Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
Abstract
:Simple Summary
Abstract
1. Introduction
2. Related Work
2.1. Self-Supervised Learning
2.2. Multiple Instance Learning (MIL)
2.3. Self-Supervision and MIL
3. Methods
3.1. SimCLR for Effective Patch-Wise Representations
3.2. Multiple Instance Learning (MIL)
3.3. Contrastive MIL
3.4. Datasets
3.5. Experimental Design
4. Results
4.1. NSCLC Subtyping
4.2. TUPAC Proliferation Scoring
4.3. Ablation Studies
5. Discussion
5.1. SS-MIL Can Leverage Completely Unannotated Datasets
5.2. SS-MIL Still Underperforms Compared to Supervised Methods
5.3. Generic Features Outperform Histopathology Features
5.4. Neighbors as Augmentations Does Not Benefit Downstream MIL
5.5. Why CLAM Outperforms Attention2majority
5.6. Issues with Reproducibility
5.7. Areas for Improvement
5.8. Implications of SS-MIL
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef] [PubMed]
- Sornapudi, S.; Stanley, R.J.; Stoecker, W.V.; Almubarak, H.; Long, R.; Antani, S.; Thoma, G.; Zuna, R.; Frazier, S.R. Deep learning nuclei detection in digitized histology images by superpixels. J. Pathol. Inform. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, X.; Liu, W.; Latecki, L.J. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks. Med. Image Anal. 2018, 45, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Silva, V.W.K.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J.J.N.m. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef]
- Abels, E.; Pantanowitz, L.; Aeffner, F.; Zarella, M.D.; van der Laak, J.; Bui, M.M.; Vemuri, V.N.P.; Parwani, A.V.; Gibbs, J.; Agosto-Arroyo, E. Computational pathology definitions, best practices, and recommendations for regulatory guidance: A white paper from the Digital Pathology Association. J. Pathol. 2019, 249, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef]
- Verma, R.; Kumar, N.; Patil, A.; Kurian, N.C.; Rane, S.; Graham, S.; Vu, Q.D.; Zwager, M.; Raza, S.E.A.; Rajpoot, N. MoNuSAC2020: A Multi-organ Nuclei Segmentation and Classification Challenge. IEEE Trans. Med. Imaging 2021, 40, 3413–3423. [Google Scholar] [CrossRef]
- Sirinukunwattana, K.; Pluim, J.P.W.; Chen, H.; Qi, X.; Heng, P.-A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.; Bruni, E.; Sanchez, U. Gland segmentation in colon histology images: The glas challenge contest. Med. Image Anal. 2017, 35, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 2019, 58, 101563. [Google Scholar] [CrossRef] [Green Version]
- Swiderska-Chadaj, Z.; Pinckaers, H.; van Rijthoven, M.; Balkenhol, M.; Melnikova, M.; Geessink, O.; Manson, Q.; Sherman, M.; Polonia, A.; Parry, J. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 2019, 58, 101547. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 3213–3223. [Google Scholar]
- El-Sappagh, S.; Ali, F.; Abuhmed, T.; Singh, J.; Alonso, J.M. Automatic detection of Alzheimer’s disease progression: An efficient information fusion approach with heterogeneous ensemble classifiers. Neurocomputing 2022, 512, 203–224. [Google Scholar] [CrossRef]
- Sucaet, Y.; Waelput, W. Digital Pathology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Morales, S.; Engan, K.; Naranjo, V. Artificial intelligence in computational pathology–challenges and future directions. Digit. Signal Process. 2021, 119, 103196. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021, 594, 106–110. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, R.J.; Kong, D.; Lipkova, J.; Singh, R.; Williamson, D.F.K.; Chen, T.Y.; Mahmood, F. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 2022, 76, 102298. [Google Scholar] [CrossRef]
- Su, Z.; Tavolara, T.E.; Carreno-Galeano, G.; Lee, S.J.; Gurcan, M.N.; Niazi, M.K.K. Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images. Med. Image Anal. 2022, 79, 102462. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Chen, R.J.; Wang, J.; Dillon, D.; Mahmood, F. Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. arXiv 2019, arXiv:1910.10825. [Google Scholar]
- Gildenblat, J.; Klaiman, E. Self-supervised similarity learning for digital pathology. arXiv 2019, arXiv:1905.08139. [Google Scholar]
- Stacke, K.; Unger, J.; Lundström, C.; Eilertsen, G. Learning Representations with Contrastive Self-Supervised Learning for Histopathology Applications. arXiv 2021, arXiv:2112.05760. [Google Scholar]
- Li, B.; Li, Y.; Eliceiri, K.W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14318–14328. [Google Scholar]
- Shao, Z.; Bian, H.; Chen, Y.; Wang, Y.; Zhang, J.; Ji, X. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural Inf. Process. Syst. 2021, 34, 2136–2147. [Google Scholar]
- Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the PMLR, Virtual, 13–15 April 2021; pp. 15750–15758. [Google Scholar]
- Liu, Q.; Louis, P.C.; Lu, Y.; Jha, A.; Zhao, M.; Deng, R.; Yao, T.; Roland, J.T.; Yang, H.; Zhao, S. Simtriplet: Simple triplet representation learning with a single gpu. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; pp. 102–112. [Google Scholar]
- Li, C.; Wang, X.; Liu, W.; Latecki, L.J.; Wang, B.; Huang, J. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med. Image Anal. 2019, 53, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Tellez, D.; Litjens, G.; van der Laak, J.; Ciompi, F. Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marimont, R.B.; Shapiro, M.B. Nearest neighbour searches and the curse of dimensionality. IMA J. Appl. Math. 1979, 24, 59–70. [Google Scholar] [CrossRef]
- Hou, L.; Nguyen, V.; Kanevsky, A.B.; Samaras, D.; Kurc, T.M.; Zhao, T.; Gupta, R.R.; Gao, Y.; Chen, W.; Foran, D. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 2019, 86, 188–200. [Google Scholar] [CrossRef]
- Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 2015, 35, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.-H.; Sanchez, V.; Eidaly, H.; Rajpoot, N. Simultaneous cell detection and classification with an asymmetric deep autoencoder in bone marrow histology images. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; pp. 829–838. [Google Scholar]
- Ding, M.Q.; Chen, L.; Cooper, G.F.; Young, J.D.; Lu, X. Precision oncology beyond targeted therapy: Combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res. 2018, 16, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, H.; Sigel, C.S.; Campanella, G.; Boerner, T.; Pak, L.M.; Büttner, S.; Ijzermans, J.N.M.; Koerkamp, B.G.; Doukas, M.; Jarnagin, W.R. Unsupervised subtyping of cholangiocarcinoma using a deep clustering convolutional autoencoder. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 604–612. [Google Scholar]
- Zhao, Y.; Yang, F.; Fang, Y.; Liu, H.; Zhou, N.; Zhang, J.; Sun, J.; Yang, S.; Menze, B.; Fan, X. Predicting lymph node metastasis using histopathological images based on multiple instance learning with deep graph convolution. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 4–19 June 2020; pp. 4837–4846. [Google Scholar]
- Herrera, F.; Ventura, S.; Bello, R.; Cornelis, C.; Zafra, A.; Sánchez-Tarragó, D.n.; Vluymans, S. Multiple Instance Learning: Foundations and Algorithms; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Maron, O.; Lozano-Pérez, T. A framework for multiple-instance learning. Adv. Neural Inf. Process. Syst. 1997, 10. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the PMLR, Virtual, 26–28 August 2020; pp. 1597–1607. [Google Scholar]
- Fashi, P.A.; Hemati, S.; Babaie, M.; Gonzalez, R.; Tizhoosh, H.R. A self-supervised contrastive learning approach for whole slide image representation in digital pathology. J. Pathol. Inform. 2022, 13, 100133. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Setoodeh, P.; Habibi, S.; Haykin, S.S. Nonlinear Filters: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Razavi-Far, R.; Ruiz-Garcia, A.; Palade, V.; Schmidhuber, J. Generative Adversarial Learning: Architectures and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Dumoulin, V.; Belghazi, I.; Poole, B.; Mastropietro, O.; Lamb, A.; Arjovsky, M.; Courville, A. Adversarially learned inference. arXiv 2016, arXiv:1606.00704. [Google Scholar]
- Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial feature learning. arXiv 2016, arXiv:1605.09782. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1422–1430. [Google Scholar]
- Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 69–84. [Google Scholar]
- Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018, arXiv:1803.07728. [Google Scholar]
- Vulli, A.; Srinivasu, P.N.; Sashank, M.S.K.; Shafi, J.; Choi, J.; Ijaz, M.F. Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy. Sensors 2022, 22, 2988. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 776–794. [Google Scholar]
- Henaff, O. Data-efficient image recognition with contrastive predictive coding. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4182–4192. [Google Scholar]
- Misra, I.; Maaten, L.V.D. Self-supervised learning of pretext-invariant representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 4–19 June 2020; pp. 6707–6717. [Google Scholar]
- Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar, M. Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284. [Google Scholar]
- Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow twins: Self-supervised learning via redundancy reduction. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 12310–12320. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J. Learning transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine Learning, Chongqing, China, 9–11 July 2021; pp. 8748–8763. [Google Scholar]
- Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912–9924. [Google Scholar]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 4–19 June 2020; pp. 9729–9738. [Google Scholar]
- Ciga, O.; Xu, T.; Martel, A.L. Resource and data efficient self supervised learning. arXiv 2021, arXiv:2109.01721. [Google Scholar]
- Ciga, O.; Xu, T.; Martel, A.L. Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 2022, 7, 100198. [Google Scholar] [CrossRef]
- Srinidhi, C.L.; Kim, S.W.; Chen, F.-D.; Martel, A.L. Self-supervised driven consistency training for annotation efficient histopathology image analysis. Med. Image Anal. 2022, 75, 102256. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Huang, J.; Yang, W.; Han, X. Transpath: Transformer-based self-supervised learning for histopathological image classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; pp. 186–195. [Google Scholar]
- Wang, X.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 2022, 81, 102559. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, Y.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval. Med. Image Anal. 2023, 83, 102645. [Google Scholar] [CrossRef] [PubMed]
- Courtiol, P.; Tramel, E.W.; Sanselme, M.; Wainrib, G. Classification and disease localization in histopathology using only global labels: A weakly-supervised approach. arXiv 2018, arXiv:1802.02212. [Google Scholar]
- Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 2017, 318, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, Y.; Shrivastava, A.; Ehsan, L.; Moskaluk, C.A.; Syed, S.; Brown, D. Cluster-to-conquer: A framework for end-to-end multi-instance learning for whole slide image classification. In Proceedings of the PMLR, Virtual, 13–15 April 2021; pp. 682–698. [Google Scholar]
- Zhang, H.; Meng, Y.; Zhao, Y.; Qiao, Y.; Yang, X.; Coupland, S.E.; Zheng, Y. DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning for Histopathology Whole Slide Image Classification. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, QC, Canada, 19–24 June 2022; pp. 18802–18812. [Google Scholar]
- Javed, S.A.; Juyal, D.; Padigela, H.; Taylor-Weiner, A.; Yu, L.; Prakash, A. Additive MIL: Intrinsic Interpretability for Pathology. arXiv 2022, arXiv:2206.01794. [Google Scholar]
- Qu, L.; Luo, X.; Liu, S.; Wang, M.; Song, Z. DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 24–34. [Google Scholar]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Kanavati, F.; Toyokawa, G.; Momosaki, S.; Rambeau, M.; Kozuma, Y.; Shoji, F.; Yamazaki, K.; Takeo, S.; Iizuka, O.; Tsuneki, M. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 2020, 10, 9297. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, X.; Hou, R.; Zhao, W.; Zhong, H.; Teng, H.; Han, Y.; Fu, X.; Sun, J.; Zhao, J. Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning. Phys. Med. Biol. 2021, 66, 235013. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Fukushima, D.; Koga, R.; Takagi, Y.; Ko, K.; Kohno, K.; Nakaguro, M.; Nakamura, S.; Hontani, H.; Takeuchi, I. Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3852–3861. [Google Scholar]
- Lu, M.; Pan, Y.; Nie, D.; Liu, F.; Shi, F.; Xia, Y.; Shen, D. Smile: Sparse-attention based multiple instance contrastive learning for glioma sub-type classification using pathological images. In Proceedings of the MICCAI Workshop on Computational Pathology, Virtual, 27 September 2021; pp. 159–169. [Google Scholar]
- Humphrey, P.A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 2004, 17, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.B.; Weinberg, R.W.; LaPlante, M.M.; Marino, D.; Gast, P. Gleason Grading of Prostate Cancer: A Contemporary Approach; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef]
- Silva-Rodríguez, J.; Colomer, A.; Dolz, J.; Naranjo, V. Self-learning for weakly supervised gleason grading of local patterns. IEEE J. Biomed. Health Inform. 2021, 25, 3094–3104. [Google Scholar] [CrossRef]
- Xu, H.; Park, S.; Hwang, T.H. Computerized classification of prostate cancer gleason scores from whole slide images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Marini, N.; Otálora, S.; Ciompi, F.; Silvello, G.; Marchesin, S.; Vatrano, S.; Buttafuoco, G.; Atzori, M.; Müller, H. Multi-scale task multiple instance learning for the classification of digital pathology images with global annotations. In Proceedings of the PMLR, Virtual, 13–15 April 2021; pp. 170–181. [Google Scholar]
- Neto, P.C.; Oliveira, S.P.; Montezuma, D.; Fraga, J.; Monteiro, A.; Ribeiro, L.; Gonçalves, S.; Pinto, I.M.; Cardoso, J.S. iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images. Cancers 2022, 14, 2489. [Google Scholar] [CrossRef] [PubMed]
- Schrammen, P.L.; Ghaffari Laleh, N.; Echle, A.; Truhn, D.; Schulz, V.; Brinker, T.J.; Brenner, H.; Chang-Claude, J.; Alwers, E.; Brobeil, A. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol. 2022, 256, 50–60. [Google Scholar] [CrossRef]
- Bardes, A.; Ponce, J.; LeCun, Y. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. arXiv 2021, arXiv:2105.04906. [Google Scholar]
- Tavolara, T.E.; Niazi, M.K.K.; Gower, A.C.; Ginese, M.; Beamer, G.; Gurcan, M.N. Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine 2021, 67, 103388. [Google Scholar] [CrossRef] [PubMed]
- Tavolara, T.E.; Niazi, M.K.K.; Ginese, M.; Piedra-Mora, C.; Gatti, D.M.; Beamer, G.; Gurcan, M.N. Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning. EBioMedicine 2020, 62, 103094. [Google Scholar] [CrossRef]
- Ilse, M.; Tomczak, J.; Welling, M. Attention-based deep multiple instance learning. In Proceedings of the PMLR, Beijing, China, 14–16 November 2018; pp. 2127–2136. [Google Scholar]
- Veta, M.; Heng, Y.J.; Stathonikos, N.; Bejnordi, B.E.; Beca, F.; Wollmann, T.; Rohr, K.; Shah, M.A.; Wang, D.; Rousson, M. Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Med. Image Anal. 2019, 54, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Pell, R.; Oien, K.; Robinson, M.; Pitman, H.; Rajpoot, N.; Rittscher, J.; Snead, D.; Verrill, C.; UK National Cancer Research Institute (NCRI) Cellular-Molecular Pathology (CM-Path) Quality Assurance Working Group; Driskell, O.J. The use of digital pathology and image analysis in clinical trials. J. Pathol. Clin. Res. 2019, 5, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Tellez, D.; Höppener, D.; Verhoef, C.; Grünhagen, D.; Nierop, P.; Drozdzal, M.; Laak, J.; Ciompi, F. Extending unsupervised neural image compression with supervised multitask learning. In Proceedings of the PMLR, Virtual, 26–28 August 2020; pp. 770–783. [Google Scholar]
- Lu, W.; Graham, S.; Bilal, M.; Rajpoot, N.; Minhas, F. Capturing cellular topology in multi-gigapixel pathology images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, DC, USA, 4–19 June 2020; pp. 260–261. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Aswolinskiy, W.; Tellez, D.; Raya, G.; van der Woude, L.; Looijen-Salamon, M.; van der Laak, J.; Grunberg, K.; Ciompi, F. Neural image compression for non-small cell lung cancer subtype classification in H&E stained whole-slide images. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 29 March 2021; p. 1160304. [Google Scholar]
- Guan, Y.; Zhang, J.; Tian, K.; Yang, S.; Dong, P.; Xiang, J.; Yang, W.; Huang, J.; Zhang, Y.; Han, X. Node-Aligned Graph Convolutional Network for Whole-Slide Image Representation and Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, QC, Canada, 19–24 June 2022; pp. 18813–18823. [Google Scholar]
- Reed, C.J.; Metzger, S.; Srinivas, A.; Darrell, T.; Keutzer, K. Selfaugment: Automatic augmentation policies for self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 2674–2683. [Google Scholar]
- Bahri, D.; Jiang, H.; Tay, Y.; Metzler, D. Scarf: Self-supervised contrastive learning using random feature corruption. arXiv 2021, arXiv:2106.15147. [Google Scholar]
NSCLC | TUPAC | |||
---|---|---|---|---|
Method | Sensitivity | Specificity | AUC | R2 |
AB-MIL | ||||
ImageNet features | 0.8528 ± 0.0323 | 0.8779 ± 0.0330 | 0.9415 ± 0.0130 | 0.6738 ± 0.0432 |
SSL features | 0.8473 ± 0.0279 | 0.8461 ± 0.0352 | 0.9259 ± 0.0188 | 0.6790 ± 0.1108 |
SSLn features | 0.7465 ± 0.0711 | 0.8157 ± 0.0453 | 0.8674 ± 0.0246 | 0.5776 ± 0.1075 |
CLAM | ||||
ImageNet features | 0.8800 ± 0.0376 | 0.8622 ± 0.0419 | 0.9434 ± 0.0140 | - |
SSL features | 0.8427 ± 0.0430 | 0.8407 ± 0.0171 | 0.9240 ± 0.0147 | - |
SSLn features | 0.7373 ± 0.0503 | 0.7879 ± 0.0779 | 0.8479 ± 0.0553 | - |
Attention2majority | ||||
SSL features | ||||
100 (instances) | 0.8047 ± 0.0707 | 0.7406 ± 0.0843 | 0.8504 ± 0.0177 | 0.5518 ± 0.0567 |
200 | 0.8002 ± 0.0463 | 0.7525 ± 0.0731 | 0.8651 ± 0.0284 | 0.5943 ± 0.0471 |
500 | 0.8214 ± 0.0374 | 0.7663 ± 0.0755 | 0.8719 ± 0.0244 | 0.6218 ± 0.0892 |
1000 | 0.8480 ± 0.0180 | 0.7565 ± 0.0652 | 0.8770 ± 0.0119 | 0.6361 ± 0.0855 |
2000 | 0.8486 ± 0.0284 | 0.7649 ± 0.0599 | 0.8848 ± 0.0151 | 0.6431 ± 0.0783 |
5000 | 0.8609 ± 0.0296 | 0.7455 ± 0.0230 | 0.8916 ± 0.0192 | 0.6492 ± 0.0877 |
10,000 | 0.8708 ± 0.0103 | 0.7237 ± 0.0349 | 0.8931 ± 0.0152 | 0.6505 ± 0.0879 |
SSLn features | ||||
100 (instances) | 0.7708 ± 0.0822 | 0.7394 ± 0.0759 | 0.8246 ± 0.0453 | 0.4161 ± 0.1163 |
200 | 0.7730 ± 0.0920 | 0.7573 ± 0.0842 | 0.8347 ± 0.0320 | 0.4422 ± 0.0872 |
500 | 0.7672 ± 0.1049 | 0.7465 ± 0.0959 | 0.8408 ± 0.0289 | 0.5308 ± 0.0586 |
1000 | 0.7687 ± 0.0979 | 0.7628 ± 0.0648 | 0.8425 ± 0.0403 | 0.4888 ± 0.0655 |
2000 | 0.7811 ± 0.0907 | 0.7576 ± 0.0401 | 0.8452 ± 0.0352 | 0.5192 ± 0.0551 |
5000 | 0.8092 ± 0.0983 | 0.7280 ± 0.0983 | 0.8478 ± 0.0329 | 0.5066 ± 0.0889 |
10,000 | 0.8208 ± 0.0857 | 0.7334 ± 0.0620 | 0.8490 ± 0.0237 | 0.4718 ± 0.1066 |
SS-MIL (proposed) | ||||
ImageNet | 0.7363 ± 0.0315 | 0.7533 ± 0.0521 | 0.8245 ± 0.0392 | 0.5418 ± 0.0330 |
SSL features | 0.8720 ± 0.0361 | 0.7888 ± 0.0336 | 0.8641 ± 0.0115 | 0.5740 ± 0.0970 |
SSLn features | 0.8251 ± 0.0509 | 0.7598 ± 0.0328 | 0.8212 ± 0.0129 | 0.4611 ± 0.2058 |
NSCLC | TUPAC | |||
---|---|---|---|---|
Method | Sensitivity | Specificity | AUC | R2 |
SSL features | ||||
Supervised | ||||
25% | 0.7898 ± 0.0967 | 0.7001 ± 0.1220 | 0.8204 ± 0.0521 | 0.4214 ± 0.1853 |
50% | 0.8059 ± 0.0769 | 0.7672 ± 0.0747 | 0.8633 ± 0.0302 | 0.4680 ± 0.1848 |
75% | 0.8268 ± 0.0537 | 0.7795 ± 0.0705 | 0.8858 ± 0.0212 | 0.5453 ± 0.0711 |
Fine-tune | ||||
25% | 0.7951 ± 0.0796 | 0.6691 ± 0.1165 | 0.8081 ± 0.0602 | 0.4898 ± 0.0841 |
50% | 0.8153 ± 0.0655 | 0.7336 ± 0.0661 | 0.8545 ± 0.0277 | 0.5320 ± 0.0936 |
75% | 0.8537 ± 0.0670 | 0.7260 ± 0.0837 | 0.8744 ± 0.0175 | 0.5692 ± 0.0831 |
Frozen | ||||
25% | 0.7176 ± 0.0932 | 0.6784 ± 0.0937 | 0.7787 ± 0.0375 | 0.3912 ± 0.0940 |
50% | 0.7651 ± 0.0355 | 0.7597 ± 0.0477 | 0.8358 ± 0.0249 | 0.4289 ± 0.1012 |
75% | 0.7721 ± 0.0405 | 0.7696 ± 0.0452 | 0.8532 ± 0.0138 | 0.4283 ± 0.0966 |
SSLn features | ||||
Supervised | ||||
25% | 0.7453 ± 0.1107 | 0.4948 ± 0.1320 | 0.6749 ± 0.0534 | 0.3311 ± 0.0976 |
50% | 0.7236 ± 0.0960 | 0.6139 ± 0.1707 | 0.7465 ± 0.0585 | 0.4059 ± 0.0914 |
75% | 0.7881 ± 0.0748 | 0.6331 ± 0.1448 | 0.7871 ± 0.0581 | 0.4603 ± 0.0925 |
Fine-tune | ||||
25% | 0.6627 ± 0.3339 | 0.5047 ± 0.3551 | 0.7079 ± 0.0574 | 0.3950 ± 0.1203 |
50% | 0.8239 ± 0.1157 | 0.5140 ± 0.2054 | 0.7690 ± 0.0543 | 0.4588 ± 0.0957 |
75% | 0.8385 ± 0.0779 | 0.5306 ± 0.2163 | 0.7916 ± 0.0572 | 0.5078 ± 0.1040 |
Frozen | ||||
25% | 0.6981 ± 0.0765 | 0.6740 ± 0.0658 | 0.7461 ± 0.0293 | 0.3731 ± 0.1376 |
50% | 0.7106 ± 0.0503 | 0.7153 ± 0.0686 | 0.7846 ± 0.0264 | 0.4160 ± 0.1537 |
75% | 0.7418 ± 0.0447 | 0.7373 ± 0.0460 | 0.8097 ± 0.0235 | 0.4547 ± 0.1608 |
ImageNet | ||||
Supervised | ||||
25% | 0.8112 ± 0.0725 | 0.8123 ± 0.0696 | 0.8958 ± 0.0150 | 0.5670 ± 0.0672 |
50% | 0.8261 ± 0.0679 | 0.8569 ± 0.0501 | 0.9197 ± 0.0153 | 0.6291 ± 0.0627 |
75% | 0.8602 ± 0.0664 | 0.8537 ± 0.0408 | 0.9288 ± 0.0117 | 0.6446 ± 0.0385 |
Fine-tune | ||||
25% | 0.7776 ± 0.0944 | 0.8188 ± 0.0788 | 0.8863 ± 0.0227 | 0.5511 ± 0.0699 |
50% | 0.8011 ± 0.0655 | 0.8743 ± 0.0512 | 0.9196 ± 0.0173 | 0.5986 ± 0.0523 |
75% | 0.8245 ± 0.0684 | 0.8649 ± 0.0510 | 0.9257 ± 0.0118 | 0.6297 ± 0.0455 |
Frozen | ||||
25% | 0.7065 ± 0.0889 | 0.6512 ± 0.0975 | 0.7324 ± 0.0668 | 0.4827 ± 0.0552 |
50% | 0.7497 ± 0.0471 | 0.7383 ± 0.0660 | 0.8205 ± 0.0329 | 0.5072 ± 0.0696 |
75% | 0.7663 ± 0.0365 | 0.7474 ± 0.0470 | 0.8386 ± 0.0256 | 0.5222 ± 0.0503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavolara, T.E.; Gurcan, M.N.; Niazi, M.K.K. Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels. Cancers 2022, 14, 5778. https://doi.org/10.3390/cancers14235778
Tavolara TE, Gurcan MN, Niazi MKK. Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels. Cancers. 2022; 14(23):5778. https://doi.org/10.3390/cancers14235778
Chicago/Turabian StyleTavolara, Thomas E., Metin N. Gurcan, and M. Khalid Khan Niazi. 2022. "Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels" Cancers 14, no. 23: 5778. https://doi.org/10.3390/cancers14235778
APA StyleTavolara, T. E., Gurcan, M. N., & Niazi, M. K. K. (2022). Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels. Cancers, 14(23), 5778. https://doi.org/10.3390/cancers14235778