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Simple Summary: Oral squamous cell carcinoma (OSCC) ranks as one of the deadliest cancers in
India. Only early detection of the disease with specific prognostic subtype, is the key to reducing
OSCC related death. Long non-coding RNAs (lncRNA) are master regulator of almost all biological
processes. Evidences have shown that the aberrant expression of lncRNAs are found to exceed their
role in different pathophysiological conditions including OSCC. The distinct expression profile of
dysregulated lncRNAs in circulation could be a potential indicator to predict the OSCC-disease prog-
nostications. The present review demonstrates that these aberrant expression of circulating lncRNAs
may become powerful information regarding the blood-based biomarkers for the early prediction of
disease-prognosis in OSCC. The present review also demonstrates clinical significance, limitations
and challenges of circulating lncRNAs to be a potential reliable biomarker for the development of
liquid biopsy technique which will be very useful, rapid, easy for clinicians for prognosis, disease
monitoring, and clinical decision making to manage the treatment modality accurately in OSCC.

Abstract: Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are
longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes,
recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell
carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional
modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion,
metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, pro-
gression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer
biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to
provide advanced treatment strategies and clinical decisions. In this review, we report and discuss
the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical
significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific
lncRNA expression signature could act as an indicator for the early prediction of diagnosis and
prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors
(overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current
knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early
prediction of prognosis in OSCC. Finally, the review provides information about the clinical signif-
icance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy
method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on
lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the
development of differential prognostic outcomes in OSCC.

Keywords: long non-coding RNA (lncRNA); oral squamous cell carcinoma; recurrence; metastasis;
cancer biomarker; prognostic biomarker; liquid biopsy
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1. Introduction

Oral squamous cell carcinoma (OSCC) is recognised as one of the most common
cancers, worldwide. The Surveillance, Epidemiology, and End Results (SEER) programme
in the United States revealed that 54,000 new cases were diagnosed, with a death of
11,230 oral cavity cancer patients, in 2020 [1]. Recently, published data in GLOBOCAN
clearly stated that globally more than 377,713 new oral cavity cancer cases and approxi-
mately 177,757 deaths have been reported in 2020 [2]. OSCC develops from the mucosal
epithelial cells of the oral cavity [3]. The genetics of OSCC are complex and highly het-
erogeneous [4]. Surgery is the first line of treatment in OSCC. In spite of recent advanced
multimodality treatment strategies (combining surgery, radiotherapy, and chemother-
apy), the cure rate is around 60%, and 30–50% cases generally recur loco-regionally or
distantly [4,5]. The occurrence of recurrence and metastasis are the major reasons of OSCC-
induced mortality. In most cases, the recurrence is detected only after the disease has
progressed to an inoperable stage, and then palliative care remains the only option [6]. The
extent of the disease and the chances of treatment failure at the time of the primary tumour
detection (at diagnosis) are very important in determining further prognosis [5]. Therefore,
it is very important to discover novel methods using novel biomarkers to determine the
disease-risk, accurately. Until now, there has been no existing molecular marker to classify
OSCC subgroups, accurately.

In humans, the first-discovered lncRNA was the H19 lncRNA (derived from the IGF2
locus), and then the XIST (X-inactive specific transcript) was discovered lncRNA along
with its functionality, long before the completion of the human genome project [7,8]. Recent
revolutionary studies (FANTOM and ENCODE) have also demonstrated that 80% of the
human genome possesses dynamic transcriptional marks and approximately 2% of these
are translated into coding transcripts, and rest of the transcripts (98%) are non-coding RNAs
(ncRNA) [9,10]. Therefore, ncRNAs are considered as the main key player/regulator for all
normal biological functions and for any altered pathophysiological conditions which are
still being investigated. MicroRNA is one of the most studied small ncRNAs. Previously we
reviewed and studied the clinical implications of dysregulated miRNAs in the pathogenesis
of OSCC [11–13]. LncRNA is another class of regulatory ncRNA transcript. It is more than
200 nucleotides to 2 Kb in length. The protein coding potential of lncRNAs is either nil or
is considered to be less than 100 amino acids [14–16]. According to LNCipedia, a public
database for lncRNA sequence and annotation, to date, approximately 127,802 annotated
lncRNAs transcripts and 56,946 genes have been discovered in the human genome [17,18].
Their expressions are highly restricted to the specific tissue cell type [18]. LncRNA plays
important regulatory roles in almost all physiological and pathological processes and
it is thus considered as a new hallmark of cancers [19]. Cell-free lncRNAs have also
been reported in different body fluids (e.g., peripheral blood plasma/serum) [20,21]. In
the past decades, multiple genome-wide association studies (GWASs) have revealed that
single nucleotide polymorphisms (SNPs) in lncRNA genes are predisposed and associated
with the risk of carcinogenesis processes, and they may alter the disease phenotype and
treatment responsiveness and patient outcome [22,23].

Earlier studies have revealed that an increased number of lncRNA are found to be dys-
regulated in head and neck cancer. In OSCC, abnormalities of different lncRNAs have been
seen by several investigators, such as MALAT1, HOTTAIR, HOTTIP, and TUG1 [24–30].
LncRNA, with its tumour-promoting oncogenic drivers and its tumour suppressive role,
may cause the functional dysregulation that is associated with all pathophysiological
conditions in OSCC. In the present review, we provide the up-to-date information regard-
ing the biogenesis, mechanism of actions, biological functions, overall control/regulation
(gene/protein expression) and dysregulation of lncRNAs with their clinical consequences
in OSCC. In this review, we elaborate and reviewed the advancements and challenges
of the clinical usage of dysregulated lncRNA, either from tumour tissues or body fluids
(circulating/cell free), as a molecular biomarker for the early detection and prediction of
OSCC prognosis at the pre-symptomatic, sub-clinical disease stage, before it recurs. Further,
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in this review, we specially emphasise the clinical importance of circulating lncRNAs as a
biomarker for the development of a non-invasive, nonprotein, liquid biopsy-based method
for prognostication and for the novel therapeutic approach for the clinical management
of OSCC.

2. Biogenesis of Long Non-Coding RNA

The biogenesis of lncRNA is multidimensional and dependent upon the genomic
localisation of the lncRNA. So far, it is not clearly understood, therefore we need to uncover
so many things for a deep insight of this process, along with the function of lncRNAs.
In eukaryotes, lncRNAs are transcribed by RNA polymerase II that is typically from a
poorly conserved region in the genome-like, intronic regions, and the exonic, intergenic and
protein-coding regions [31]. Accordingly, lncRNAs are classified into five categories: sense
lncRNA, antisense lncRNA, intronic lncRNA, intergenic lncRNA, bidirectional lncRNA,
promoter lncRNA and enhancer lncRNA. Sometimes, lncRNAs share similar or overlapping
biogenesis processes with protein-coding mRNAs. However, the biogenesis process of
lncRNA is unique and highly specific to the order of their expression pattern. In most of
cases, after being transcribed, pre-mature lncRNAs undergo unique and specific processing
events, like gaining a special methyl-guanosine capping at the 5′end, a polyadenylation
at the 3′end, undergoing cleavage and alternate splicing, the circularisation of RNA, the
formation of small nucleolar RNA, or the formation of paraspeckles (a dynamic sub-nuclear
structure) [32].

An epigenetic modification has a strong impact on the biogenesis of lncRNA. Recently,
the epigenomic profiling of oesophageal squamous cell carcinoma (ESCC) revealed that the
lncRNAs, like CCAT1 and LINC01503 expression, are regulated by the TP63mediated acti-
vation of its super-enhancer and promoter [33,34]. LncRNAs such as HOTTIP, FIRRE, and
XIST are involved in the Histone H3 lysine 4 (H3K4) methylation-mediated transcriptional
gene activation and also in the organisation of the 3D nuclear structural architecture [35].
Transcription factors binding to lncRNA leads to the formation of a nascent transcript which
regulates mRNA processing by performing alternative splicing. The alternate splicing in
the process of lncRNA maturation is one of the unique features that is very essential for
protein diversity [32]. Some specific splicing factors facilitate the splicing process through
interactions with lncRNA to form an RNA-RNA duplex with the pre-mRNA molecules.
Subsequently, the splicing process of the target mRNA (gene) is achieved by altering the
chromatin remodelling processes [36]. The binding of lncRNA to mRNA may enhance
or delay the rate of translation or mRNA deterioration. The decoys of lncRNAs, namely,
Alu transcripts (lncRNA-DNA triplex), have the ability to inhibit the transcriptional regu-
lation [37]. Studies of transcriptomic RNA sequencing suggest that lncRNA can encode
functional small RNAs [16,38]. In the cytoplasm, lncRNA are generally associated with
small peptides through the ribosomes [39]. LncRNAs can be transcribed from the pseu-
dogenes or the promoter or the intergenic regions [40]. Any alterations in the lncRNA
biogenesis process lead to an alteration of its expression and its functions and their related
target genes and its protein expression, which ultimately leads to a distinct pathological
condition such as cancer.

3. Mechanism of Action

In last few decades, revolutionary changes in our understanding of genome regulation
have emerged. The fundamental role of lncRNA is the synchronisation and regulation of
gene/protein expression, thereby resulting in the fine-tuning of each and every physio-
logical processes. Rarely, they contain short open reading frames (ORFs) [16]. The unique
feature of lncRNAs is their ability to interact with other RNAs (e.g., mRNA, circRNA,
miRNA, and others), DNA, and protein molecules, and consequently, they regulate many
different biological processes at different levels in different ways. The formation of sec-
ondary RNA structures allows the lncRNAs to play the key role in controlling the adjacent
(cis) and very distant (tans) domains in a specific chromatin region (loci) [23,41]. The
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functions of lncRNAs are very complex, multidimensional, and multifaceted (Figure 1).
Still, they remain unclear, and current research fails to explain the sensitivity and specificity
that is needed to achieve these lncRNA-mediated interactions, and the regulation of gene
expressions are found to be highly cell tissue-specific in normal patients or in any patients
with disease conditions like cancer.

Figure 1. Different, complex, multi-dimensional functions of LncRNA. LncRNA mainly functions
as signals, decoys, scaffolds, and as guides. Thus, lncRNA can act as a regulator for chromatin
remodelling their environment (neighbouring or distant through intra or inter-chromosomal interac-
tion) by positioning chromatin modifiers at the chromosomal level in the genome architecture (1).
LncRNA can regulate gene expression by recruiting a chromatin-modifying complex either to activate
or repress the neighbouring genes at the transcription level (2). It can also regulate transcription as
an enhancer RNA or eRNA (3), or by the binding and/or activating of transcription factors to the
promoter region (4). It can regulate pre-mRNA processing through the alternative splicing of mRNAs
(5). In cytoplasm, at a circular form or linear form, it can sponge (silence) the function of miRNA
(6). It can also act as an mRNA degradation regulator (7); mRNA stability can also be regulated
by lncRNA (8). It can code for small micro peptide (9). They can generate miRNA by degrading
themselves (10). It can regulate signalling cascades in different physiological pathways through
the activation/deactivation of proteins in cancer cells (11). It can regulate the mRNA translation
(12). Architectural scaffolding is another important function of lncRNAs. The LncRNA-mediated
scaffolding of protein (RNA-protein/ribonucleoprotein) structures are called paraspeckles, which are
found in interchromatin space. This is also found in several shared pathways in the cytoplasm (13).

3.1. LncRNA as Chromatin Regulators

LncRNAs perform their function mostly through different chromatin-based mecha-
nisms such as signals, decoys, guides, and scaffolds in chromatin remodelling. LncRNAs
play a major role in genomic imprinting. For the expression of protein coding genes,
lncRNA can regulate their neighbouring (cis) or distant (trans) genomic environments by
acting as an enhancer or a diffuser. LncRNA mediates epigenetic modifications by position-
ing chromatin-remodelling complexes to specific chromatin loci. It was estimated that 38%
of lncRNA is found in various tissues binds to PRC2 and to other chromatin-modifying



Cancers 2022, 14, 5590 5 of 26

proteins like CoREST (REST corepressor 1 protein encoded by RCOR1 gene) and SMCX
(also called JmjC-domain protein encoded by X-linked mental retardation gene SMCX or
JARID1C gene) [19]. LncRNAs (ANRIL, XIST, KCNQ1OT1, and HOTAIR) bind to trithorax
chromatin-activating complexes (TrxG) by recruiting different epigenetic modifiers to its
assigned loci for chromatin remodelling [42,43].

ANRIL/CDKN2B, the antisense lncRNA in the INK4 locus, acts as a scaffold and
transcriptionally silences the INK4b-ARF-INK4a locus. It binds to polycomb repressive
complex 1 and 2 (PRC1 and PRC2) [44,45]. When PRC2 binds to the gene locus, it causes
the spreading of the methylation marks, which is distinct for the transcriptional silencing
of genes. A 17 Kb gene called X-inactive specific transcript (XIST), that is positioned on
the human X chromosome, is responsible for the X chromosome dosage compensation.
Cis-X chromosome regulation begins after the X chromosome is covered and PRC2 is re-
cruited to its specific sites, and thus, this results in the emergence of histone H3 lysine
K27 trimethylation (H3K27me3) and also causes X-linked inactivation [8,46]. LncRNA
HOTAIR (HOX transcript antisense RNA) acts as a scaffold by cleaving itself to PRC2 and
mediating the homeobox D cluster (HOXD) locus repression by spreading the H3K27me3
marks, and thus, this causes gene silencing [47]. HOTAIR forms many double stem-loop
structures which bind to the lysine-specific demethylase1 (LSD1) and the PRC histone mod-
ification complexes [48]. KCNQ1OT1 (KCNQ1-overlapping transcript 1) antisense lncRNA,
which belongs to a potassium voltage-gated channel subfamily, remains upregulated in
colon cancer [49] and acts as a signal lncRNA by associating itself to G9a histone methyl-
transferase and also to PRC2 [50]. When PRC2 and G9a methyl transferase are recruited to
KCNQ1OT1, they mediate gene-silencing associated marks such as the demethylation of
lysine 9 (H3K9me2) and lysine 27 on histone 3 [51]. KCNQ1OT1 boosts the transcriptional
silencing of genes through chromatin remodelling.

3.2. LncRNA in Transcriptional Regulation

LncRNAs have the potential control in transcriptional regulation through modulating
the expression and functions of different transcription factors, which in turn regulates
different gene expression. LncRNAs can act as a co-factor of transcription factors and
enzymes that are related by chromatin modification. They can regulate gene expression in
cis (neighbouring) or in trans (distant) environments. Evf2 lncRNA recruits the transcrip-
tional activator, DLX1, to the key DNA enhancer to repress the gene expression [42,52].
More recently, a detailed study on an ultra-conserved enhancer (UCE) uncovered that
it has the lncRNA-dependent topological and transcriptional control, through complex
effects, on the chromosome topology by interacting with multi-megabase distant genes.
Evf2 lncRNA with Dlx5/6 forms a cloud-forming structure of UCE, which concurrently
accomplishes the activation (Umad1, 1.6Mb distant) and repression of (Akr1b8, 27Mb
distant) chr6 target genes, locally [42,52]. Recently, a new class of lncRNA, the eRNA
(enhancer RNA), has been discovered at the gene enhancer region and is implicated mainly
in transcriptional regulation [53].

LncRNA causes interaction with RNA-binding factors, namely heterogeneous nuclear
ribonucleoproteins (hnRNPs). The hnRNPs then form ribonucleoproteins (RNPs) which
then can act as enhancers to promote transcriptional processing by recruiting key transcrip-
tion machinery proteins to their specific target gene promoters. RNPs can also cause the
repression of gene transcription by attaching themselves to existing gene repressors. Fas
and Blk are pro-apoptotic genes, for which, lncRNA mediates their repression by acting as
a decoy for the transcriptional factor, NFYA [54].

LncRNAs play a major role in the modification of RNA polymerase (RNAP) II activity
by interacting with the initiation complex, and guiding it to choose the precise promoter. It
has been seen that in humans, the transcription of ncRNAs from the upstream region of the
dihydrofolate reductase (DHFR) locus leads to the formation of a triplex in the promoter
region, thus leading to the inhibition of the binding of the transcription factor, TFIID31 [55].
The basic components of RNAP II-dependent transcription machinery interactions with
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the lncRNA are transcribed by RNAP III. For further regulation, this lncRNA extracts
their expression from an RNAP II-dependent transcription reaction. For example, the
transcription of Alu elements bind to RNAP II in response to heat shock, eliminating
the requirement of the pre-initiation complex and this causes repression by their domain
interaction [56].

3.3. LncRNA in Post-Transcriptional Regulation

LncRNAs are potentially able to recognise their complimentary sequences, thus al-
lowing for interactions that are responsible for the regulation of the post-transcriptional
processing of mRNA. The processes in which lncRNAs are involved include capping,
splicing, editing, transport, translation, and stability at various control sites. For example,
the interaction of MALAT1 with splicing factors interrupts the process of alternate splicing.
RNCR2 (also called MIAT or Gomafu) is an lncRNA that affects the mRNA splicing to
provide a neuron-specific expression by interacting with the splicing factor 1 (SF1) and
blocking the formation of spliceosome [50,56,57]. Natural antisense (NAT) lncRNAs recruit
repressor complexes like PRC2 to the target genes and prompt the formation of RNA
duplexes, inhibit cis-regulatory elements, and lead to the alternate splicing of paired genes.
NAT of ZEB2 binds to the 5′splice site of an intron in 5′ UTR of ZEB2 mRNA. This intron
comprises the internal ribosome entry site (IRES), which is the essential component of
the translational machinery. NAT overexpression prevents splicing and increases ZEB2
expression and consequently, it down regulates the E-cadherin expression.

3.4. Role of lncRNA in Genomic Imprinting

Genomic imprinting is a normal epigenetic process of gene regulation by which a
subset of genes can be expressed in a parent-of-origin-specific manner from one of the
parental chromosomes [56]. Specific genomic loci, known as imprinting control regions
(ICRs), control the genomic imprinting. Methylated and unmethylated DNA genomic
imprinting regions are dependent on their parental origin for the specific expression of
lncRNA genes which leads to the activation or suppression of neighbouring genes in
cis-regulating machinery. Instead of PRC2, DNA methyltransferase plays a major role
in lncRNA-mediated histone modification and DNA methylation in uniparental gene
expression [58]. LncRNA and protein-coding genes are associated with imprinted clusters
and are inversely expressed. AIRN and KCNQ1OT1 are examples of such lncRNAs that
are responsible for the genomic imprinting of paternally inherited genes [59]. KCNQ1OT1
takes a crucial step in the long-range bidirectional repression of chromatin structures of
different protein-coding genes by associating with the chromatin-modifying complexes,
EED and G9A/EHMT2, and with the RNA itself. KCNQ1OT1/LIT1 is considered as an
imprinted control region 2 (ICR2), which consists of at least eight genes that are expressed
from the maternal allele [60]. KCNQ1OT1 silences the KCNQ1 imprinting control region
by functioning like an organiser and by interacting with chromatin-modifying complexes,
EED and G9A/EHMT2, and with the RNA itself [60–64]. Insulin-like growth factor-2
(Igf2) and insulin-like growth factor-2 receptor (Igf2r) are examples of maternally and
paternally imprinted genes [65]. H19, an lncRNA plays an important role in regulating
maternal imprinting which is essential for the regulation of cellular differentiation during
embryogenesis in humans [66]. H19, after associating with methyl-CpG-binding-domain
protein1 (MBD1), recruits histone-lysine-methyl transferase-containing complexes which
form repressive H3K9 methylation marks on the targeted imprinting loci. The absence of
H19-mediated maternal imprinting may cause Beckwith-Wiedemann Syndrome (BWS) and
correlates with an increased risk of developing a Wilms tumour of the kidney [67–70]. The
dysregulation of imprinting genes is reported in some pathological conditions, including
cancer [71]. In Figure 1, we have tried to summarise the different regulatory roles of
lncRNA on gene and protein expressions (Figure 1). Collectively, the above information
has revealed that the functions of lncRNAs are unique, due to their ability to establish
molecular interactions with proteins and all types of nucleic acids to modulate/regulate
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their accessibility, localisations, and functions. The multidimensional and multifaceted
functional versatility and flexibility of lncRNAs has emerged in recent days [72,73]. The
complete understanding of the functional plasticity of lncRNAs will give fundamental
insight into the mechanisms that lncRNAs employ for gene/protein regulation and the
pathophysiological processes of cancers, including OSCC.

4. Functional Dysregulation of lncRNAs in Oral Squamous Cell Carcinoma

An lncRNA is a new kind of gene (RNA transcript) that is without any coding proteins,
but instead, has a load of complex functional regulatory access for other genes and proteins.
The functional dysregulation of lncRNAs may be due to several factors, for example,
the above-mentioned lncRNA-mediated regulatory mechanisms, and others [74–76]. The
specific altered expression (functional) signature of lncRNAs can create a mark for a specific
disease condition and thereby, it may serve as an independent predictor for a specific
patient’s outcome with an OSCC diagnosis [41,75,76]. There are complex regulatory inter-
relationships between different lncRNAs at the different stages (initiation, progression,
and maintenance) of the carcinogenesis processes in different cancers. LncRNAs may be
tumour suppressing or tumour promoting in nature and may ultimately lead to either
the activation of tumour-promoting machineries (RNA/DNA/genes/proteins) or the
deactivation of tumour-suppressor machineries (RNA/DNA/genes/proteins). Therefore,
because of these altered regulations (one or more), a normal cell drives to transform
into a cancer cell, and ultimately it dictates the distinct disease progression, metastasis,
stemness, and treatment responsiveness in each OSCC patient. The modern cancer research
has convincingly evidenced and offered a promising role for lncRNAs in the clinical
management of cancers for the patients’ benefit. Previous studies have revealed that the
expression of lincRNA PCAT-1 (prostate cancer associated transcript 1) is highly cancer
tissue specific, whereas the expression level of circulating lncRNA PCA3 (prostate cancer
antigen 3) is clinically significant in body fluids (i.e., blood) and it is well accepted for
viable clinical applications as liquid biopsy biomarker for prostate cancer by the FDA
(US Food and Drug Administration) [77,78]. However, lncRNA applications remain in
their initial stage to be used as a predictive biomarker and currently, they are not used in
clinical practices for molecular diagnostics, prognostics, and therapeutics for the clinical
management of OSCC.

4.1. Dysregulated lncRNAs as Predictive Biomarker for OSCC Disease Management

Recent, advanced studies that have used high-throughput technologies have accel-
erated the rapid discovery of differentially expressed lncRNAs in tumour tissues and in
other body fluids, even in OSCC and other cancers [75,78,79]. Further, recent reports have
also demonstrated that the stability and relative abundance of lncRNAs are significantly
high when they are in circulation (plasma/serum/saliva), therefore, these are well suited
and quite accepted for the development of non-invasive liquid biopsy biomarker for OSCC
prognostications [80,81]. In OSCC, a significant number of lncRNAs were found to be either
upregulated or downregulated, when they were analysed for the differential expression pro-
filing of lncRNAs in tumour tissues and in body fluids (blood, serum, plasma, and saliva) of
patients when compared to the respective control (Table 1), and those lncRNAs were further
evaluated for their clinical implications to be a reliable biomarker for the diagnosis, progno-
sis, and therapeutics of OSCC (Figure 2). Here, in this section, we give a special emphasis
only to those published reports on aberrantly expressed lncRNAs in OSCC and the studies
which have a significant correlation with the disease progression and outcome in patients
with OSCC which were found through different search engines (PubMed, Google, different
lncRNA-databases, and others) using related keywords (Table 1). Here, we have reported
all these studies where a genome-wide or a targeted (single/more) profiling of lncRNAs has
been conducted so far using either tumour tissues, or blood (whole blood/plasma/serum),
or saliva from the patients with OSCC to find out their clinical relevance (Table 1). The data
of frequently found mutations (simple somatic mutations) on the lncRNA genes of primary
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tumours were collected from The Cancer Genome Atlas (TCGA) database of the head and
neck squamous cell carcinoma (HNSC) patient cohort (Table 2).

Table 1. Dysregulated lncRNAs in OSCC.

LncRNA ID Expression
Status

Sample
Source Target Gene Clinical Significance Reference

AC007271.3 up Tumour, Serum NFκB, miR-125b-2-3p, Slug cell proliferation, EMT,
Metastasis; [82,83]

AC132217.4 up Tumour KLF8, IGF2 metastasis, migration, invasion; [84]

ADAMTS9-AS2 down Tumour miR-600, Ezh2, AKT signaling marker for early diagnosis and
metastasis; [85]

AFAP1-AS1 up Tumour miR-145, HOXA1 cell proliferation, progression; [86]

ANRIL up Tumour TGFβ, Smad, Bcl-2 proliferation and progression,
tumour progression; [87]

BANCR up Tumour MAPK signalling cell proliferation, progression,
migration; [88]

BLACAT1 up Tumour PSEN1 cell proliferation, progression,
radioresistance; [89]

C5orf66-AS1 down Tumour diagnostic marker, treatment
response; [90]

CASC15 up Tumour miR-124, miR-33a-5p proliferation and invasion,
progression, and metastasis; [91]

CASC2 down Tumour,
Plasma miR-21, miR-31-5p, KANK1 local recurrence, cisplatin

responsiveness; [92,93]

CCAT1 up Tumour
miR-181a, Wnt/β-catenin,

DDR2, ERK, AKT, miR-55-5p,
let7b-5p

poor therapeutic outcome; [94]

CCAT2 up Tumour Wnt/β-catenin, Ccnd1, Myc,
GSK3β

poor prognosis, metastasis,
migration, invasion; [95]

CRNDE up Tumour miR-384 proliferation and invasion,
progression and metastasis; [96]

DANCR up Tumour miR-216a-5p histological grade, clinical
staging, lymph node metastasis; [97]

DLEU1 up Tumour miR-149-5p, CDK6, HA,
CD44 signalling

disease progression, diagnostic
marker; [98]

DNM3OS up Tumour miR-204-5p, HIP1 disease progression, migration; [99]

ELDR up Tumour ILF3, cyclinE1 signalling disease progression, cell
proliferation; [100]

ENST00000412740 up Plasma biomarker for early diagnosis
and staging of OSCC; [101]

ENST00000527317 down Tumour poor median PFS and OS; [102]
ENST00000583044 down Tumour poor median PFS and OS; [102]

ENST00000588803 up Plasma biomarker for early diagnosis
and staging of OSCC; [101]

FER1L4 up Tumour miR133a, Prx1 disease progression; [103]

FGD5-AS1 up Tumour MCL1, miR-153-3p proliferation and migration,
invasion; [104]

FLJ22447 up Tumour IL-33 disease progression; [105]

FOXCUT up Tumour FOXC1 cell proliferation, migration,
metastasis, poor survival; [106]

FOXD2-AS1 up Tumour E2F-G2-M checkpoint migration, pathological grade,
poor disease prognosis; [107,108]

FTH1P3 up Tumour miR-224-5p, Fizzled5
progression, metastasis, high
mortality rate, poor overall

survival;
[109]

GAS5 down Tumour, Blood,
Plasma

miR-21, PTEN, FoxO1,
miR-1297, GSK3β

cell proliferation, migration,
EMT, metastasis, treatment

responsiveness;
[110–112]

H19 up Tumour miR-let-7

tumorigenesis, metastasis, poor
prognosis, low

disease-free-survival,
prognostic biomarker;

[113,114]

HAS2-AS1 up Tumour TGFα, HIF-1α, Nfκb poor prognosis, invasion, EMT [115]
HNF1A-AS1 up Tumour STAT3, Notch signalling poor prognosis, EMT, migration [116]
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Table 1. Cont.

LncRNA ID Expression
Status

Sample
Source Target Gene Clinical Significance Reference

HOTAIR up Tumour, Saliva,
Plasma Ezh2, E-cadherin TNM staging, poor prognosis,

marker for early detection; [25,26,111,112,117]

HOTTIP up Tumour miR-124-3p, HMGA2,
Wnt/β-catenin

migration, invasion, distant
metastasis, poor overall

survival, poor
disease-free-survival;

[29]

HOXA10 up Tumour risk factor, tumour grade; [118]

HOXA11-AS up Tumour,
Plasma miR-98-5p, YBX2 disease progression; [119]

HOXB-AS3 up Tumour cell proliferation and tumour
progression; [16]

HOXC13-AS up Tumour miR-378g, HOXC13 axis cell proliferation, migration,
EMT; [120]

JPX up Tumour miR-944, CDH2 axis cell proliferation, migration,
invasion; [121]

LEF1-AS1 up Tumour LATS1, Hippo signalling migration, metastasis; [122]

LINC00152 up Tumour miR-139-5p poor prognosis, metastasis,
migration, invasion, EMT; [123,124]

LINC00284 up Tumour miR-211-3p, MAFG axis, FUS,
KAZN axis cell proliferation, migration; [125]

LINC00460 up Tumour Peroxiredoxin-1, miR-4443 poor prognosis, metastasis,
migration, invasion, EMT; [126,127]

LINC00662 up Tumour tumour size, LNM, and TNM
staging; [128]

LINC00668 up Tumour miR-297, VEGFA signaling poor prognosis; [129]

LINC00673 up Tumour

betel nut association, TNM
staging, recurrence, migration,
invasion, poor overall survival,

poor disease-free-survival;

[130,131]

LINC00941 up Tumour CAPRIN2, Wnt/β-catenin disease progression; [132]

LINC00958 up Tumour miR-211-5p, CENPK axis,
JAK, STAT3 signaling shorter overall survival; [133]

LINC00964 up Plasma marker for early detection; [134]

LINC01116 up Tumour miR-136, FN1 disease progression, invasion,
and migration; [135]

LINC01133 up Tumour GDF15 less metastasis, good prognosis; [136]
LINC01929 up Tumour miR-137-3p, FOXC1 axis tumour progression; [137]

LINC02487 down Tumour USP17, SNAI1 axis migration, invasion, cancer
metastasis; [138]

Linc-ROR up Tumour Oct4, Nanog, Sox4, Klf4,
cMyc

cellular migration, invasion,
and metastasis; [139]

Lnc-p23154 up Tumour Glut1 poor prognosis, metastasis,
migration, invasion, EMT; [140]

lnc-WRN-10:1 down Tumour poor median PFS and OS; [102]
LOC100506114 up CAFs RUNX2, GDF10 signaling proliferation and migration; [141]

LOC284454 up Serum early diagnostic marker; [142]

LOLA1 up Tumour AKT, GSK3β pathway tumour progression, migration,
invasion, EMT; [143]

MALAT1 up Tumour,
Plasma, Saliva

Cks1, Wnt/β-catenin,
miR-101, Ezh2 axis

EMT, marker for early detection
and poor prognosis, metastasis; [24,27,30,117]

MEG3 down Tumour miR-421, Dnmt3B

high mortality rate and poor
overall survival, tumour

recurrence, metastasis. tumour
suppressor;

[144]

MIR31HG up Tumour HIF-1α cellular migration, invasion,
and metastasis; [145]

NCK1-AS1 up Plasma miR-100 marker for early detection and
metastasis; [146]

NEAT1 up Tumour, Saliva therapeutic target, marker for
early detection; [147,148]

NKILA down Tumour NFκB signalling
tumour volume, weight,
proliferation, invasion,
migration, metastasis;

[149,150]

NR_038323 up Plasma biomarker for early diagnosis
and staging of OSCC; [101]

NR_104048 down Tumour poor median PFS and OS; [102]
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Table 1. Cont.

LncRNA ID Expression
Status

Sample
Source Target Gene Clinical Significance Reference

NR_131012 up Plasma biomarker for early diagnosis
and staging of OSCC; [101]

ORAOV1-B up Tumour NFκB, TNF-α signalling lymph node metastasis,
invasion, migration, metastasis; [151]

PANCR up Tumour Hypermethylation and poor
survival; [152]

PANDAR up Tumour Metastasis, migration, invasion,
poor prognosis; [153]

PAPAS up Plasma TGFβ1 Biomarker for diagnosis, poor
overall survival; [154]

PTENp1 down Tumour miR-21, PTEN histological differentiation and
progression; [155]

PVT1 up Tumour miR-150-5p, GLUT1 poor prognosis; [156]
RC3H2 up Tumour miR-101-3p, Ezh2 metastasis, migration, invasion; [157]

SLC16A1-AS1 up Tumour CCND1 histological grade, overall
survival; [158]

SNHG12 up Tumour miR-326, E2F1 proliferation and migration,
invasion, EMT; [159]

SNHG16 up Tumour CCND1 cell proliferation, viability,
migration and EMT; [160]

SNHG17 up Tumour
miR-384, ELF1, CTNNB1,
Wnt/β-catenin, miR-375,

PAX6 axis
disease progression; [161,162]

SNHG20 up Tumour miR-197, LIN28 axis oncogenesis and
tumourigenesis; [163]

SNHG3 up Tumour Wnt/β-catenin, NFYC proliferation, migration; [164]
SOX21-AS1 down Tumour poor prognosis; [165]

TIRY up Tumour miR-14, Wnt/β-catenin proliferation, migration; [166]
TTN-AS1 up Tumour miR-411-3p, NFAT5 disease progression; [167]

TUG1 up Tumour
miR-219, FMNL2,

Wnt/β-catenin, cyclin D1,
cMyc

tumour promoting, lymph node
metastasis; [28,168]

UCA1 up Tumour miR-138-5p, CCR7,
Wnt/β-catenin

proliferation, migration,
invasion, glycolysis

metabolism;
[169,170]

VENTXP1 down Tumour miR-205-5p, ANKRD2, NFκB poor survival; [171]

XIST up Tumour, Saliva miR-27b-3p cell proliferation, cisplatin
resistance. [172,173]

Figure 2. The schematic presentation of the entire process by which screening, evaluation, and clinical
significance of altered lncRNA expression signatures have been conducted and analysed for the
detection of the disease and for the early prediction of prognosis (recurrence, metastasis, treatment
responsiveness, survival, etc.) and for the development of novel, efficient therapeutics in OSCC using
clinical samples collected from patients (tumour, blood, saliva, etc.) and healthy control individuals
(blood, saliva, etc.).
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Table 2. Simple somatic mutations found in lncRNA-genes in OSCC. Data collected from TCGA-
HNSC patient cohort from TCGA database.

Name Symbol Simple Somatic
Mutation Affected (%)

Number of
Mutations Mutation Details (Changes in DNA)

X inactive specific transcript XIST 7/37 (18.92%) 7

chrX:g.73841444C>T
chrX:g.73844493T>C
chrX:g.73845294A>G
chrX:g.73844293G>C
chrX:g.73843798G>T
chrX:g.73842529A>G
chrX:g.73844433G>C

AL109984.1 AL109984.1 3/37 (8.11%) 3
chr20:g.52088576G>A
chr20:g.52084589C>T
chr20:g.52085000C>G

family with sequence similarity E5 FAM27E5 3/37 (8.11%) 3
chr17:g.22299660G>C
chr17:g.22298919G>A
chr17:g.22298929C>A

chromosome 8 open reading
frame 31 C8orf31 3/37 (8.11%) 3

chr8:g.143043244G>A
chr8:g.143043089T>C
chr8:g.143043028C>G

RNF217 antisense RNA 1 (head
to head) RNF217-AS1 2/37 (5.41%) 2 chr6:g.124910865G>A

chr6:g.124910984G>C

spermatogenesis associated 8 SPATA8 2/37 (5.41%) 2 chr15:g.96783707G>A
chr15:g.96784195C>T

long intergenic non-protein coding
RNA 482 LINC00482 2/37 (5.41%) 2 chr17:g.81304684C>A

chr17:g.81305023G>A

AC092718.9 AC092718.9 2/37 (5.41%) 3
chr16:g.81149700C>G
chr16:g.81147473C>T
chr16:g.81147475T>A

long intergenic non-protein coding
RNA 1588 LINC01588 2/37 (5.41%) 2 chr14:g.50005654C>T

chr14:g.49992302T>C
SUGT1P4-STRA6LP readthrough SUGT1P4-STRA6LP 1/37 (2.70%) 1 chr9:g.97294104G>A

chromosome 14 putative open
reading frame 177 C14orf177 1/37 (2.70%) 1 chr14:g.98716342delAG

long intergenic non-protein coding
RNA 1559 LINC01559 1/37 (2.70%) 1 chr12:g.13376270C>T

chromosome 8 open reading
frame 86 C8orf86 1/37 (2.70%) 1 chr8:g.38528390C>T

MIR1-1HG antisense RNA 1 MIR1-1HG-AS1 1/37 (2.70%) 1 chr20:g.62546276C>T
HLA complex group 27 HCG27 1/37 (2.70%) 1 chr6:g.31202764C>T

long intergenic non-protein coding
RNA 1600 LINC01600 1/37 (2.70%) 1 chr6:g.2623640G>A

long intergenic non-protein coding
RNA 1098 LINC01098 1/37 (2.70%) 1 chr4:g.177975927delTT

long intergenic non-protein coding
RNA 173 LINC00173 1/37 (2.70%) 1 chr12:g.116534694C>T

mir-99a-let-7c cluster host gene MIR99AHG 1/37 (2.70%) 1 chr21:g.16391630G>A
chromosome 9 putative open

reading frame 106 C9orf106 1/37 (2.70%) 1 chr9:g.129322444delCCAGTTCT . . .

long intergenic non-protein coding
RNA 2877 LINC02877 1/37 (2.70%) 1 chr3:g.153484635C>G

chromosome 20 putative open
reading frame 197 C20orf197 1/37 (2.70%) 1 chr20:g.60070819G>A

long intergenic non-protein coding
RNA 2870 LINC02870 1/37 (2.70%) 1 chr10:g.132448053G>A

long intergenic non-protein coding
RNA 1565 LINC01565 1/37 (2.70%) 1 chr3:g.128573545delC

myelodysplastic syndrome 2
translocation associated MDS2 1/37 (2.70%) 1 chr1:g.23627122C>A

chromosome 11 putative open
reading frame 40 C11orf40 1/37 (2.70%) 1 chr11:g.4573322G>A

family with sequence similarity
153 member C FAM153CP 1/37 (2.70%) 1 chr5:g.178055978G>A

BACH1-IT1 BACH1-IT1 1/37 (2.70%) 1 chr21:g.29351669C>G

4.2. Clinical Correlations of Dysregulated LncRNAs in Primary Tumours

In conventional methods that are used to treat OSCC, the prognostic information, risk
stratification, and clinical decisions are mainly derived from the histopathology report of



Cancers 2022, 14, 5590 12 of 26

surgical samples (from primary tumours or punch biopsy tissues) and with other imaging
methods and tools that include different imaging technologies like MMR, tomographic
scanning, PET-CT, X-ray, USG, etc. [4,5]. The tumour staging, lymphovascular invasion
(LVI), perineural invasion (PNI), extranodal extension (ENE), depth of invasion, pattern
of invasion, grade of differentiation, anatomic location, other demographic data that are
associated with specific disease conditions are important indicators for decision making
by a multidisciplinary team to provide the most effective clinical interventions [4,5]. The
genetics of OSCC, along with intra/inter tumoural heterogeneity, are very complex and
play a major role in precision oncology and differential patient outcome. So far, there
is no molecular biomarker in the clinical practice for the treatment decision and disease
monitoring of OSCC. The presence of some proteins markers can be detected in tumour
tissues by means of immunohistochemistry (IHC). Therefore, there is an urgent need of
the development of a sensitive and specific molecular biomarker to facilitate the advanced,
tailor-made treatment options for disease monitoring and to attain a better clinical outcome
in OSCC.

The several GWASs and other advanced studies in the last decades have identified
ample number of lncRNAs, which have distinct expression signature profiles for distinct
disease states in different stages of the disease progression, leading to a distinct disease
outcome in OSCC. Increasing evidence discloses the emerging impact of dysregulated
lncRNA expression and functional dysregulation in the pathogenic development of OSCC
(Tables 1 and 2). An earlier study has also investigated the correlation of the altered
level of lncRNA expression with the risk factors and the clinicopathological factors of
OSCC. The results revealed that a high level of LncRNAs AC007271.3 expression was
significantly correlated with smoking history, pathological differentiation, nodal metastasis,
and advanced TNM staging in OSCC. Recently, lncRNA LOLA1 was discovered to have
a drastic role for promoting the transformation of malignant formations through oral
leucoplakia to OSCC, and maintaining tumour progression migration and EMT via the
AKT/GSK-3b pathway in OSCC [143]. A comparative study of patient tumour samples
vs. normal oral mucosal tissue samples has shown that H19 lncRNA is significantly
overexpressed due hypomethylation in its promoter region in tumour tissue and this
is correlated with tumour grade and lower disease-free survival (DFS) in patients with
OSCC [114]. One of most studied lncRNAs, HOTAIR, remains highly expressed in OSCC
tissues than it is in normal healthy tissues. Upregulated HOTAIR is correlated with tumour
size, TNM staging, and also with a poor prognosis of OSCC [25], and also could be a
target for therapy [75,174]. The high expression of HOTTIP is seen in OSCC patients
(tongue) with a T3/T4 grade tumour, distant metastasis, or in patients in clinical stages
III-IV vs. a low expression in patients with T1/T2 grade tumours and with no distant
metastasis or in patients in clinical stages I-II [29]. Another tumour-promoting lncRNA,
LINC01929, accelerates the tumour progression by targeting the miR-137-3p/FOXC1 axis in
OSCC, suggesting a novel target for OSCC therapy [137]. According to the studies of Zhou
et al., the level of MALAT1 remains high in OSCC patients and it is correlated with a poor
prognosis [24,30]. In a separate study, it has been shown that the overexpression of MALAT1
promotes cell proliferation and invasion by regulating the miR 101/EZH2 axis in OSCC [27].
The high level of CCAT1 lncRNA expression has also been found in OSCC and it causes a
poor therapeutic outcome through sponging the activity of miR155-5p and let7b-5p [94].
LncRNA FTH1P3 remains highly expressed in OSCC and it is involved in promoting a
proliferative capacity and in enhancing colony-formation [109]. FTH1P3, thus, can be a good
biomarker as well as a therapeutic target for OSCC patients. The elevated LINC00673 levels
and its genetic variants are associated with the development of large tumours in patients
with OSCC. Authors have demonstrated that smokers are more susceptible to the risk of
lymphatic spread, whereas, LINC00673 and rs9914618 single-nucleotide-polymorphism
(SNP) are associated with tumour progression in the case of betel nut chewing or smoking
in OSCC [130]. The higher expression of LINC00673 represents a positive correlation with
tumour size, higher TNM staging, and also with recurrence, irrespective of risk factors
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in OSCC [131]. The upregulation of HIFCAR is seen in OSCC and it is correlated with
advanced tumour staging and so, it acts as a prognostic biomarker. Fang et al. showed
in their experiment that UCA1 lncRNA is responsible for increased cell proliferation and
the development of cisplatin resistance and thereby, it enhances the migration of OSCC
cells [175,176]. The high expression of LINC01133 was associated with less metastasis and
a good prognosis [136]. Further, the tumour promoting role of TUG1 was accelerated by
the sponging of miR-219 through elevated levels of FMNL2 [28]. Interestingly, in a recent
study, it has been found that HOXB-AS3 has encoded a micropeptide, which is oncogenic
and promotes cell proliferation and tumour progression through the activation of other
oncogenes (e.g., c-Myc) in OSCC [16]. In OSCC, ANRIL is correlated with proliferation and
progression. The low expression of ANRIL causes a reduction in proliferation, invasion,
and migration. Thus, lncRNA ANRIL can be considered as a promising biomarker and also
as a therapeutic target for OSCC patients [87].

The expression level of NKILA lncRNA remains low in OSCC and it is correlated
to tumour size, clinical staging, and metastasis. So, NKILA is considered as a tumour
suppressor lncRNA for disease progression and metastasis and it acts through the NF-
KappaB signalling pathways in OSCC [149,150]. The expression level of lncRNA C5orf66-
AS1 remains lower in OSCC tissues than it does in normal tissues [177,178]. EFGR-AS1 and
its genetic variants play a significant role in treatment responses in OSCC [90]. In OSCC
patients, a lower level of SOX21-AS1 was correlated with a poor prognosis [165]. A lower
expression level of MEG3 is seen in OSCC tumour tissues than is seen in non-malignant
tissues, and it is associated with OSCC progression and a high OSCC mortality rate [179].
Moreover, it has been found that the overexpression of MEG3 reduces the self-renewal
and invasive features of cancer cells in OSCC [144]. The downregulation of PTENp1
(lncRNA pseudogene) is inversely corelated with tumour histological differentiation and
progression in OSCC [155]. In addition to the critical role of lncRNA HANGA1-mediated
regulation by targeting SLC2A1 in cancer cell metabolism (mitochondrial function), it
added value to these RNA transcripts as a novel mechanism in the designing of therapeutic
modalities [180].

Even after accumulating and analysing all this information, the research remains in a
very preliminary stage and there is a need to overcome so many challenges to establish novel
lncRNAs expression signatures for the early detection of OSCC diagnostics and prognostics.
There are some disparities in the study designs, sample size, end-point objectives, and
use of proper control, leading to variations and inconsistencies and inconclusive results.
However, despite these limitations, all these studies provide the foundation for setting
up the proper standard operating protocols (SOPs) to establish the lncRNA expression
signature as a useful, reliable biomarker for the clinical management of OSCC, with logical
interpretations for the execution of future studies using larger patient cohort.

4.3. Clinical Correlations of Dysregulated Circulating LncRNAs in Body Fluids

The molecular diagnostic power of circulating lncRNAs is widely accepted, worldwide
due to their significantly high abundance and stable presence in all most all biological
fluids including saliva and peripheral blood. The stability of circulating, cell-free lncR-
NAs comes from the formation of different secondary structures in combination with
ribonucleoproteins and lipids, high density lipoproteins (HDLP), protective exosomes,
micro-vesicles, etc., to escape the nuclease (RNase) -mediated degradation while they are in
circulation [11,78]. Several published studies in the literature have already established the
reliability, feasibility, and acceptability of the aberrant expression of circulating lncRNAs
as a clinical biomarker for molecular diagnostics and the prognostics of other cancers [79].
In OSCC, currently, there are no circulating lncRNAs in clinical practice, but there is a
significantly high sensitivity and specificity to demonstrate its proof of concept in a clinical
trial for disease management.
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4.3.1. LncRNA Biomarker in Saliva

Saliva is one of the important, non-invasive sampling sources in OSCC diagnostics.
In this regard, less invasive oral swab/brush-biopsy/scalpel/scraper biopsy methods
are also very important sampling sources that are used to identify lncRNA biomarkers
for OSCC diagnostics and prognostics [181,182]. Several investigators have shown that
an array of ncRNAs were identified in saliva samples, and they suggested their clinical
implications in OSCC [79,117,183,184]. Previously, Tang et al. demonstrated that HOTAIR
and MALAT1 were significantly detected in saliva samples in OSCC patients [117]. Further,
salivary HOTAIR expression was significantly upregulated in nodal metastasis when
compared to the node negative-OSCC patients, suggesting that it is a rapid, non-invasive
diagnostic biomarker for liquid biopsy method for OSCC management [117]. In this regard,
a major drawback is the low sample size. An earlier study by Gibb et al. has shown that
lncRNA NEAT-1 is overexpressed in normal mucosa when it is compared to that of OSCC
mucosa [148]. Recently, Shieh et al. have studied the potential role of circulating lncRNA
XIST expression in saliva and have shown that the absence of lncRNA XIST expression is
associated with an increased risk of OSCC morbidity [173].

4.3.2. LncRNA Biomarker in Plasma

Peripheral blood (plasma/serum) is another sampling source for a liquid biopsy for
OSCC. Dong et al. revealed that the expression levels of lncRNA CASC2 remained low in
the plasma samples of patients with local recurrence, but in patients without recurrence,
the levels were high [93]. The overexpression of CASC2 is associated with an increased cell
proliferation and thus, it can act in the prognosis of OSCC [93]. Zhang et al. have shown
that lncRNA PAPAS expressions were significantly upregulated in the plasma of patients
with OSCC and it can distinguish the stage 1 OSCC patients from the healthy controls [154].
Further analysis also suggested that high plasma levels of PAPAS were followed by a low
overall survival rate in OSCC [154]. LncRNA NCK1-AS1 levels were also upregulated in
the plasma of OSCC patients and therefore, the authors showed that it can distinguish
oral ulcers from the early stages of OSCC, and claimed its early diagnostic prognostic
value [146]. Further, in a study with 41 patients who underwent radical chemoradiotherapy,
lncRNA HOTAIR, lincRNA-p21, and GAS5 expression were measured in their plasma
samples and the results demonstrated that GAS5 showed significant association with
the treatment response, whereas HOTAIR lincRNA-p21 levels in plasma did not show
any conclusive results in head and neck cancers [111,112]. GAS5 expression was found
to be upregulated in the plasma samples of patients with a progressive disease (poor
prognosis) when it was compared to those of good clinical responsive patients [110].
Very recently, Jia et al. have identified four lncRNAs, ENST00000412740, NR_131012,
ENST00000588803, and NR_038323, in plasma through microarray experiments that can be
used as biomarkers for the early diagnosis and staging of OSCC. Further, they validated the
expression levels of these four lncRNAs in the plasma of a larger patient cohort, with respect
to the early stage (TNM I/II, 28 patients), and the advanced stage (TNM III/IV, 36 patients),
and the pre-symptomatic stage (dysplasia/healthy control, 16 cases) in OSCC. Finally, a
receiver operating characteristic (ROC) curves and logistic regression analysis revealed the
diagnostic effects of the combined lncRNAs, and suggested that these four lncRNAs could
be promising biomarkers for the early diagnosis and staging of OSCC for the benefit of
clinical decision-making [101]. Earlier, HOXA11-AS, LINC00964, and MALAT1 were also
identified as having potential roles as circulating liquid biopsy biomarkers in the plasma of
OSCC patients, for early detection of OSCC [134].

4.3.3. LncRNA Biomarker in Serum

Previously, a case-control study with 80 OSCC and 70 control individuals using serum
samples demonstrated that lncRNA AC007271.3 in combination with a tumour specific
growth factor (TSGF) and a squamous cell carcinoma antigen (SCCA) could be a potential
circulating molecular biomarker for OSCC diagnostics. In this study, they have shown
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that the tumour molecular profile is actually reciprocated in the serum level, with the
presence of AC007271.3 providing strong evidence to suggest that OSCC-specific lncRNAs
could be released into circulation [82,83]. Recent studies have also demonstrated that
lncRNA LOC284454 could be a potential serum biomarker for the diagnosis, prognosis,
and therapeutic target for the clinical management of OSCC [142].

4.3.4. LncRNA Biomarker in Extra-Cellular Vesicles (EVs)

Extra-cellular vesicles or exosome vesicles (EVs) from plasma, serum, or saliva could
be another important source for a liquid biopsy in OSCC. Recent studies have shown that
circulating lncRNAs are well protected from endosomal RNase degradation while they
are in circulation [183]. So far, according to our knowledge, the lncRNA expression profile
in EVs that were collected from saliva/plasma/serum have not been studied in OSCC,
however, there are ample amounts of similar information for other cancers [76].

Recent studies have shown that the source of these spectrum of circulating lncRNAs
have been found due to the direct reciprocal secretion from the tumour cells, apoptotic
cells, necrotic cells and/or due to the consequences of an immunogenic reaction upon
the pathophysiological or metabolic response to cancer. Although, cancer cells are known
to evade apoptosis through a variety of mechanisms, it is already established that these
tumour-associated circulating lncRNAs are released in the extra-cellular space by tumour
cells along with protective lipids and proteins, RNA-binding proteins, neucleophosmin
(NPM1), Argonaute (AGO) proteins, high density lipoproteins, or sometimes without any
binding partner within the exosome vesicles to avoid nuclease activity when they are in
circulation [11]. Several investigators have predicted specific circulation lncRNAs–cancer
associations [78,185]. The expression of circulating lncRNAs sometimes may be different
from the expression profile in OSCC tumour tissue. Overall, circulating lncRNAs have
been shown to constitute a promising biomarker for use in a liquid biopsy, which is a more
rapid, minimally invasive, robust, cost effective, easy, reliable, and consistent method for
both OSCC diagnosis and prognosis (Table 3). Further, it is quite obvious to suggest that
circulating lncRNAs along with other interacting partners may constitute future diagnostic
tools or therapeutic targets with a higher sensitivity and specificity for better OSCC disease
management.

Table 3. Clinically important potential candidate circulating lncRNAs for liquid biopsy in OSCC.

Biotype Circulating lncRNAs Suggested Clinical Implications References

PLASMA

CASC2 Prognosis, treatment response [93]
ENST00000412740, Diagnosis and prognosis [101]
ENST00000588803, Diagnosis and prognosis [101]

GAS5 Prognosis, treatment response [112]
HOXA11-AS Diagnosis and prognosis [134]
LINC00964 Diagnosis and prognosis [134]
MALAT1 Diagnosis and prognosis [134]

NCK1-AS1 Diagnosis, prognosis [146]
NR_131012 Diagnosis and prognosis [101]
NR_038323 Diagnosis and prognosis [101]

PAPAS Prognosis [154]

SERUM
AC007271.3 Prognosis [82,83]
LOC284454 Diagnosis [142]

SALIVA

HOTAIR Prognosis [117]
MALAT1 Prognosis [117]
NEAT-1 Prognosis [148]

XIST Prognosis, treatment response [173]
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5. Clinical Impact of Dysregulated lncRNAs in OSCC Prognosis
5.1. LncRNA in Lymph Node Metastasis and Distant Metastasis

There is evidence that invasiveness and metastasis, as well as EMT (epithelial-mesenchymal
transition) and MET (mesenchymal-epithelial transition), are controlled by lncRNAs. Can-
cer cells, as a result of intercellular communication, acquire new properties of plasticity,
stem-like features and thus, they become prone to therapy resistance [186,187]. The loss
of E-cadherin expression is a decisive indicator that ensures consecutive transformation,
EMT, and metastatic invasion. Lymph node metastasis (LNM) is considered as an essential
prognostic factor, whereas the distant metastasis is considered as a very common condition
and it is related to the advanced stages in OSCC patients [4,5]. LncRNAs are correlated
with this nodal metastasis as well as distant metastasis (Table 1).

According to tissue analysis studies, MALAT1 shows a positive correlation with
regional LNM in OSCC patients. Further reports from recent studies showed that MALAT1
plays an important role in regulating the metastatic (LNM/distant) ability by inducing
the EMT, invasion, and migration of cancer cells in OSCC [24,27,30]. However, it has been
found that a high expression of HOTTIP lncRNA in OSCC is correlated to distant metastasis
that is caused by the disease [29]. Several studies showed that a high level of HOTAIR
lncRNA expression is significantly associated with an induced EMT and frequently with
the occurrence of LNM, invasion, and migration in OSCC [26,75,174]. A research study by
Fang et al. proved that UCA1 lncRNA is associated to LNM and thus, this results in an
increased migration of OSCC cells [175,176]. It has been shown that if the expression of
ANRIL, LOLA1, and LINC00673 lncRNAs is increased in OSCC, then the patient outcome
is generally associated with a poor prognostication and metastasis in OSCC [87,130,143].
Another study has revealed that there is a positive correlation between TUG1 and LNM
and it can inhibit the invasion of OSCC [168]. The overexpression of LINC00662 in OSCC
tissues is associated with tumour size, LNM, and TNM staging [128]. H19 lncRNA mediates
its metastatic signalling cascade through the sponging of miR-148a-3p and it causes the
release of DNA methyltransferase enzyme (DNMT1) by inducing EMT and lowering the E-
cadherin expression in OSCC [114]. In OSCC, FOXCUT lncRNA is associated with the gene,
FOXC1, which regulates EMT and expressions of MMPs and VEGF-A genes, and thereby,
also regulates cell proliferation and migration and metastasis [106]. FTH1P3 (Ferritin heavy
chain 1 pseudogene 3) lncRNA of the ferritin heavy chain gene family is also related to the
progression and metastasis of OSCC cells [109]. In OSCC, the downregulation of NKILA
lncRNA causes the elimination of the inhibitory effect on NF-κβ, promotes EMT, and so
it gets involved in migration and invasion [149]. ROR lncRNA is responsible for cellular
migration, invasion, and metastasis in OSCC [139]. On the other hand, LINC01133 is found
to be a positive marker for no metastasis and a good prognosis in OSCC [136].

5.2. LncRNAs in Disease Free Survival (DFS) and Overall Survival (OS)

Clinical treatments have made progress but the overall survival rate, as per the studies,
is still about 50–60% in OSCC. The expression of lncRNA is important for providing prog-
nostic information which will thereby help to predict the specific disease outcome, like DFS
and OS (Table 1). Lower MEG3 expression enhances tumour progression and it is correlated
with a high mortality rate and a poor overall survival, while MEG3 overexpression induces
apoptosis [75,188]. It is statistically proven that lower MEG3 expression is associated
with a shorter OS than those with higher expression. Overexpressed FOXCUT lncRNA
is associated with a poor overall survival in OSCC patients [106]. LncRNA PANCR is
positioned adjacent to the PITX2 gene and it is seen that PANCR remains highly methylated
in OSCC [152]. The hypermethylation of PANCR leads to an increase in the death rate of
patients. The high methylation of PITX2 in OSCC is correlated with p16 expression and
a higher survival rate. Other reports have revealed that the overexpression of FTH1P3
lncRNA is associated with progression and metastasis and therefore, it contributes to a
poor OS and is correlated with a high mortality rate and a poor overall survival [30]. In
TSCC patients, LINC00673, and HOTTIP lncRNAs remain highly expressed and cause in-
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duced migration and invasion and they are negatively associated with OS and disease-free
survival [29,30].

6. LncRNA as a Therapeutic Target in OSCC

LncRNA could be a promising important therapeutic target for OSCC disease man-
agement. Although the detail functional regulatory controlling mechanism of lncRNAs are
yet to understand properly, several clinically important lncRNAs came into clinical trial for
diagnostic and prognostic purpose for human cancers. In this regard, ANRASSF1, PCA3
(NCT01024959), HULC (DRKS00017517), CCAT1 (NCT04269746), H19 (NCT04767750),
ANRIL, MALAT1 are currently in clinical trial (trial number given in brackets) for cancer
patients. These are important potential candidate lncRNAs, either came into clinical prac-
tice or yet to come [77,189]. PCA3 lncRNA (Progensa) is already in clinical practice for
diagnosis of prostate cancer. CCAT1 and PCA3 and HULC are using as non-invasive or
minimally-invasive diagnostic biomarker using body fluids (urine/blood) for detection
of cancer.

In OSCC, researchers have started to focus on how lncRNA can be useful as a target
for therapies. Advanced studies suggested that in OSCC, lncRNAs, like HOTAIR, HOTTIP,
UCA1, H19, LOLA1, TUG1, FOXCUT, FTH1P3, LINC00673 and PTENP1 can be potential
therapeutic targets to manage the better patient outcome in OSCC. On the other hand,
tumour suppressor like MEG3, LINC01133 and NKILA lncRNAs could be the potential
positive indicator for therapeutic target for better OSCC patient outcome. In OSCC pro-
gression, lncRNA act as tumour suppressor as well as oncogenes. So, if the expression
levels of lncRNA are altered accordingly then they can be used as good therapeutic targets.
As lncRNA could act as good prognostic biomarker it could be useful in developing new
treatments for OSCC patients.

7. Challenges and Future Perspective of Circulating lncRNAs as Prognostic Biomarker
for Liquid Biopsy in OSCC

The above-mentioned research has revealed numerous lncRNAs were aberrantly ex-
pressed (upregulated/downregulated), that were either found in tumours tissue or in
circulating body fluids (saliva/plasma/serum) in OSCC (Tables 1 and 2). Although, the
results were not very consistent among the different independent studies, the systemic
validation of some potential candidate lncRNAs is required through a multicentric ran-
domised control trial using a larger patient cohort with well-characterised patients with
OSCC. The specificity and sensitivity should be very high to be a good clinical biomarker.
A well-characterised reference control and a reliable internal control should be present for
the normalisation of the results. The detailed mechanisms of lncRNAs and their complex
regulatory network in a biological system are not fully understood. A huge number of
dysregulated lncRNA expression signatures (upregulated/downregulated) were observed
in recent cancer research, and these could provide a larger window for the development
of specific lncRNA-based biomarkers (Tables 1 and 2) because of their greater abundance
when they are compared to protein-coding mRNAs for the early detection of OSCC di-
agnosis, prognosis, and therapeutic targets. The lncRNA is highly stable in tissues and
body fluids and its expression is highly tissue specific. Further, there are involvements of
lncRNAs in different multidimensional, diverse cellular signalling and regulation in gene
expression during different stages of the carcinogenesis process. Therefore, lncRNAs could
be the best candidate for the development of clinical biomarkers for the early detection at
the pre-symptomatic, sub-clinical disease stage for its better management with advanced
treatment options, which might be useful for tailor-made precision oncology in OSCC.
However, there are still so many challenges and limitations to this research, and so, rigorous
validation and evaluations are required for their clinical applications for OSCC.

The current knowledge has established that circulating lncRNAs in saliva or in blood
(plasma/serum) may constitute a potential biomarker for the early detection of OSCC for
diagnosis and could also be valuable biomarker for disease prognosis in OSCC. Several
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studies of other cancers have already established that some circulating lncRNAs serve as
potential biomarkers to predict disease evolution and eventual clinical outcome [77,78,185].
In OSCC-based cancer research, circulating lncRNAs still remain in their initial phase,
and there is much more to be explored before their useful clinical applications. Further,
in this regard, there are some points to be noted: (i) the use of whole blood is usually
not recommended, whereas the use of plasma and serum would be fine for the accurate
quantification of circulating lncRNAs. This is because if the patient is experiencing in-
flammation or metabolically active, lncRNA expression profiles in blood cells (red and
white) may interfere with their variable results [190,191]. (ii) An equal volume of starting
material (saliva/plasma/serum) from different patients, may not produce the same RNA
quantity and quality. Therefore, it would be better to start with large sample volume to
get the good amount of yield of RNA, with better quality to be gained upon the extrac-
tion procedure [185]. (iii) The quality, quantity, and integrity of RNA that is extracted
from body fluids could be an issue for using high-throughput techniques. Therefore, we
advocate for the use of a proper reference gene or an endogenous control for data normali-
sation [185,192]. (iv) The inclusion of exogenous spike-in control and usage of specialised
instruments like a Qubit, a concentrator, or sensitive RQ-PCR machines are recommended
to obtain good quality data from the biological fluids [30,192]. Although there are many
challenges and limitations, it is very clear that circulating lncRNAs have been shown to
constitute innovative therapeutic targets and reliable sensitive and specific biomarkers for
the development of a liquid biopsy technique for the early prediction of OSCC disease
prognostication.

8. Conclusions

Recent, large-scale comprehensive studies on lncRNA biology with clinical samples
have revealed that the transition of lncRNA-based diagnostics to lncRNA-based therapeu-
tics has already started to develop for the management of human diseases. In this regard,
the main challenge and the important issue is that the selection of these initial lncRNA
selections remain unbiased during the processing and interpretation of the high-throughput
data. Still, an extensive validation is required through a wet-lab experimental validation,
and this is very important part to conduct before we proceed further.

In this review, we documented the clinically importance of lncRNAs in OSCC. LncRNA
acts as a regulative factor for different carcinogenesis processes (Table 1). LncRNA functions
in multiple ways at different levels (Figure 1). As per the research revelations, it is clear that
the variations in expression levels of different lncRNAs may have a distinct correlation with
the differential OSCC progression and metastasis. Therefore, it is clear that lncRNAs have
the potentiality to be used for the screening, diagnosis, prognosis, and risk assessment of
OSCC, and to decide its treatment strategy and the mode of disease monitoring to predict
the patient’s outcome, with respect to factors like recurrence, metastasis, disease-free-
survival, and overall survival in patients with OSCC. LncRNAs like MALAT1, HOTAIR,
HOTTIP, MEG3, CASC2, and FTH1P3 also act as prognosticators in OSCC. Many other
lncRNA like MALAT1, TUG1, and AFAP1-AS1 are also seen to be associated with nodal
metastasis in OSCC. LncRNA also gives evidence for its relationship with overall survival
and disease-free survival. LncRNA still remains a challenging topic for research and
new consolidations are essential for OSCC. Overall, as described in the present review,
circulating lncRNAs could be promising, reliable, robust, cost-effective biomarker for
use in a liquid biopsy for disease monitoring, prognostication to check residual disease,
and treatment responsiveness with an easy sampling method before and after treatment
(surgery/chemotherapy/radiotherapy) in OSCC.
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