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Simple Summary: Lung adenocarcinoma (LADC) is the pathological type with the highest morbidity
and mortality among lung cancers. Although achievements in new therapeutic approaches have
been developed, chemotherapy is still the most widely choice for control of LADC. However, the
increasing drug resistance becomes the major challenge, so the development of the novel and
efficient chemotherapeutic drug is still urgent. Elaiophylin, a new type of autophagy inhibitor, has
been shown to possess unique anti-cancer activity. In this study, we have deeply investigated the
therapeutic effect of elaiophylin on LADC and found elaiophylin exerts its anti-cancer effect though
inhibiting mitophagy and oxidative stress and targeting SIRT1/Nrf2 signaling. This innovative and
comprehensive research may provide the possibility for the development of novel chemotherapy
drug for LADC.

Abstract: Lung adenocarcinoma (LADC), the most common type of lung cancer, is still one of the most
aggressive and rapidly fatal tumor types, even though achievements in new therapeutic approaches
have been developed. Elaiophylin as a C2 symmetrically glycosylated 16 macrolides has been reported
to be a late-stage autophagy inhibitor with a potent anti-tumor effect on various cancers. This study
investigated the anti-tumor effect of elaiophylin on human LADC for the first time in in vitro and
in vivo models. The in vitro study in LADC A549 cells showed that elaiophylin significantly inhibited
cell viability and induced cell apoptosis through the suppression of mitophagy and induction
of cellular and mitochondrial oxidative stress. Proteomic analysis and molecular docking assay
implicated that SIRT1 was likely the direct target of elaiophylin in A549 cells. Further mechanistic
study verified that elaiophylin reduced Nrf2 deacetylation, expression, and transcriptional activity
as well as cytoplasm translocation by downregulating SIRT1 expression and deacetylase activity.
Additionally, SIRT1/Nrf2 activation could attenuate elaiophylin-induced mitophagy inhibition and
oxidative stress. The in vivo study in the A549-xenograft mice model showed that the anti-tumor
effect of elaiophylin was accompanied by the decreased expressions of SIRT1, Nrf2, Parkin, and PINK1.
Thus, the present study reports that elaiophylin has potent anti-tumor properties in LADC, which
effect is likely mediated through suppressing the SIRT1/Nrf2 signaling. In conclusion, elaiophylin
may be a novel drug candidate for LADC and SIRT1 may be a new therapeutic target for such
devastating malignancy.
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1. Introduction

Lung adenocarcinoma (LADC) is the most common type of lung cancer, accounting
for about 40% of all lung cancers [1]. Despite new therapeutic approaches that have
been developed for LADC, it remains one of the most aggressive and fatal tumor types.
Chemotherapy still remains the primary therapeutic strategy for this malignancy. However,
the arising drug resistance becomes the major challenge of its treatment effectiveness.
Therefore, it is emerged to discover and develop new chemotherapeutic agents with
improved efficacy and specificity.

Elaiophylin is a C2 symmetrically glycosylated 16-membered macrolide, originally
isolated from Streptomyces melanophores [2]. Elaiophylin has been shown to possess
unique and extensive pharmacological activities including anti-bacterial, anti-helminth,
anti-cancer, anti-virus, and immunosuppressive effects [3,4]. In recent years, research
endeavors have been made to explore its anti-cancer effect. Haet et al. have reported that
elaiophylin can inhibit tumor cell-induced angiogenesis in in vitro and in vivo models by
downregulating the expression of vascular endothelial growth factor (VEGF) and inhibiting
hypoxia-inducible factor-1α (HIF-1α) accumulation in human umbilical vein endothelial
cells [5]. It has also been shown that elaiophylin is a late inhibitor of autophagy, which can
block the autophagy flux and consequently result in the accumulation of autophagosomes
in the multiple myeloma with mutant TP53 and ovarian cancer [6,7]. In addition to protein
aggregates, mitochondria can be targeted for selective autophagic degradation by virtue of
ubiquitin tags on their outer surfaces, and this autophagic process is commonly referred
to as the PINK1–Parkin pathway of mitophagy. Our previous study has shown that
elaiophylin exhibits outstanding anti-cancer activity in human uveal melanoma (UM) cell
lines and human UM primary cells through suppressing mitophagy, inducing oxidative
stress leading to autophagic cell death [8]. Elaiophylin acts on SIRT1 in uveal melanoma
cells and consequently impacts on the deacetylation and mitochondrial localization of
FoxO3a [8]. Accumulating evidence has indicated that SIRT1 is a key regulator of oxidative
stress and autophagic lysosomes in maintaining the stability of mitochondria; however, the
role of SIRT1 in LADC remains unclear [9,10]. Therefore, this study aimed to explore the
anti-cancer property of elaiophylin in LADC using in vitro and in vivo models as well as
the involvement of SIRT1-related signaling in such an effect of elaiophylin.

2. Materials and Methods
2.1. Cell Lines and Reagents

The human lung adenocarcinoma cell lines A549, H1975, Calu-3, and human fibroblast
cell line MRC-5 were obtained from the National Collection of Authenticated Cell Cultures
(Shanghai, China). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
high glucose) with 10% (v/v) fetal bovine serum (FBS) in a humidified atmosphere of 5%
CO2 at 37 ◦C. Elaiophylin was kindly provided by Prof. Yunying Xie (Institute of Medicinal
Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China) with a purity of >99%. Elaiophylin was dissolved in dimethyl sulfoxide
(DMSO) and stored at −20 ◦C before use.

2.2. Cell Viability Assay

MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used
to determine cell viability [11]. Firstly, Cells were seeded in 96-well plates at density of 1
× 104 cells/well overnight. Culture medium with 5‰ DMSO was used as control group
(elaiophylin, 0 µM). For MTT assay, cells were incubated with 5 mg/mL MTT solution
for 4 h at 37 ◦C. Following that, 150 µL of DMSO was added to each well and the plates
were mixed on an orbital shaker for 10 min at room temperature. The absorbance was
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measured at 490 nm using a SpectraMaxM5 microplate reader (Molecular Devices, San
Jose, CA, USA).

2.3. Colony Formation Assay

A colony formation assay was adopted to assess reproductive cell death. Cells were
seeded into 6-well plates and cultured for 14 days in a humidified atmosphere of 5% CO2
at 37 ◦C. Elaiophylin treatment was applied every 3 days. Cells were then fixed in 4%
paraformaldehyde (Beyotime, Nantong, China) for 15 min at room temperature. After
washing with PBS three times, cell colonies were stained with crystal violet for 15 min
at room temperature followed by washing with PBS three times. Upon air drying the
plates, the number of colonies was counted using an inverted phase contrast microscope
(Olympus IX53, Tokyo, Japan).

2.4. Cell Apoptosis Assay

Cell apoptosis was measured with AnnexinV-FITC/PI double staining detection kit
(Absin, Shanghai, China). After indicated treatment, cells were incubated with 300 µL
binding buffer (containing 10 µL Annexin V-FITC and 10 µL PI) for 15 min in the dark at
room temperature. The samples were analyzed with flow cytometry (Becton-Dickinson,
San Jose, CA, USA) immediately and data were analyzed using FlowJo software (Becton-
Dickinson, CA, USA).

2.5. Detection of Intracellular ROS

Intracellular ROS production was detected by DCFH-DA kit (Beyotime, Nantong,
China). DCFH-DA is a cellular infiltrating and non-fluorescent dye that can react with
the carboxy dichlorofluorescein produced by ROS and generate fluoresce signals. After
indicated treatment, cells were incubated with DCFH-DA (10 µM) for 30 min in the dark
at 37 ◦C. After washing twice with D-PBS, the signal was detected using a fluorescence
microscope (Olympus IX53, Olympus Corporation, Tokyo, Japan).

2.6. Detection of Mitochondrial ROS

Mitochondrial ROS production was detected by Mitosox mitochondrial superoxide
indicator (Warbio, Nanjing, China). After indicated treatment, cells were incubated with
Mitosox (10 µM) for 30 min in the dark at 37 ◦C. After washing twice with D-PBS, the
signaling was detected with a fluorescence microscope.

2.7. Mitochondrial Isolation

Mitochondria was isolated from A549 cells with the Cell Mitochondria Isolation Kit
(Beyotime, Nantong, China) according to the manufacturer’s instructions. In brief, cells
were collected and resuspended in ice-cold PBS and centrifuged (600 g, 5 min, 4 ◦C). Then,
cells were resuspended in mitochondrial isolation buffer on ice for 15 min. Cells were then
homogenized and the homogenate was centrifuged (600× g, 10 min, 4 ◦C). The supernatant
was transferred to another tube and centrifuged (11,000× g, 10 min, 4 ◦C). The supernatant
was carefully removed, and the pellet was resuspended with 150 µL of mitochondria
storage buffer. The samples were either used immediately or stored at −80 ◦C [12].

2.8. Mitochondrial Membrane Potential Assessment

Mitochondrial membrane potential (MMP) was measured by Rhodamine 123 (Rh123)
staining (Beyotime, Nantong, China). Rh123 can selectively enter the mitochondria at full
membrane potential and remain in the mitochondria [13,14]. After indicated treatment,
cells were incubated with 5 µg/mL Rh123 at 37 ◦C for 30 min in the dark. The samples
were immediately analyzed at excitation wavelength of 507 nm and emission wavelength
of 529 nm using a fluorescence microscope.
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2.9. Mito-Keima Mitophagy Analysis

Cells were transfected with the mKeima-Red-Mito-7 plasmid using Lipofectamine
3000. After 24 h, cells were treated with different concentrations of elaiophylin for another
24 h. The cells were then imaged using a fluorescence microscope.

2.10. Immunofluorescent Assay

After indicated treatment, cells were cultured on glass coverslips for 24 h, fixed with
4% paraformaldehyde (PFA), and blocked with 5% bovine serum albumin (BSA) in PBS
containing 0.4% Triton X-100. Subsequently, the cells were co-incubated with MitoTracker
Green and primary antibodies at 4 ◦C overnight. Upon washing with PBS three times, cells
were incubated with the fluorescent secondary antibody for 1 h at room temperature. After
staining with DAPI for 5 min at room temperature, samples were washed with PBS for
three times and mounted for visualization. The fluorescence signal was observed with a
fluorescence microscope.

2.11. Proteomics and Bioinformatics Analysis

Cells treated with or without elaiophylin (0.25 µM, 24 h) were lysed in RIPA lysis
buffer supplied with proteinase inhibitor cocktail. Protein concentration was measured
using the BCA protein assay kit (Beyotime, Nantong, China) and protein samples were
separated via sodium-dodecyl sulfate poly-acrylamide (SDS)-PAGE gel. Gels were stained
with Coomassie brilliant blue staining (10% (w/v) ammonium sulfate, 1% (v/v) phosphoric
acid, 0.1% (w/v) Coomassie blue) overnight. After that, gels were socked in the decolorizing
solution (milli-Q water) for 6–8 h until a clear background was observed. The peptides
were first diluted with 5 µL of diluted trypsin (diluted 0.1 mg/mL stock trypsin 1:10 into
25 mM ammonium bicarbonate) and then extracted twice by 15–25 µL of 50% acetonitrile,
5% trifluoroacetic acid (TFA) to each tube containing gel slice for 15 min as described in the
literature [15]. Subsequently, the digested peptides were detected by mass spectrometry.
The liquid phase was analyzed by EASY-nLC 1000 nano-upgraded ultra-high performance
liquid chromatograph (Thermo Fisher, Waltham, MA, USA). The mobile phase A contains
0.1% formic acid aqueous solution, and the mobile phase B is MS grade acetonitrile. The
SEQUEST algorithm of Proteome Discoverer 1.4 software (Thermo Fisher, MA, USA) was
used for database retrieval. The DAVID, KOBAS, STRING databases, and Cytoscape
software were adopted for GO function, KEGG pathway, and protein–protein interaction
(PPI) analysis. The raw data have been uploaded to Sequence Read Archive (SRA) database
(PRJNA898634).

2.12. Computational Docking Study

The binding effect of elaiophylin on SIRT1 allosteric site was predicted by molec-
ular docking study. The ligand molecular structure was optimized using Gaussian 16
at the B3LYP/6-31G level. The crystal structure of the SIRT1 catalytic domain bound
to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analog) (4I5I) was
acquired from protein database and then the molecules of water, NAD+, and EX527 ana-
log in the crystal structure were removed using PyMOL software (https://pymol.org/2/
(accessed on 14 December 2021)). AutoDock Tools V.1.5.6 (http://autodock.scripps.edu
(accessed on 16 December 2021)) was used to prepare the ligand and receptor as a PDBQT
file [16,17]. The scoring matrix of this program adopts the default setting of AutoDock Vina
1.1.2 as random. Grid boxes with sizes of 28x, 36y, and 30z were set around the residues
formed at the allosteric site of SIRT1 with centers at −43.326x, −19.256, and 20.249z, re-
spectively. In the study, the ligand remained flexible, allowing all bonds to rotate freely,
while the receptor was considered rigid. The results were analyzed according to docking
score/binding energy and visualized using PyMOL software.

https://pymol.org/2/
http://autodock.scripps.edu
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2.13. Western Blot Analysis

Cells after treatment were collected and dissolved in RIPA buffer (Beyotime, Nantong,
China) and protein concentration was measured using the BCA protein assay kit. A total
of 50 µg protein in each sample was isolated by 15% SDS-PAGE and then imprinted on
PVDF membrane (Beyotime, Nantong, China). The membrane was blocked and incubated
with primary antibodies overnight at 4 ◦C. The blots were incubated with HRP-conjugated
secondary antibody at room temperature for 1 h on the next day. The ECL assay kit
(Beyotime, Nantong, China) was used to reveal the protein bands. The density of each band
was normalized to the expression of GADPH (Cat. No: ab8245, Abcam, Cambridge, MA,
USA) or VDAC1 (Cat. No. ab15895, Abcam). The other primary antibodies used include
Cytochrome c (Cat. No: ab13575, Abcam), SIRT1 (Cat. No. ab110304, Abcam), SIRT3 (Cat.
No. ab217319, Abcam), LC3B (Cat. No. ab192890, Abcam), PINK1 (Cat. No. ab23707,
Abcam), Parkin (Cat. No: ab77924, Abcam), Nrf2 (Cat. No. ab137550, Abcam), Nrf2
(Acetyl-Lys599) (Cat. No. HW147, Signalway Antibody, Nanjing, China). All experiments
were repeated three times, and the gray values were quantified using Image J software
(version 1.8.0 for Windows, National Institutes of Health, NY, USA).

2.14. Cell Transfection

The SIRT1 expression vector pcDNA3.1-SIRT1 and Nrf2 expression vector pcDNA3.1-
Nrf2 were purchased from GenePharma (Shanghai, China). The SIRT1 siRNA was pur-
chased from Santa Cruz Biotechnology (sc-40986, Dallas, TX, USA). Cells were seeded in
96-well plates (1 × 104 cells/well) or 6-well plates (1 × 105 cells/well) and transfected
with empty or expression vector (1 µg/mL) or siRNA (50 nM) using Lipofectamine 2000
reagent (Invitrogen, Carlsbad, CA, USA) at 37 ◦C according to the manufacturer’s in-
struction. Forty-eight hours later, Western blot analysis was performed to examine the
efficiency of transfection. Then, after transfection for 48 h, cells could be used for the
subsequent experiments.

2.15. Dual-Luciferase Reporter Assay

Dual-luciferase report assay was conducted to assess the transcriptional activity of
Nrf2. The human PINK1 ARE (5′-TGCTTGAGC-3′) and HMOX1 ARE (5′-CGGACCTTGAC
TCAGCAGAAAA-3′) were, respectively, inserted into the pGL3 vector (Promega, Madison,
WI, USA) by Genepharma (Shanghai, China). The plasmid pRL-TK encoding Renilla
luciferase was used as an internal control. Then, cells were co-transfected with pGL3 vector,
pcDNA3.1-Nrf2, or internal control plasmid (pcDNA3.1-vector) by Lipofectamine 2000
reagent (Invitrogen, CA, USA) at 37 ◦C according to the manufacturer’s instruction in A549
cells. Additionally, the luciferase assay was performed 48 h after transfection using the
Firefly/Renilla Dual-Luciferase Reporter Assay System (Promega, WI, USA) [18–20].

2.16. SIRT1 Enzyme Activity Assay

SIRT1 enzymatic activity was assessed by using commercial kits (ab156065) from
Abcam plc. (Cambridge, UK) in accordance with the manufacturer’s instructions. First,
assay buffer (50 mM TRIS-HCl, pH 8.0, 137 mM sodium chloride, 2.7 mM potassium
chloride, 1 mM magnesium chloride, 1 mg/mL bovine serum albumin), SIRT1 enzyme,
and either solvent (DMF) or different concentrations of elaiophylin were mixed with the
co-substrate (NAD) for 45 min. Thereafter, the stop/developing solutions, containing
a mixture of a developer, were added to the microplate and incubated for 30 min at
25 ◦C. The deacetylated peptide reacts with the developer and releases a fluorophore. The
fluorophores in both assays were analyzed at an excitation wavelength of 350 nm and an
emission wavelength of 450 nm. The inhibitory percentage of the samples on the SIRT1
enzyme activity was calculated as the ratio of fluorescent intensity between samples and
vehicle control [21].
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2.17. Nude Mice Tumorigenesis Assay

Animal studies were approved by the Laboratory Animal Ethics Committee of Jiangsu
Institute of Nuclear Medicine (Wuxi, China). Luc-A549 cells (5 × 106) were dissolved
in the normal saline and then mixed with Matrigel at a 2:1 volume ratio. The mixture
was injected subcutaneously (the right side of the hips) into 5-week-old BALB/c nude
mice (Cavens Laboratory Animal Co., Ltd., Changzhou, China). When the tumor volumes
reached approximately 100 mm3, the mice were divided randomly into two groups (n = 5
per group). The mice were then administered with vehicle or elaiophylin (2 mg/kg) by
intraperitoneal injection once daily for 14 days. Body weight and tumor volumes were
measured every other day. At the end of the treatment, each mouse was injected with
15 mg/mL luciferase potassium and then 4% chloral hydrate intraperitoneally. Fluorescence
imaging was conducted using noninvasive bioluminescence in vivo imaging system (IVIS
Spectrum, PerkinElmer, Shelton, CT, USA). After imaging, the tumors were removed,
weighed, and photographed.

2.18. Histology and Immunohistochemistry

Tumor tissues were surgically isolated from each mouse and fixed in formalin, em-
bedded in paraffin, and then sectioned. The sections were processed for H&E, Ki67, or
TUNEL staining. For immunohistochemical staining, the sections were incubated with
SIRT1 antibody overnight at 4 ◦C and then with HRP-conjugated secondary antibody
for 2 h at room temperature. The sections were visualized using a DAB kit (Beyotime,
Nantong, China), and the images were observed using a light microscope (Olympus IX53,
Tokyo, Japan).

2.19. Statistical Analysis

IBM SPSS (version 19.0 for Windows, NY, USA) package was used to analyze the data.
All data were presented as the mean ± SD for a minimum of three independent experi-
ments and triplicates in each experiment. Statistical comparisons were conducted with the
Student’s t-test between two groups and a one-way ANOVA followed by Tukey’s post hoc
test among three groups. A value of p < 0.05 was considered as statistically significant.

3. Results
3.1. Elaiophylin Inhibits Cell Viability and Induces Cell Apoptosis in A549 Cells

The chemical structure of elaiophylin is shown in Figure 1A. MTT and colony for-
mation assays were used to investigate the cytotoxic effect of elaiophylin in human lung
adenocarcinoma cells (A549, H1975, Calu-3). As shown in Figure 1B, elaiophylin treatment
for 24 h dose-dependently inhibited cell viability of all three lung adenocarcinoma cell
lines, but it had minimal cytotoxic effect on human fibroblast cell MRC-5. Among the three
cell lines, A549 cells as the most commonly used cell line in LADC study, showed the most
pronounced respond to elaiophylin, so which were selected for the subsequent experiments.
It has been estimated that the IC50 of elaiophylin was 248.8 nM in A549 cells (data now
shown). In addition, consistent results were obtained using colony formation assay in A549
cells (Figure 1C) and then it was selected for the subsequent mechanistic study. Further cell
apoptotic analysis was performed using flow cytometry, in which results indicated that
elaiophylin treatment for 24 h significantly induced an increased apoptosis of A549 cells
(Figure 1D).

3.2. Elaiophylin Induces Intracellular and Mitochondrial ROS Production in A549 Cells

It is well known that mitochondrial damage induces the release of reactive oxygen
species, which promotes cell death. To assess the oxidative stress induced by elaiophylin,
intracellular and mitochondrial ROS production were measured. As shown in Figure 2A,B,
elaiophylin treatment for 3 h dose-dependently induced upregulation of both intracel-
lular and mitochondrial ROS levels. According to the literature [22,23], the increase in
superoxide-rich mitochondria may be the main cause of the production of damaged mito-
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chondria. As shown in Figure 2C, mitochondrial damage was associated with the transfer
of Cytochrome C from the mitochondria to the cytoplasm. In addition, the pre-treatment of
an antioxidant agent NAC (N-acetyl-L-cysteine, 10 µM) significantly attenuated oxidative
stress in A549 cells upon elaiophylin treatment (Figure 2D–F).
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Figure 1. Elaiophylin inhibits cell viability and induces cell apoptosis in A549 cells. (A) The chemical
structure of elaiophylin. (B) A549, H1975 ,Calu-3 and MRC-5 cells were treated with elaiophylin
(ranged from 0 to 2 µM) for 24 h, and cell viability was determined by MTT assay. (C) A549
monoclonal cells were treated with elaiophylin for 24 h and then continuously cultured for 14 days.
The formation of colonies was determined by crystal violet staining. (D) A549 cells were treated
with elaiophylin (0, 0.25 and 0.5 µM) for 24 h, and cell apoptosis was determined by Annexin V/PI
staining using flow cytometry. Apoptotic cell proportions were showed in bars. Data was expressed
as means ± SD of three independent experiments and each experiment included triplicated repeats.
* p < 0.05, ** p < 0.01 vs. control.

3.3. Elaiophylin Inhibits Mitophagy and Induces Mitochondrial Dysfunction in A549 Cells

To investigate the effect of elaiophylin on autophagy, the expressions of autophagy-
related proteins LC3B and SQSTM1 (p62) were assessed. As shown in Figure 3A, elaiophylin
treatment for 24 h significantly increased the change in LC3B and SQSTM1 (p62), which was
consistent with the previous reports [6,7]. Mitophagy is a special type of autophagy that acts
as a protective mechanism to remove excessive ROS generated by mitochondria. As shown
in Figure 3B, 0.5 µM elaiophylin treatment for 24 h significantly decreased the expressions
of PINK1 and Parkin (mitophagy markers). To further explore whether cytotoxicity induced
by elaiophylin was associated with mitophagy inhibition, the Mito-Keima assay was used
to analyze A549 cells transfected with mKeima-Red-Mito-7 plasmid. FCCP (an activator
of mitophagy) was used as a positive control in this assay. As shown in Figure 3C,D,
elaiophylin treatment for 24 h significantly reduced the fluorescence intensity in A549
cells, which suggested mitophagy suppression. To assess whether elaiophylin affected
the fusion of autophagosomes in the mitochondria with lysosomes, the co-localization
of mitochondrial (MitoTracker Green) and lysosomal (LAMP1) markers were analyzed.
As shown in Figure 3E, elaiophylin treatment for 24 h significantly inhibited mitophagy
in A549 cells with a reduced co-localization of mitochondria and lysosomes. Elaiophylin
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treatment for 24 h also significantly reduced the mitochondrial membrane potential in A549
cells as to rhodamine 123 staining (green fluorescence) assay (Figure 3F).

Cancers 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 2. Elaiophylin induces intracellular and mitochondrial ROS in A549 cells. A549 cells were 

exposed to elaiophylin for 3 h with or without pre-treatment with NAC (10 µM) for 6 h. (A,B,D,E) 

Intracellular ROS level detection was assessed using DCFH-DA fluorescence probe; while mito-

chondrial ROS level detection was assessed using Mitosox red mitochondrial superoxide probe. 

(C,F) Cytochrome C translocation was determined by Western blot analysis. GAPDH and VADC1 

were used as reference proteins in cytoplasm and mitochondria, respectively. Data were expressed 

as means ± SD of three experiments and each experiment included triplicated repeats. * p < 0.05, ** 

p < 0.01 vs. control, ## p < 0.01 vs. Elaiophylin group. Original Western Blots can be found at Supple-

mentary Materials. 

3.3. Elaiophylin Inhibits Mitophagy and Induces Mitochondrial Dysfunction in A549 Cells 

To investigate the effect of elaiophylin on autophagy, the expressions of autophagy-

related proteins LC3B and SQSTM1 (p62) were assessed. As shown in Figure 3A, elaiophy-
lin treatment for 24 h significantly increased the change in LC3B and SQSTM1 (p62), which 

was consistent with the previous reports [6,7]. Mitophagy is a special type of autophagy 

that acts as a protective mechanism to remove excessive ROS generated by mitochondria. 

As shown in Figure 3B, 0.5 µM elaiophylin treatment for 24 h significantly decreased the 

expressions of PINK1 and Parkin (mitophagy markers). To further explore whether cyto-
toxicity induced by elaiophylin was associated with mitophagy inhibition, the Mito-

Keima assay was used to analyze A549 cells transfected with mKeima-Red-Mito-7 plas-

mid. FCCP (an activator of mitophagy) was used as a positive control in this assay. As 

shown in Figure 3C,D, elaiophylin treatment for 24 h significantly reduced the fluores-

cence intensity in A549 cells, which suggested mitophagy suppression. To assess whether 

elaiophylin affected the fusion of autophagosomes in the mitochondria with lysosomes, 

the co-localization of mitochondrial (MitoTracker Green) and lysosomal (LAMP1) mark-

ers were analyzed. As shown in Figure 3E, elaiophylin treatment for 24 h significantly 

inhibited mitophagy in A549 cells with a reduced co-localization of mitochondria and ly-

sosomes. Elaiophylin treatment for 24 h also significantly reduced the mitochondrial 

membrane potential in A549 cells as to rhodamine 123 staining (green fluorescence) assay 

(Figure 3F). 

Figure 2. Elaiophylin induces intracellular and mitochondrial ROS in A549 cells. A549 cells were ex-
posed to elaiophylin for 3 h with or without pre-treatment with NAC (10 µM) for 6 h. (A,B,D,E) Intra-
cellular ROS level detection was assessed using DCFH-DA fluorescence probe; while mitochondrial
ROS level detection was assessed using Mitosox red mitochondrial superoxide probe. (C,F) Cy-
tochrome C translocation was determined by Western blot analysis. GAPDH and VADC1 were used
as reference proteins in cytoplasm and mitochondria, respectively. Data were expressed as means ± SD
of three experiments and each experiment included triplicated repeats. ** p < 0.01 vs. control, ## p < 0.01
vs. Elaiophylin group. Original Western Blots can be found at Supplementary Materials.

3.4. Proteomic Analysis and Molecular Docking for Target Prediction of Elaiophylin in A549 Cells

Proteomic analysis and molecular docking were used for target prediction of elaio-
phylin in A549 cells. As shown in Figure 4A, there were 109 differentially expressed
proteins between groups treated with or without elaiophylin, among which 17 proteins
were upregulated, and 92 proteins were downregulated. However, as in KEGG and GO
analysis, the autophagic pathway was slightly affected by elaiophylin treatment (Figure S1).
Our previous study found that sirtuins-related proteins (SIRTs) are the molecular targets
of elaiophylin in human uveal melanoma cells [8]. As to the result of proteomic analysis,
SIRT4 and SIRT6 were not expressed, while SIRT1 expression was the highest and it was
mostly affected by elaiophylin among all the seven SIRT isoforms (Figure 4B). In addi-
tion, PPI analysis showed that SIRT1 was a key molecule (Figure 4C). Molecular docking
was further used to investigate whether elaiophylin is directly bound to the active site
of SIRT1. As shown in Figure 4D, elaiophylin (purple sticks) was positioned out of the
hydrophobic pocket, while competitively bound to the active binding site of nicotinamide
adenine dinucleotide (NAD+, yellow sticks) in SIRT1 with the predicted binding affinity
of −7.6 kcal/mol. Based on the above results, SIRT1 was likely to be the direct target of
elaiophylin, which was further investigated in the subsequent mechanical experiments.
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Figure 3. Elaiophylin inhibits mitophagy and induces mitochondrial dysfunction in A549 cells.
A549 cells were exposed to elaiophylin or FCCP (a mitophagy agonist) for 24 h. (A) The expression
of autophagy-related proteins (LC3B and SQSTM1 (p62)) was assessed by Western blot analysis.
(B) The expressions of mitophagy-related proteins (PINK1 and Parkin) were assessed by Western
blot analysis. (C,D) A549 cells overexpressing Mito-Keima plasmid were treated with elaiophylin for
24 h. Mito-Keima (red fluorescence) was detected by a fluorescence microscope. FCCP, a mitophagy
agonist, was used as a positive control. (E) Co-localization of mitochondria and lysosomes was
assessed by MitoTracker (200 nM) and LAMP1 co-staining. (F) Mitochondrial membrane potential
was assessed by rhodamine 123 staining. Data were expressed as means ± SD of three experiments
and each experiment included triplicated repeats. * p < 0.05, ** p < 0.01 vs. control. Original Western
Blots can be found at supplementary materials.

3.5. Elaiophylin Inhibits Mitophagy by Regulating SIRT1/Nrf2 Signaling in A549 Cells

SIRT1 has been shown to be associated with oxidative stress [24,25]; thus, its involve-
ment in the anti-mitophagy effect of elaiophylin was further investigated. As shown in
Figure 5A, elaiophylin treatment for 24 h significantly downregulated the expressions of
SIRT1 and SIRT3. The downregulation of SIRT1 was more obviously compared to SIRT3,
and then SIRT1 was selected as the target for the subsequent experiments. Furthermore,
cells overexpressing SIRT1 were treated with elaiophylin, and the deacetylase activity of
SIRT1 was assessed. As shown in Figure 5B,C, SIRT1 activity was inhibited by elaiophylin
treatment for 24 h, which in turn was reversed by a SIRT1 agonist (SRT1720). Nuclear
factor-erythrocyte 2-associated factor 2 (Nrf2), an essential downstream target of SIRT1,
is an important antioxidant sensor in the cellular defense mechanism [26,27]. As shown
in Figure 5D–F, elaiophylin treatment for 24 h significantly inhibited Nrf2 deacetylation,
downregulated Nrf2 expression in A549 cells, and reduced transcriptional activity of Nrf2
in Nrf2 overexpressed A549 cells; however, SIRT1 knockdown showed no effect on the ex-
pression of Nrf2 in cells with elaiophylin treatment. In addition, Nrf2 was more abundantly
detected in the cytoplasm than in the nucleus upon elaiophylin treatment, indicating its
deactivation. SIRT1 overexpression plus the pre-treatment of SRT1720 effectively attenu-
ated the above effect (Figure 5G). All these observations suggested that elaiophylin impacts
Nrf2 in a SIRT1-dependent manner.
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Figure 4. Proteomic analysis and molecular docking for target prediction of elaiophylin in A549
cells. (A) Volcano plots of differentially expressed proteins. (B) Heatmap analysis of SIRTs between
elaiophylin treated group (0.25 µM) and control group. C: controls, T: treatment. (C) PPI network
for the SIRTs. (D) Computational docking of elaiophylin and SIRT1 protein. NAD+: yellow sticks;
elaiophylin: purple sticks.

3.6. Activation of SIRT1/Nrf2 Signaling Attenuates the Anti-Mitophagy Effect of Elaiophylin in
A549 Cells

The subsequent studies were performed to further confirm that elaiophylin directly
targets SIRT1/Nrf2 signaling in A549 cells. The cells were divided into three groups:
elaiophylin, elaiophylin+SIRT1 activation (SIRT1 overexpression plus SRT1720), elaio-
phylin+Nrf2 activation (Nrf2 overexpression plus DMF, an agonist of Nrf2). As shown
in Figure 6A–C, activation of SIRT1/Nrf2 signaling significantly attenuated the anti-
mitophagy effect of elaiophylin via increasing the expression of PINK1 and Parkin (mi-
tophagy markers), enhancing the fluorescence intensity as shown in Mito-Keima mitophagy
analysis and accelerating the fusion of autophagosome in the mitochondria with lysosomes.
Additionally, Figure 7A–C showed that the activation of SIRT1/Nrf2 signaling also sig-
nificantly reduced the intracellular and mitochondrial ROS and attenuated mitochondrial
dysfunction upon elaiophylin treatment in A549 cells. In addition, SIRT1 overexpression
only had no effect on mitophagy, ROS generation, and mitochondrial function.
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Figure 5. Elaiophylin inhibits mitophagy by regulating SIRT1/Nrf2 signaling in A549 cells. (A) A549
cells were exposed to elaiophylin (0.5 µM) for 24 h and the expression of SIRT1 and SIRT3 were
assessed by Western blot analysis. (B) SIRT1 was overexpressed in A549 cells. (C) A549 cells
overexpressing SIRT1 were pre-treated with or without SRT1720 (2.5 µM) for 24 h and exposed
to elaiophylin (0.5 µM) for 24 h. The activity of SIRT1 was assessed by SIRT1 activity assay. (D)
A549 cells with SIRT1 overexpression were pre-treated with or without SRT1720 (2.5 µM) for 24
h and exposed to elaiophylin (0.5 µM) for 24 h. The expressions of Nrf2 and Acetyl-Nrf2 were
assessed by Western blot analysis. (E) A549 cells with or without SIRT1 knockdown were exposed to
elaiophylin (0.5 µM) for 24 h. The expression of Nrf2 was assessed by Western blot analysis. * p < 0.05,
** p < 0.01 vs. control, ## p < 0.01 vs. elaiophylin group. (F) The transcriptional activity of Nrf2 was
assessed by dual-luciferase reporter assay. ** p < 0.01 vs. control, ## p < 0.01 vs. A549 cells with
Nrf2 overexpression group. ˆˆ p < 0.01 vs. elaiophylin+pcDNA-Nrf2 group. (G) Localization of
Nrf2 was assessed by immunofluorescence staining. Data were expressed as means ±SD of three
experiments and each experiment included triplicated repeats. Original Western Blots can be found
at supplementary materials.

3.7. Elaiophylin Suppresses Tumor Growth in a A549-Xenograft Model by Inhibiting SIRT1

To investigate the in vivo effect of elaiophylin, the luc-A549 xenograft tumor model
was intraperitoneally injected with elaiophylin (2 mg/kg) or vehicle for 14 consecutive
days. Tumor volume and body weight were monitored every other day. The tumor volume
in the elaiophylin treatment group was significantly smaller than that of the control group
(Figure 8A); however, no significant changes in body weight were observed (Figure 8B).
Fluorescein potassium salt injection was adopted for in vivo fluorescence imaging. As
shown in Figure 8C,D, the fluorescence intensity of the elaiophylin treatment group was
remarkably decreased. H&E staining showed that more inflammatory and necrotic cells
were observed in the elaiophylin treatment group. Elaiophylin treatment significantly
increased TUNEL-positive cells (brown color) and decreased proliferation-related indicator
Ki67 (brown color). Importantly, elaiophylin significantly decreased the level of SIRT1 in
in vivo models, which is consistent with our in vitro findings (Figure 8E).
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Figure 6. Activation of SIRT1/Nrf2 signaling attenuates the anti-mitophagy effect of elaiophylin
in A549 cells. The cells were divided into six groups: control, SIRT1 overexpression only, Nrf2
overexpression only, elaiophylin, elaiophylin+SIRT1 activation (SIRT1 overexpression plus SRT1720),
elaiophylin+Nrf2 activation (Nrf2 overexpression plus DMF). (A) The expressions of mitophagy-
related proteins PINK1 and Parkin were assessed by Western blot analysis. (B) Cells overexpressing
Mito-Keima were treated with elaiophylin for 24 h. Mito-Keima (red fluorescence) was assessed by a
fluorescence microscope. FCCP, a mitophagy stimulant, was used as a positive control. (C) Colocal-
ization of mitochondria and lysosomes was assessed by MitoTracker (200 nM) and LAMP1 staining.
Data were expressed as mean ± SD of three experiments. ** p < 0.01 vs. control, ## p < 0.01 vs.
elaiophylin group. Original Western Blots can be found at supplementary materials.
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Figure 7. Activation of SIRT1/Nrf2 signaling attenuates the antioxidant effect of elaiophylin in
A549 cells. The cells were divided into six groups: control, SIRT1 overexpression only, Nrf2 over-
expression only, elaiophylin, elaiophylin+SIRT1 activation (SIRT1 overexpression plus SRT1720),
elaiophylin+Nrf2 activation (Nrf2 overexpression plus DMF). (A,B) Intracellular ROS level was
assessed using DCFH-DA fluorescence probe, and mitochondrial ROS level was evaluated using
Mitosox Red fluorescence probe. (C) Mitochondrial membrane potential was assessed by rhodamine
123 staining. Data were expressed as mean ± SD of three experiments. ** p < 0.01 vs. control,
## p < 0.01 vs. elaiophylin group.Cancers 2022, 14, x FOR PEER REVIEW 14 of 19 
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Figure 8. Elaiophylin suppresses tumor growth in an A549-xenograft model by inhibiting SIRT1.
(A) After the elaiophylin treatment, the subcutaneous graft tumor was stripped and measured (n = 5).
The image of tumor samples was shown on the left, and the volume change measured was shown
on the right. (B) The weight changes in subcutaneously transplanted tumor mice with or without
elaiophylin treatment were recorded. (C) In vivo fluorescence imaging of luc-A549 subcutaneous
grafted tumors after fluorescein potassium injection. (D) The statistical analysis of fluorescence inten-
sity in (C). (E) H&E staining of tumor sections of Luc-A549-xenograft mice treated with or without
elaiophylin (the left panel). TUNEL assay (left middle panel) and immunohistochemistry staining
of Ki67 (right middle panel) and SIRT1 staining (right panel) were conducted on tumor sections of
Luc-A549-xenograft mice treated with or without elaiophylin. Data were expressed as means ± SD
of three experiments and each experiment included triplicated repeats. ** p < 0.01 vs. control.
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4. Discussion

Mitophagy is a special type of autophagy, which plays a cellular protective role by
clearing damaged mitochondria and reducing reactive oxygen species [28,29]. Mitophagy-
mediated elimination of mitochondria is involved in many cellular processes including early
embryonic development, cell differentiation, and apoptosis [30]. Accumulating evidence
indicated that mitophagy functions and maintains health throughout life. Mitophagy
defects are associated with various pathological processes such as neurodegeneration, heart
failure, cancer, and aging [31]. Currently, there are limited reports about the relationship
between mitophagy and LADC. Chang et al. have reported that high PINK1 expression (a
marker of mitophagy) is an independent prognostic factor of LADC, which is correlated
with poor response to chemotherapy [32]. In this study, we reported that mitophagy
inhibition by elaiophylin could induce intracellular and mitochondrial ROS and suppress
cell viability in in vitro and in vivo models of LADC. In addition, elaiophylin showed
a slightly cytotoxic effect on human lung fibroblasts (MRC5), which were often used to
evaluate the safety of anticarcinogen [33–35].

The Sirtuins family is a class of NAD+-dependent deacetylases that participates in
a large number of important redox reactions, such as gluconeogenesis, glycolysis, tricar-
boxylic acid cycle, oxidative respiratory chain, etc. [36]. The dysregulation of the Sirtuins
family plays an important role in various human prevalent diseases such as tumors, car-
diovascular diseases, neuronal diseases, liver diseases, inflammation, and aging [32,37].
Sirtuins are known to control autophagy and mitophagy in cancers by acting on tran-
scription factors or proteins related to autophagy and mitophagy mechanisms [38]. It is
shown that increased ROS production occurs when cells are under stress. Additionally,
the co-enzyme NAD activates sirtuins and regulates the activity of antioxidant reactive
elements (AREs), which in turn regulates transcription of pro- and antioxidant genes to
maintain redox cascades [39,40]. As for the previous literature, sirtuins have been linked to
the control of autophagy and mitophagy by modulating transcription of autophagy and
mitophagy genes, by post-translational modification of proteins belonging to the autophagy
and mitophagy machinery [38]. Then, we put focus on the involvement of sirtuins in the
elaiophylin’s anti-mitophagy effect and found that SIRT1 was the significantly regulated
protein among sirtuins by proteomic assay and Western blot analysis. SIRT1, one of the most
extensively and thoroughly studied sirtuins family proteins, is a key player in maintaining
homeostasis against DNA damage, aging, and apoptosis under oxidative stress [39]. Then,
molecular docking further clarified that SIRT1 might be the direct target of elaiophylin.
Further analysis revealed that elaiophylin impacted the expression and deacetylase activity
of SIRT1. Mitophagy relies heavily on two factors: the PTEN-induced putative kinase 1
(PINK1) and E3 ubiquitin ligase Parkin [41,42]. These proteins are responsible for sensing
the function and health status of mitochondria and selecting damaged mitochondria for
autophagy processing [43]. The link between SIRT1 and mitophagy was first demonstrated
by Hwang’s group. They found that nicotinamide significantly extended the replication
life of primary human fibroblasts by accelerating mitophagy degradation [44]. It was also
shown that niacinamide-induced mitophagy is mediated by increased NAD+/NADH ratio
and SIRT1 activation, and the SIRT1 activator SRT1720 can be used to mimic nicotinamide-
induced mitochondrial phenotype [45]. Nowadays, more and more studies have evidenced
that SIRT1 participates in the PINK1-Parkin labeled mitophagy process to regulate cellular
oxidative stress, which may have therapeutic values [46–49]. To present, several studies
reported that SIRT1 overexpression promotes the occurrence of LADC, which is closely
related to its invasion and metastasis leading to poor prognosis [50–52]. Consistently, the
current study indicated that elaiophylin increased the accumulation of autophagy surface
marker protein LC3B and SQSTM1 (p62), decreased the expressions of PINK1 and Parkin,
and inhibited the fusion of autophagosome in the mitochondria with lysosomes. However,
SIRT1 overexpression only in A549 cells has no effect on the mitophagy. Meanwhile, SIRT1
overexpression plus SIRT1 activator SRT1720 treatment significantly attenuated the cellular
effect of elaiophylin, indicating elaiophylin may exert its anti-mitophagy effect via regu-
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lating SIRT1 signaling. Future studies will investigate whether elaiophylin directly binds
with SIRT1, probably using the SPR (surface plasmon resonance) method.

As a NAD-dependent deacetylase, SIRT1 regulates downstream cellular pathways in
relation to oxidative stress by deacetylating various transcription factors to maintain cell
survival [53,54]. Previous studies have observed that the SIRT1/Nrf2 signaling pathway is
associated with various cellular responses related to oxidative stress [55,56]. Recently, it has
been reported that Nrf2 is an important downstream target of SIRT1. Nrf2 is known to be
an important antioxidant sensor in cellular defense mechanisms, responding to oxidative
damage [57,58]. In normal cells, activation of NRF2 helps prevent the initiation of cancer by
chemical carcinogens; however, in many tumor types, NRF2 is permanently upregulated
and its overexpressed target genes support the promotion and progression of cancer by
suppressing oxidative stress [59]. Activation of Nrf2 has also been shown to protect cells
from oxidative damage induced by electrophilic compounds [60]. Once Nrf2 is activated
by electrophilic compounds, it translocates to the nucleus and binds to the electrophilic
response element (ERE), which further regulates the proteins involved in electrophilic
detoxification and elimination, thereby enhancing the cell’s antioxidant capacity [61]. It
was noticed that SIRT1 significantly enhanced Nrf2 pathway activity and inhibited ROS
overproduction by decreasing the expression of heme oxygenase 1(HO-1) to facilitate Nrf2
translocating to the cytoplasm [56,60]. A large number of studies have found that Nrf2 is
highly expressed in A549 cells. Targeting Nrf2 activity can inhibit the growth of LADC and
eliminate the resistance to chemotherapy [62–64]. In this study, we found that elaiophylin
inhibited the deacetylation of Nrf2, leading to reduced stability of Nrf2 by promoting Nrf2
entering the cytoplasm. In addition, the reduced expression and transcriptional activity
of Nrf2 were in a SIRT1-dependent manner. However, Nrf2 overexpression only in A549
cells has no effect on mitophagy. In addition, Nrf2 overexpression plus Nrf2 activator DMF
treatment could significantly attenuate the anti-mitophagy effect of elaiophylin. Compared
to the previous study in UM, we found that SIRT1 was the direct target of elaiophylin by
molecular docking and the SIRT1-Nrf2 pathway was activated in regulating mitophagy
upon elaiophylin, which was not consistent with the previous study. However, there are
still some limitations to this study. First, surface plasmon resonance or other methods need
to be conducted to confirm the direct interaction of elaiophylin and SIRT1, and then an
orthotopic transplanted mouse model needs to be constructed in the further study which is
closer to the environment of the tumor.

Overall, our data suggested that elaiophylin has a potent cytotoxic effect on LADC
by inhibiting mitophagy and increasing oxidative stress. Specifically, elaiophylin exerted
its effect by suppressing the deacetylation of Nrf2 in a SIRT1-dependent manner, leading
to the increase in non-functional Nrf2 in the cytoplasm (Figure 9). Therefore, as a new
autophagy inhibitor, elaiophylin may be developed into a new therapeutic regimen for
LADC. Of course, whether it can be used for clinical treatment still needs further research.
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