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Simple Summary: Despite major recent therapeutic advances, melanoma remains the deadliest
form of skin cancer due to the capacity of melanoma cells to adapt to drug treatment and become
resistant. Improved understanding of melanoma suggests that it resists treatment not just due to
DNA changing mutations but also due to changes in DNA accessibility with respect to the read-
ing and creation of different proteins. Here, we summarize the various ways in which different
DNA regions become more or less open, impacting patient response to anti-cancer therapies. For
instance, targeting specific proteins governing the expression of viral-like genes can alert the im-
mune system and enhance the effects of anti-cancer therapies. Alternatively, changes in DNA
accessibility allow the activation of alternative survival signals that allow melanoma cells to es-
cape death upon treatment. Targeting factors modulating DNA accessibility in cancer cells has
recently become possible through technological developments. These novel therapies, adminis-
tered alone or in combination with existing ones, represent the next frontier in the treatment of
advanced melanoma.

Abstract: Melanoma is an aggressive skin cancer reliant on early detection for high likelihood
of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor
cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor,
almost thirty percent of patients succumb to melanoma within twenty years. Identification of
key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK
inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemother-
apy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing
the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are
the standard first-line treatment. Despite these major improvements, durable responses to im-
munotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In
addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic re-
programming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin
accessibility drives gene expression and establishes distinct transcriptional cell states. Here we
review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy
resistance and discuss how targeting these programs sensitizes melanoma cells to immune and
targeted therapies.

Keywords: melanoma; epigenetics; therapy resistance; viral mimicry; phenotype switching

1. Introduction

Representing only 1% of skin cancer cases but accounting for over 80% of deaths,
melanoma is the deadliest form of skin cancer [1]. Ultraviolet exposure [2] of neural-
crest-derived epidermal melanocytes [3] (or melanocyte stem cells [4,5]) generates highly
mutated primary tumors [6–8] capable of rapidly metastasizing to the liver, lungs, and brain,
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even after complete surgical resection [9]. Half of melanoma patients carry conformation-
changing BRAFV600E mutations [10,11] which constitutively activate the mitogen-activated
protein kinase (MAPK) pathway. BRAFV600E inhibitor vemurafenib (FDA-approved in
2011) increased objective response rates (ORRs) from 5% to 50% compared to dacarbazine
chemotherapy, and improved 6-month overall survival (OS) from 64% to 84% [12]. Fol-
lowing FDA approval of the MEK inhibitors cobimetinib and trametinib, combinatorial
BRAF inhibition (BRAFi) and MEK inhibition (MEKi) increased 5-year OS to 34% [13] from
7% with dacarbazine plus interferon alpha (IFN-α) [14]. Targeted MAPK therapy recast
metastatic melanoma from a rapid death sentence to a treatable condition with favorable
outcomes for many patients.

Unfortunately, of the 40–60% eligible (BRAFV600E) patients, half of targeted therapy
recipients display intrinsic or develop acquired resistance [15,16]. The intratumoral het-
erogeneity characteristic of melanoma gives rise to coexisting subclones with varying
sensitivities to targeted therapy [17,18]. Intrinsic and acquired resistance are predominantly
explained by MAPK re-activation [17]. Upstream of BRAF, gain-of-function mutations in
NRAS and receptor tyrosine kinases (AXL, EGFR, IFG-1R, KIT, MET, and PDGFR) [19–21]
or loss-of-function mutations in the tumor suppressor NF1 [22,23] hinder the efficacy of
BRAFi and MEKi. Downstream of BRAF, MEK1/2 gain-of-function mutations [24,25] and
increased levels of COT1, a MAPK kinase activating MEK1, also enable therapy resis-
tance [26]. Additionally, resistance frequently involves activation of the PI3K/AKT/mTOR
survival pathway via loss of the tumor suppressors PTEN and RB1 [27]. Similarly, acquired
resistance typically occurs via delayed re-activation of MAPK (or analogous survival path-
ways), RAF isoform switching [28], BRAF copy number amplification [29], and alternative
splicing isoforms [30].

First-generation immune therapy based on broad immune activation via IFN-α or
IL-2 proved ineffective or exceedingly toxic [31,32]. Immune checkpoint blockade emerged
chronologically parallel with targeted therapy, pioneered by the Nobel Prize-granted
discovery of cytotoxic CD8+ T cell inhibition by CTLA-4 [33]. T cell surface marker
CTLA-4 outcompetes the lower-affinity co-stimulatory receptor CD28 for binding to
CD80 and CD86 on antigen-presenting cells (APCs), deactivating T cells via IL-2 inhi-
bition and cell-cycle arrest [34]. FDA approval of ipilimumab, a monoclonal human
CTLA-4 antibody, unlocked a novel approach to cancer treatment and improved patient
outcomes [35], further potentiated by addition of anti-PD-1 antibodies [36,37]. Binding of T
cell surface marker PD-1 to ligand PD-L1 inhibits T cell function via de-phosphorylation
of the T cell receptor (TCR) [34]. While CTLA-4 inhibits early priming events between
APCs and TCRs in the lymph nodes, PD-1 restrains activated T cells in peripheral tis-
sues [34]. However, despite the monumental success of checkpoint blockade, half of
treated patients fail to achieve long-term benefits [38]. Targeting of the alternative im-
mune checkpoints LAG-3, TIM-3, and TIGIT has been explored [39,40]. However, de-
spite recent FDA approval of combinatorial LAG-3 and PD-1 treatment [41], clinical
progress has stagnated. A plateau in responses along with a lack of robust biomarkers
for patient selection warrants a search for molecular mechanisms facilitating intrinsic and
acquired resistance.

Intrinsic resistance affects half of anti-PD-1 and over 70% of anti-CTLA-4 immunother-
apy recipients. Tumor-inherent factors facilitating intrinsic resistance include alterations
in interferon signaling within the tumor and its microenvironment, reduced antigenicity
and immunogenicity, and disrupted T cell infiltration and activity [42]. Tumor neoanti-
gens matching patient TCRs represent a key component of tumor immune clearance in
checkpoint blockade responders [43,44]. High tumor mutational burden precedes increased
neoantigen generation [45] and is significantly associated with but not predictive of clinical
treatment benefit [46–48]. Unsurprisingly, as a regulator of antigen presentation, interferon
gamma (IFN-γ) signaling has been implicated in immunotherapy resistance. Binding of
IFN-γ to its tumoral receptors induces inhibitory PD-L1 expression via JAK-STAT sig-
naling [49]. Genetic defects in IFN-γ curb PD-L1 expression and suppress the efficacy of
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PD-1 immunotherapy [50]. However, clinical trials combining JAK inhibitors with
PD-1 blockade have been generally unsuccessful [42,51]. Furthermore, tumors insensitive
to IFN-γ escape immune surveillance via downregulation of MHC class I antigen presenta-
tion [52,53]. Unfortunately, the epigenetic alterations producing active IFN signaling cell
states are still poorly understood.

Acquired resistance to immune checkpoint blockade prevents durable responses
through mechanisms analogous to intrinsic resistance. Two fundamental models are
proposed [54]. The first describes Darwinian selection of resistant clones present from
treatment onset (as a consequence of intratumoral heterogeneity) following depletion of
sensitive clones with treatment. The second, homeostatic resistance, suggests the emergence
of resistant clones due to the selective pressure imposed by treatment. Although the primary
mode remains unknown, the underlying mechanisms are strikingly similar to intrinsic
resistance and include lack of neoantigens, impaired antigen presentation, diminished
IFN signaling, cellular plasticity defined by de-differentiation, epithelial-to-mesenchymal
(EMT) transition [55,56], and WNT activation [57,58]. Recent studies have focused on
the contribution of epigenetic regulators to resistance due to their ability to alter global
transcriptional networks and produce resistant cell states.

2. Role of the Epigenome in Therapeutic Resistance

Epigenetic alterations enable more rapid and reversible modulation of cellular re-
sponses than changes to the coding genome. Melanoma tumorigenesis and progression
has been linked to dysregulation of epigenetic mechanisms, such as chromatin remodeling
complexes (INO80 [59,60], ISWI [61,62], and SWI/SNF [63–65]); histone post-translational
modifications (PTMs) by histone acetyltransferases (HATs) [66], deacetylases (HDACs) [67],
methyltransferases (HMTs) [68], and demethylases (HDMs) [69]; histone variants [70–72];
DNA [73–75] and RNA [76–78] methylation; plus non-coding [79–82], micro- [83–85], and
circular [86–88] RNA. Unsurprisingly, epigenetic changes are also linked to immune [89–97]
and targeted [98–103] therapy resistance. Therapy resistance develops rapidly and is un-
likely to be driven by de novo mutations [17,104]. Rather than undergoing an irreversible
and time-consuming mutagenic process, melanoma cells respond to microenvironmental
signals and/or stochastic intracellular fluctuations to remodel epigenetic landscapes and
adopt reversible gene expression programs.

For instance, decreased PD-L1 expression and melanoma treatment-resistance is asso-
ciated with global hypermethylation [105] and is reversible with DNA methyltransferase
(DNMT) inhibitors [106]. Interestingly, DNMT inhibitors sensitized a pre-clinical melanoma
model to CTLA-4 immunotherapy [107] by de-repressing endogenous retroviruses (ERVs)
and activating an IFN response. Additionally, cyclin-dependent kinase 9 (CDK9) inhibition
with toyocamycin activated the SWI/SNF catalytic subunit BRG1 and synergized with
DNMT inhibition to de-repress endogenous retroviral elements and interferon signaling,
sensitizing an in vivo ovarian cancer model to PD-1 immunotherapy [108,109]. Here we
examine recent studies advancing our understanding of epigenetic regulation of ERVs and
the emerging role of viral mimicry in overcoming melanoma immunotherapy resistance.
Furthermore, targeted therapy resistance is not entirely explained by the acquisition of
further mutations or genetically resistant clones but rather phenotypic alterations of cell
states [110–113]. Interconnected oncogenic networks enable melanoma cells to circumvent
MAPK inhibition via upregulation of survival pathways, molecular alteration of targets,
or downregulating target expression. Here, we explore the role of epigenetic modulators
in activating survival pathways and the contribution of phenotype switching to targeted
therapy resistance.
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2.1. Interferon-Mediated Viral Mimicry Facilitated by ERV De-Repression Enhances Response
to Immunotherapy

Endogenous retroviral elements are genomically integrated fossil records of former
retroviral infections in humans. Characterized as autonomous retrotransposons, ERV
sequences occupy up to 8% of the human genome [114] but are often epigenetically re-
pressed [115,116]. Human ERVs (HERVs) have been classified into over twenty families
primarily on the basis of their tRNA-binding specificity [117]. While most HERVs exist
defectively as long terminal repeats (LTRs), some HERV-K (HML2) members possess open
reading frames (ORFs) for gag, pol, env, Rec [118], and Np9 [119] and produce viral par-
ticles [120,121]. A regulatory loop between Rec and MITF inhibits epigenetic phenotype
switching between proliferative and invasive melanoma states [122]. Additional ERVs
have been co-opted by mammalian genomes in regulating cellular immunity [123,124].
HERV-K mRNA is expressed in primary and metastatic melanoma [125,126] and generates
viral proteins containing antigenic and therapeutically targetable epitopes [127,128]. ERV
retention of viral features endows immunogenicity, triggering immune responses [124,127]
and activating viral mimicry [129]—a phenomenon of beneficial cellular hypochondria
characterized by a viral-like immune response in lieu of infection. Driven by interferon
signaling following aberrant dsRNA accumulation, viral mimicry is gathering momentum
as a major mechanism of immunotherapy response [130,131].

Recent pre-clinical studies have demonstrated significantly improved melanoma im-
munotherapy responses due to viral mimicry. The PRMT family of methyltransferases,
commonly upregulated in cancer [132], facilitate methyl deposition on arginine residues.
PRMTs regulate antiviral responses [133,134] through mitochondrial antiviral-signaling-
protein (MAVS)-dependent interferon and proinflammatory responses [135]. PRMT7 inhi-
bition induced viral mimicry and sensitized therapy-resistant B16F10 melanoma tumors to
CTLA-4 and PD-1 treatment in vivo [136]. Pharmacological inhibition or CRISPR/Cas9-
mediated knockout of PRMT7 hypomethylates ERVs through DNMT silencing and leads to
dsRNA accumulation—a common characteristic of viral infections. In addition, PRMT7 re-
pressively bi-methylates H4R3 residues in the RIG-I and MDA5 promoters. Their increased
transcription following PRMT7 knockout enhances dsRNA detection, activating IFN and
interferon-stimulated gene (ISG) transcription through MAVS. This enhanced immuno-
genicity, antigenicity, and CD8+ T cell infiltration, improving responses to immunotherapy.
Unfortunately, efforts to inhibit the PRMT family, including Phase I clinical trials, have
focused on Type I and II PRMTs, leaving PRMT7 (Type III) behind [137]. SGC3027, used in
this study, was recently reported as the first PRMT7-specific pharmacological inhibitor [138],
but clinical testing has not been conducted yet.

Genetic or pharmacological inhibition of histone demethylase LSD1 (also known as
KDM1A) also stimulates ERV expression in melanoma [139]. Intriguingly, LSD1 ablation
resulted in decreased protein levels of DICER, AGO2, and TRBO2—key components of the
dsRNA-recycling RISC complex. In addition to physically interacting with RISC, AGO2 pro-
tein stability is diminished upon LSD1 knockout via demethylation of the AGO2 K726me1
residue. Detected by upregulated TLR3 and MDA5, supraphysiological dsRNA levels
plus reduced RISC activity induced IFN-β signaling. Consequentially, upregulation of
MHC-I complexes and PD-L1 expression sensitized treatment-resistant B16F10 melanoma
cells to PD-1 checkpoint blockade due to increased CD4+ and CD8+ T cell infiltration. At
least half a dozen LSD1 inhibitors have gone through or are currently undergoing clini-
cal assessment for oncological and neurological treatments; however, none have reached
Phase III yet [140].

A string of recent publications have validated histone methyltransferase SETDB1
as an important regulator of melanoma immune responses. Initially, SETDB1 loss was
demonstrated to de-repress transposable elements (TEs) resembling ERVs, immune gene
clusters, and MHC-I loci [141]. Surprisingly, viral mimicry was not observed due to
lack of bi-directional transcription and interferon signaling, despite the emergence of
accessible interferon gene clusters following SETDB1 knockout. However, due to the
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presence of long terminal repeats and intact open reading frames containing viral gag, pol,
and env genes, de-repressed TEs encoded immunogenic peptides predicted to bind MHC-I
complexes. Augmented antigenicity enhanced infiltration of T cells carrying corresponding
TCRs, sensitizing treatment-resistant B16F10 cells to in vivo PD-1 and CTLA-4 checkpoint
blockade (however, these effects have only been tested in GVAX melanoma cells expressing
GM-CSF [142]).

Shortly after, it was demonstrated that histone demethylase KDM5B recruits SETDB1
to silence ERVs in a demethylase-independent manner [143]. KDM5B-knockout melanoma
cells treated with proteasome inhibitor MG132 significantly increased SETDB1 levels,
suggesting a protective role for KDM5B in proteasome-dependent degradation of SETDB1.
Surprisingly, KDM5B loss (with concomitant SETDB1 reduction) increased bi-directional
transcription of ERVs (such as MMVL30), accumulating dsRNA stress, activating type I
interferon (IFN-I) signaling, upregulating MHC-I signaling, and inducing ISG expression.
Accordingly, KDM5B knockout sensitized treatment-resistant YUMM1.7 melanoma cells to
in vivo anti-PD-1 treatment through boosted CD8+ T cell activity. Corroborating the direct
involvement of the IFN-I response, depletion of cytosolic DNA sensor cGAS or RNA sensor
MDA5 ablated ISG expression and rescued YUMM1.7 in vivo tumor growth.

Finally, knockout of chromatin regulator ATF7IP or its interacting partner SETDB1 aug-
ments immunogenicity due to ERV expression and mRNA intron retention [144]. ATF7IP
knockout induces interferon signaling through IRF7 and IRF9 upregulation, enhancing
tumor immunogenicity and anti-tumor immunity via increased T cell activity. In MC38
colon carcinoma and KP lung carcinoma cell lines, ATF7IP knockout inhibited spliceosome
activity, increasing intron expression and producing antigenic neoepitopes. Although
no SETDB1-specific inhibitors have yet been developed, several histone lysine methyl-
transferase inhibitors have been tested in multiple pathological settings [145]. Recently
and relevantly, Mithramycin A and Mithralog EC-8042 were shown to inhibit melanoma
SETDB1 levels and improve the efficacy of MAPKi treatment [146]. KDM5B, upregulated
in aggressive phenotypes of multiple cancer types, has been the target of numerous phar-
macological inhibitors, but none have advanced to the clinic due to off-target effects and
toxicity [147,148].

Viral mimicry defines a cell state characterized by a viral immune response in absence
of infection. Induction of an anti-viral gene signature, driven by interferon signaling,
activates MHC-I and PD-L1 expression (Figure 1). The resultant antigenicity alerts host im-
munity and reduces tumoral immune evasion. Despite some discrepancies in mechanisms
and effector genes, LSD1, PRMT7, SETDB1, KDM5B, and ATF7IP functionally converge to
evade melanoma immune clearance via repression of ancient genomic ERV elements that
induce interferon signaling and translate immunogenic peptides for MHC-I presentation to
CD8+ T cells (Table 1). Thus, inhibition of these immune-suppressive mechanisms could
synergize with clinical immune checkpoint blockade.

2.2. Targeted Therapy Resistance via Epigenetic Upregulation of Survival Pathways Parallel to
MAPK Signaling

Epigenetic mechanisms induce melanoma resistance to BRAF and MEK inhibitors,
often by upregulating survival pathways functionally analogous to MAPK signaling, as
illustrated by the following examples (Table 2).

BMI1 is a transcriptional repressor within the polycomb repressive complex 1 (PRC1)
that mono-methylates H3K27, enabling PRC1 binding, and inhibiting transcription fac-
tor access via chromatin compaction [149]. BMI1 overexpression induced resistance in
melanoma cells sensitive to pharmacological BRAFV600E inhibition, while BMI1 silenc-
ing increased BRAFi sensitivity proportional to the degree of knockdown. Upregula-
tion of both WNT5a and its receptor ROR2 in BMI1-overexpressing persister cells re-
vealed the contribution of WNT signaling to BRAFi sensitivity. In fact, treatment sen-
sitivity was also proportional to the degree of WNT5a knockdown. In medulloblas-
tomas, BMI1 modulation of receptor tyrosine kinases in the MAPK pathway altered
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patient responsiveness to MEK inhibition [150]. BMI1 upregulation in multiple cancer
types and a described role in cancer stem cells (CSCs) has led to the development of
pharmacological inhibitors. BMI1 hyperphosphorylation by the small molecule PTC596
impairs protein function [151]. Recent Phase I results indicate that orally bioavailable
PTC596 has a tolerable human safety profile and is pre-clinically efficacious in mice as
a monotherapy against leiomyosarcomas and glioblastoma, supporting its further de-
velopment [152]. This is exciting, considering that clinical trials targeting the polycomb
complex have to date focused solely on EZH2, the catalytic domain of polycomb repressive
complex 2.
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Figure 1. Viral mimicry by epigenetic regulators: A beneficial instance of cellular hypochon-
dria. Epigenetic regulation of post-translational modifications by LSD1, PRMT7, KDM5B, ATF7IP,
and SETDB1 modulates the expression of genomically integrated endogenous retroviral (ERV)
elements and elicits interferon (IFN)-driven states that regulate anti-PD-1 and anti-CTLA-4
immunotherapy responses.
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Table 1. Epigenetic regulators of immune therapy through viral mimicry.

Gene Function Mechanism

PRMT7 [136] Protein arginine methyl
transferase (PRMT)

PRMT7 inhibition represses DNMTs regulating ERV expression. ERVs cause
dsRNA stress, detected by increased MDA5 and RIG-I due to H3K4me3 and

H4R3me2 hypomethylation of their promoters. Shifting the cell into viral
mimicry, the resultant IFN expression enhances antigen presentation and

improves PD-1 & CTLA-4 checkpoint blockade via increased CD8+ T cell and
reduced MDSC infiltration.

LSD1 [139] Histone demethylase

LSD1 ablation increases ERV transcription and reduces core RISC complex
proteins, generating cellular dsRNA stress detected by TLR3 and MDA5,

inducing viral mimicry, activating IFN signaling, and increasing MHC-I and
PD-L1 expression. Enhanced immunogenicity improves CD8+ T cell

infiltration and boosts response to PD-1 checkpoint blockade.

SETDB1 [141] Histone methyltransferase

SETDB1 loss de-represses TEs encoding viral antigens and immunostimulatory
genes. Intact viral ORFs in induced TEs facilitate generation of MHC-I

peptides and trigger CD8+ T cell responses. In B16F10-GVAX melanoma,
SETDB1 knockout sensitized cells to PD-1 checkpoint blockade. Rare

bi-directional TE transcription prevented the generation of dsRNA and
interferon signaling and thwarted viral mimicry.

KDM5B and
SETDB1 [143]

Histone demethylase and
histone methyltransferase

KDM5B recruits and regulates SETDB1 in a proteosome-dependent manner.
KDM5B loss increases bi-directional ERV transcription, accumulating dsRNA
stress. MDA5 and cGAS depletion ablate IFN-I activation, MHC-I signaling,
and induction of ISGs following KDM5B knockout. Increased CD8+ T cell

activity following KDM5B knockout sensitized treatment-resistant YUMM1.7
melanoma cells to anti-PD-1 in vivo treatment.

ATF7IP and
SETDB1 [144]

SETDB1 adaptor and histone
methyltransferase

ATF7IP interacts with SETDB1 to repress ERV expression. ATF7IP deficiency
reduces H3K9me3 deposition by SETDB1 and inhibits spliceosome activity,

significantly increasing mRNA intron retention. Interferon signaling through
IRF7 and IRF9 increase ERV antigen presentation, enhancing immunogenicity

and facilitating clearance via elevated T cell infiltration.

Activation of the PI3K/AKT/mTOR pathway facilitates melanoma resistance to BRAF
and MEK inhibition. A CRISPR-Cas9 sgRNA knockout screen targeting chromatin factors
in BRAFV600E melanoma cells in the presence of MAPKi rendered histone acetyltransferase
(HAT) and deacetylase (HDAC) enzymes as hits [153,154]. Intriguingly, histone deacetylase
SIRT6 haploinsufficiency promoted melanoma MAPKi resistance, while complete loss con-
ferred sensitivity due to induction of the DNA damage response. SIRT6 haploinsufficiency
resulted in increased H3K56 acetylation at the IGFBP2 locus, increasing chromatin accessi-
bility and IGFBP2 expression. IGFBP2 activates IGF-1 receptor (IGF-1R), which triggers
PI3K/AKT/mTOR survival signaling, enabling cell persistence in the presence of BRAF
and MEK inhibition (MAPKi). Treatment with IGF-1R inhibitor linsitinib, which prevents
IGF-1R autophosphorylation, overcomes SIRT6 haploinsufficiency resistance in vitro and
in vivo. Supporting these findings, the authors showed that IGFBP2 transcript and protein
levels were associated with poor prognoses for primary melanoma patients. Single-agent
cixutumumab, a monoclonal antibody targeting IGF-1R, was tested on eighteen patients
with metastatic uveal melanoma and exhibited low toxicity but only incomplete or partial
responses, requiring further combinatorial studies with MAPK inhibitors to assess its
utility [155]. IGF-1R inhibition has received abundant attention over the last decade for
multiple cancer types, with the first FDA IGF-1R inhibitor, teprotumumab, a monoclonal
antibody indicated for autoimmune Graves’ orbitopathy [156], approved in 2022. Further
pre-clinical characterization may uncover a benefit in resistance delay or prevention by
combining IGF-1R and MAPK inhibition in BRAFV600E patients with high IGFBP2 expres-
sion. Complete SIRT6 loss results in hyperacetylation and global chromatin disarray, also
enhancing MAPKi sensitivity. SIRT6 inhibitors have not reached the clinic, but numerous
small-molecule modulators are available [157]. Four HDAC inhibitors are currently FDA-
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approved as cancer therapeutics and represent the most clinically successful epigenetic
regulatory mechanisms, with almost two dozen completed, ongoing, or recruiting trials in
melanoma alone [158]. Unfortunately, benefits are observed only in a minority of patients,
in combination with other treatments, and are typically quickly followed by resistance and
disease progression.

The WNT, PI3K/AKT/mTOR, and IGF signaling pathways have been shown to play
key roles in melanocytes and the surrounding stroma throughout various developmental
stages [159–161]. Accordingly, their dysregulation is associated with multiple stages of
malignancy, from initiation to metastasis. Accumulating both a favorable and sufficient
quantity of oncogenic mutations in these survival pathways by random chance is a time-
intensive process. Epigenetic modulation facilitates complex changes in cell states without
alterations in coding sequences (Figure 2). Shifting chromatin accessibility in multiple
genomic loci enables the expression of multiple signaling components simultaneously—a
necessary feature for sufficient pathway activation.
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Figure 2. Epigenetic mechanisms underlying MAPKi resistance in melanoma. Inhibition of the
MAPK pathway (MAPKi) results in the senescence or apoptosis of sensitive melanoma cell states.
Meanwhile, escape from senescence and intrinsic and acquired resistance can be facilitated by histone
modifications induced by SETDB1, SIRT6, and KMD5B or by chromatin compaction via BMI1, which
activates cell survival pathways and changes melanoma cell states.

2.3. Phenotype Switching and Targeted Therapy Resistance

Cellular plasticity enables tumor cells to respond to stress and has been implicated as
a mechanism of therapy resistance. Melanoma cells, regardless of their genetic subtype,
are not truly epithelial or mesenchymal and rapidly switch between different phenotypes
through EMT/MET-like mechanisms [162]. Accordingly, bulk and single-cell RNA sequenc-
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ing of melanoma biopsies differentiated cells into two phenotypic states corresponding
to two mutually exclusive gene expression signatures driven by the transcription factors
MITF and AP-1/TEAD [18,163,164]. Further sequencing in additional melanoma cell lines
and patient-derived xenograft (PDX) models unveiled a greater complexity beyond binary
melanocytic–mesenchymal phenotypes [111,165–167]. Currently, at least seven in vivo
melanoma phenotypes have been characterized by low to high MITF activity: undifferenti-
ated (mesenchymal-like), neural crest stem cell-like (NCSC), interferon-active (IFN-active),
starved melanoma cells (SMCs), intermediate, melanocytic, and hyper-differentiated. Fluc-
tuating MITF activity during tumorigenesis and tumor progression confounds the ability to
define its oncogenic role [164]. Additionally, MITF activity does not simply correlate with
expression levels but also correlates with cell background, which dictates MITF protein
stability [168], subcellular localization [169], protein interactors [170,171], microRNA regula-
tion [172–175], DNA binding affinity [176], and DNA accessibility [64]. Furthermore, MITF
activity depends on tumor microenvironment (TME) conditions, such as nutrient deple-
tion [177,178], immune surveillance and inflammation [179–181], heterotypic interactions
with normal cells [182], hypoxia [183,184], extracellular matrix (ECM) composition [185],
and drug treatment [111,180,186,187]. Hence, an integrative adaptive response tuning MITF
activity alters a cell’s probability of adopting a particular phenotypic state [167,188]. Ge-
netic mutations drive tumorigenesis, and selected cancerous clones can overcome evolved
host barriers against neoplastic growth. While genetic changes are irreversible, stochastic
intra- and extra-cellular adaptive responses facilitate epigenetic plasticity, enabling cells to
adopt reversible phenotypic states with temporospatial advantages (Figure 3).
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Figure 3. Tumor microenvironment drives phenotypic diversity in melanoma. The tumor microen-
vironment is characterized by the juxtaposition of heterotypic interactions between healthy tissue and
melanoma cells, influencing two opposing MITF- or AP1/TEAD-dependent transcriptional programs
that define distinct phenotypic states. Phenotype-switching represents a dynamic adaptation to
microenvironmental variation comprising immune infiltration, inflammation, extracellular matrix
(ECM), nutrient availability, oxygen levels, and melanoma-cell-autonomous mechanisms, such as de
novo mutations and double-stranded RNA (dsRNA) regulation. CAS: cancer-associated stroma.
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Due to the expression of a mélange of melanocytic, mesenchymal, and neural-crest-
like genes, starved and intermediate cells are considered poised state founders [111,167].
Starved cells present as metabolically hungry and arise following stressful conditions,
such as hypoxia, nutrient depletion, and drug treatment. Undifferentiated, NCSC, and
melanocytic states represent dormant cell reservoirs tolerant of cellular stress until the
emergence of favorable microenvironmental conditions. Alternatively, cells can switch to
highly proliferative intermediate or hyper-differentiated states which fuel tumor growth
and replenish lesions with new clones.

KDM5B, the histone demethylase which modulates melanoma response to immunother-
apy via SETDB1 recruitment and ERV repression, has also been shown to regulate BRAF
and MEK inhibitor resistance by controlling a shift between CD34+ and CD34− subpopula-
tions that vary widely in their treatment sensitivities [189]. BRAFi induces the enrichment
of drug-resistant CD34− melanoma cells, upregulation of KDM5B, and global reduction
in H3K4me3. KDM5B’s enzymatic JmjC domain and enzyme-independent domains in-
volved in chromatin binding both regulate the shift between drug-resistant and sensitive
populations. Genetic and pharmacological inhibition of KDM5B diminishes the degree of
phenotype switching from CD34+ to CD34− during BRAFi treatment. KDM5B regulates
transitions between melanoma-propagating cells with varying drug sensitivities that could
potentially be exploited therapeutically. Additionally, the utility of CD34 expression as a
prognostic biomarker for BRAFi sensitivity should be explored.

In addition to regulating immune checkpoint blockade resistance, SETDB1 may be a
therapeutic target for patients resistant to combinatorial BRAF and MEK inhibition [190].
SETDB1 promotes H3K4 mono-methylation upstream of the thrombospondin 1 (THBS1)
promoter, altering chromatin to an open and active state. THBS1 promotes melanoma
aggressiveness and may facilitate therapeutic resistance through regulation of EMT pheno-
type switching [191–193]. Targeting of SETDB1 with a small-molecule inhibitor synergized
with MAPK inhibition in sensitive cell lines and induced cell death in MAPKi-resistant
melanoma cell lines.

Table 2. Epigenetic regulators of targeted therapy.

Gene Function Mechanism

SETDB1 [190] Histone methyltransferase SETDB1 inhibition is cytotoxic to BRAFi-resistant melanoma cells, and
inhibition synergizes with BRAFi and MEKi.

SIRT6 [153] Histone deacetylase

SIRT6 haploinsufficiency results in H3K56 acetylation at the IGFBP2 locus,
activating PI3K/AKT/mTOR, and facilitating melanoma resistance to MAPKi.
IGF-1R inhibition restores sensitivity to MAPKi. Complete SIRT6 loss activates
DNA damage response due to global chromosomal instability and increases

MAPKi sensitivity.

BMI1 [149] Polycomb ring finger oncogene

BMI1 expression shifts melanoma to a metastatic state by inducing an invasive
gene signature through WNT5A, ROR2, EGFR, and PDGFR, without a
decrease in proliferation. WNT signaling maintains MITF expression,

preventing proliferation defects typical of the invasive state, while concurrent
EGFR and PDGFR upregulation maintains BRAFi resistance. BMI1 inhibition

restored BRAFi sensitivity through WNT5A.

KDM5B [189] Histone demethylase
KDM5B upregulation following BRAFi treatment decreases H3K4me3 levels
and triggers the conversion of melanoma cells from drug-sensitive CD34+ to

drug-resistant CD34- cell states.

2.4. Non-Coding RNAs Involved in MAPKi Therapy Resistance

Non-coding RNAs (ncRNAs) are involved in several molecular pathways underpin-
ning physiological and pathological conditions, including cancer [194]. ncRNAs can arise
from active enhancers, promoters, intragenic and intergenic regions, or alternative splicing
of canonical transcripts [195]. They are classified into two major groups according to
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their size and structure: (i) small non-coding RNAs, which are smaller than 200 bp and
include microRNAs (miRNAs); and (ii) long non-coding RNAs (lncRNAs) which account
for 15,000–90,000 annotated transcripts [196,197], are more than 200 nucleotides in length,
and include the subclass of circular RNAs (circRNAs). The expression of non-coding
RNAs (ncRNAs) is often altered in cancer by single-nucleotide polymorphisms (SNPs) and
copy-number variations (CNVs). ncRNAs can interact with chromatin, proteins, and other
RNAs involved in tumorigenesis [198].

Ninety percent of melanoma patients express lncRNA SAMMSON, which is unde-
tectable in normal melanocytes [80]. SAMMSON induction is due to nearby MITF locus
amplification and upregulation of the transcription factors SOX10 and SOX9, which directly
bind the SAMMSON promoter. SAMMSON fosters melanoma proliferation and survival
by bursting mitochondrial activity and biogenesis through the p32 pathway [81]. Similarly,
melanoma cells can overexpress the lncRNA LENOX (LINC00518) following LENOX ge-
nomic amplification or increased activity of SOX10 and TFAP2A [82]. LENOX works in
concert with SAMMSON to promote mitochondrial oxidative phosphorylation adaptation
during tumor progression and upon MAPKi treatment and resistance.

On the other hand, lncRNA TINCR is a negative translation regulator of the integrated
stress response (ISR) transcription factor ATF4 through the direct binding of mRNAs
driving the mesenchymal-like melanoma phenotype [199]. Even though TINCR regulation
is not well-characterized, it is one of the few examples of ncRNAs indirectly regulating
melanoma transcriptional states. In addition to lncRNAs, multiple miRNAs (e.g., miR-
7 [200], miR-125a [103], miR-204-5p [201], and miR-211-5p [202]) have been found to be
involved in resistance to MAPKi.

3. Concluding Remarks

Remarkable advances within the last decade have shattered the enduring untreatable
paradigm of metastatic melanoma. Pharmacological inhibition of the MAPK pathway
members BRAF and MEK or monoclonal antibodies against immune checkpoint markers
CTLA-4 and PD-1 have provided metastatic melanoma patients with previously unattain-
able opportunities for meaningful and durable responses. Unfortunately, intrinsic or
acquired resistance takes this benefit away for half of patients. An evolving understanding
of cellular biology has driven scientific exploration beyond the limits of the genome and
has reinforced the role of epigenetic mechanisms in regulating homeostatic and oncogenic
cell states. Efforts to enhance patient responses have also shifted toward a deeper under-
standing of the epigenomic landscapes that facilitate treatment-sensitive cell states, the
mechanisms to unlock them, and their downstream effectors.

We chose to focus a major portion of this review on the emerging role of viral mimicry
in regulating melanoma response to immunotherapy, the chromatin writers and erasers
co-opted by melanoma for its repression, and the interactions with the immune system
elicited by its induction. The convergence of multiple mechanisms suggests the possi-
bility that this phenomenon may be a major avenue of melanoma progression through
immune evasion and, conversely, an exploitable susceptibility for treatment. However,
our understanding of viral mimicry, which we define as an instance of beneficial cellular
hypochondria, requires a deeper mechanistic dive into its components, such as dsRNA
accumulation, interferon signaling, or the generation and presentation of neoantigens
containing certain viral features. Most of the mechanisms enabling viral mimicry ex-
amined in this review focus on post-translational modifications of histone topography.
Post-translational modifiers are well-described in the literature, but their nuclear local-
ization has hindered their effective targeting. In addition, their ubiquitous expression
in healthy and cancerous cells limits their usefulness as oncolytic targets. Since most of
the chromatin regulators described here (LSD1, PRMT7, SETDB1, KDM5B, and ATF7IP)
converge functionally, it will be crucial to identify additional cancer-specific factors the
targeting of which may be less toxic. Proper identification of such targets mandates the
analysis of clinical samples—a major limitation of the studies reviewed here, which fo-
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cused on in vitro cell cultures or in vivo mouse models. The limited quantities and sizes of
melanoma patient tissues available for experimentation demand collaboration amongst
researchers to interrogate panels of markers, rather than assessing genes of interest on an
individual basis.

The reviewed publications reiterate the notion that, without simultaneous inhibition
of multiple pathways, overcoming targeted therapy resistance becomes a perpetual whack-
a-mole game against emerging survival pathways. Additionally, these studies uphold
that targeting the epigenome enables simultaneous activation or repression of multiple
pathways. Of particular interest are the lessons learned from SIRT6, demonstrating that
complete loss can be beneficial for therapy sensitization due to DNA damage responses fol-
lowing global chromosomal disarray, provided that targeting is sufficiently discriminatory
between healthy and malignant cells to leave a therapeutic window. Additionally, BMI1
epigenetic regulation demonstrates that melanoma cell states are not as binary (invasive
or proliferative) as typically described; paradoxical epigenomic states exist which enable
MITF alterations without proliferation changes or shifts in therapeutic BRAFi sensitivity.
Melanocytic, intermediate, mesenchymal-like, and mitotic states are detectable in drug-
naïve tumors [203], while NCSC, SMC, pigmented, and IFN-active states arise upon drug
treatment [111,167,187]. The emergence of an IFN-active state in PDX models elicits par-
ticular interest due to the absence of functional immune cells. Moreover, this state arises
upon MAPKi treatment, reinforcing the molecular link between inflammation and therapy
resistance. Accordingly, IFN-active melanoma cells overexpress the multi-drug resistance
pump ABCG2 and interferon-related genes (e.g., PD-L1 and HLA-A, -B, and -C), irrespec-
tive of the presence of cytokines in vitro [187], conferring a potential cross-resistance to
in vivo MAPKi and immunotherapy. Further exploration of a possible connection between
epigenetic ERV de-repression and phenotype switching to the IFN-active state should be
investigated. Finally, although mechanistically unclear, SETDB1 and KDM5B demonstrate
pleiotropic effects in melanoma targeted therapy and immunotherapy which demand
deeper mechanistic exploration.

4. Future Perspectives

Tumorigenesis and tumor progression rely in part on dysfunctional epigenetic reg-
ulation following genetic mechanisms, providing attractive therapeutic opportunities.
Historically, natural compounds have been bountiful medicinal sources. As such, triptolide,
a transcription factor II H inhibitor extracted from the Tripteryugium wilfordii plant [204],
and lurbinectedin, an RNA Pol II degrader obtained from the sea squirt Ecteinascidia
turbinate [205], are efficacious transcriptional inhibitors that impair cancer survival. Min-
nelide, a water-soluble triptolide prodrug, inhibits MYC and is undergoing Phase II clinical
testing in advanced refractory adenosquamous pancreatic carcinoma [206]. However,
these approaches frequently lack specificity and exert significant toxicity against healthy
cells [207]. To enhance cancer specificity, de novo drug synthesis and medicinal chemistry
have focused on disrupting cancer-specific genes or the unique protein–protein interfaces
of epigenetic regulators.

Extensive compound profiling combined with titration of molecular 3D structures
using nuclear magnetic resonance (NMR) or cryogenic electron microscopy (cryo-EM) are
guiding the development of successful synthetic drugs. PROteolysis TArgeting Chimeras
(PROTACs) are bi-modular molecules containing a ubiquitin ligase E3 and a target-protein-
specific domain for proteosome-dependent ubiquitination and degradation [208]. AU-
15330 is the first effective PROTAC against BRG1, BRM, and PBRM1 of the SWI/SNF
complex, which account for ~20% of mutations in human cancers, including cutaneous
melanoma [209]. Due to cancer cells’ addiction to dysregulated SWI/SNF, AU-15330 has
enhanced cytotoxicity against malignant cells. Additionally, direct inhibition of MYC, one
of the most amplified and de-regulated oncogenic transcription factors, has been a great
ambition and an even greater challenge [210]. MYCi361, a PROTAC that disrupts the
MYC-MAX heterodimer and promotes MYC degradation, has proven to be synergistic
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with anti-PD1 immunotherapy in a prostate cancer mouse model, highlighting the exciting
possibilities of PROTAC technology [211].

Alternatively, epigenetic regulators can be disrupted at the RNA level with antisense
oligonucleotides (ASOs). DNA or RNA sequences of 15 to 25 base pairs, ASOs hybridize
with complementary RNA to block activity or trigger RNAse-H-dependent degradation.
Bearing locked nucleic acids (LNAs) at both ends, ASOs’ high stability facilitate their
administration in the absence of nanoparticles or liposomal vehicles and enable target-
ing of coding and non-coding RNAs in any subcellular compartment. ASOs are being
tested in clinical trials of orphan genetic diseases and have proven to be safe and suf-
ficient to reduce the symptoms of Duchenne muscular dystrophy (DMD) and neuronal
ceroid lipofuscinosis (CLN7) patients [212]. Systemic administration of ASOs results in
liver and kidney accumulation, reducing uptake by other tissues [213–215], but is pre-
ventable by conjugation with other molecules or local injection to improve tissue-specific
delivery [216,217]. ASOs are finding their way in cancer therapy, as witnessed by their
rapid development and clinical testing over the last few years.

The targeting of epigenetic regulators has the potential to be used in a wide spectrum
of cancers, irrespective of lineage identity and governing oncogenic networks. Alone or in
combination with conventional treatments, PROTACs and ASOs may represent the future
for personalized medicine in patients bearing oncogenic drivers traditionally perceived
as undruggable.
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