboulas C, Nixon KCJ, Ailles L, Goldman R. Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers. 2022; 14(22):5553. https://doi.org/10.3390/cancers14225553
Chicago/Turabian StyleYang, Yang, Jaeil Ahn, Nathan J. Edwards, Julius Benicky, Aaron M. Rozeboom, Bruce Davidson, Christina Karamboulas, Kevin C. J. Nixon, Laurie Ailles, and Radoslav Goldman. 2022. "Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies" Cancers 14, no. 22: 5553. https://doi.org/10.3390/cancers14225553
APA StyleYang, Y., Ahn, J., Edwards, N. J., Benicky, J., Rozeboom, A. M., Davidson, B., Karamboulas, C., Nixon, K. C. J., Ailles, L., & Goldman, R. (2022). Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers, 14(22), 5553. https://doi.org/10.3390/cancers14225553