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Simple Summary: Late-stage melanoma is one of the leading causes of death from skin cancers,
as it frequently acquires resistance to standard therapies. Melanoma aggressiveness relies both on
high intratumoral heterogeneity and on the capability of melanoma cells to switch among different
differentiation phenotypes. Recently, melanoma plasticity has indeed been pinpointed as a main cause
of resistance to standard therapies. Melanoma takes advantage of extrinsic reprogramming, a common
feature exploited also by melanocytes, to promote tumor progression. Unfortunately, extrinsic factors
and molecular mechanisms driving phenotype switching upon treatment are yet to be thoroughly
characterized. The aim of this review is to support this field of research by providing brand-new
insights into melanoma plasticity. Starting from the origin of phenotype switching, we will report
up-to-date molecular players and extrinsic factors determining different transcriptional programs.
Finally, the latest therapeutic strategies to tackle this mechanism of resistance will be discussed.

Abstract: Melanoma is considered one of the deadliest skin cancers, partly because of acquired resis-
tance to standard therapies. The most recognized driver of resistance relies on acquired melanoma
cell plasticity, or the ability to dynamically switch among differentiation phenotypes. This confers
the tumor noticeable advantages. During the last year, two new features have been included in the
hallmarks of cancer, namely “Unlocking phenotypic plasticity” and “Non-mutational epigenetic
reprogramming”. Such are inextricably intertwined as, most of the time, plasticity is not discern-
able at the genetic level, as it rather consists of epigenetic reprogramming heavily influenced by
external factors. By analyzing current literature, this review provides reasoning about the origin of
plasticity and clarifies whether such features already exist among tumors or are acquired by selection.
Moreover, markers of plasticity, molecular effectors, and related tumor advantages in melanoma
will be explored. Ultimately, as this new branch of tumor biology opened a wide landscape of
therapeutic possibilities, in the final paragraph of this review, we will focus on newly characterized
drugs targeting melanoma plasticity.

Keywords: melanoma; phenotype switching; plasticity; resistance; dedifferentiation; non-mutational
reprogramming; targeted therapies

1. Introduction

Among skin tumors, melanoma is one of the rarest and deadliest, mostly because of
high metastatic potential when not treated at early stages [1]. Melanoma originates from
melanocytes, the cells highly specialized in UV protection, nested in the deepest layers of
the epidermis proximal to the dermis and derived from neural crest cells [2].

Melanoma bears a high mutational burden. Genetic intra- and intertumor hetero-
geneity is one of the consequences of constant exposure of the epidermis to environmental
stressors, including UV rays and untested compounds that, topically applied on the skin,
are further absorbed by the epidermis [3–6]. Moreover, early mutations leading to can-
cer development frequently occur within the mitogen-activated protein kinase (MAPK)
pathway [7]. A well-studied mutation is BRAFV600E (v-raf murine sarcoma viral oncogene
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homolog B1), which is found in about 50% of melanomas and in ~80% of benign nevi [8,9].
Such mutation in the MAPK pathway is indeed fundamental for naevogenesis, giving
a limited boost to the proliferation of melanocytes before the nevus enters a senescent-
like status [7,10]. This quiescent status may be however overcome by telomerase reverse
transcriptase (TERT) or cyclin-dependent kinase inhibitor 2A (CDKN2A) mutations [11].

However, not all melanomas bear mutations in the MAPK pathway. Nevertheless,
this other subset is considered highly immunogenic, as a result of high mutational burden
and consequent generation of neoantigens. Therefore, tumors that are not characterized
by mutations in BRAF are frequently treated by immune checkpoint inhibitors (ICIs) or
other types of immunotherapy [12]. Since 2011, a breakthrough concerning the approval
of new treatments for patients with advanced-stage melanoma has occurred; in particular,
both therapies targeting MAPK and immunotherapies have been largely investigated [13],
but with limited efficacy in certain instances. Standard therapies already approved for the
treatment of melanoma are reported in Table 1.

Beyond significant intratumor heterogeneity (ITH), mostly conferred by elevated
mutational burden, phenotypic plasticity seems to play a pivotal role in determining
melanoma progression and therapy resistance [14]. Recently, four new cancer-acquired
capabilities, including “unlocking phenotype plasticity” and “non-mutational epigenetic
reprogramming” [15], were added to the cancer hallmarks. Both hallmarks are strictly
related since phenotype plasticity highly relies on entangled epigenetic changes and tu-
mor microenvironment (TME) components, which are able to stabilize transcriptional
programs [14].

The high plasticity of melanoma cells allows effortless phenotypic switching, which
can converge on relapse to MAPK inhibitors or insensitivity to proinflammatory signaling
resulting from immunotherapy [16]. As a consequence, treatment for advanced melanoma
remains an unmet therapeutic need that must be addressed. Since resistance to standard
therapies frequently occurs with time, focusing on specific effectors that mediate relapse
may constitute a game changer.

The aim of this review is to summarize the latest and most relevant discoveries in the
field of melanoma phenotype switching and to highlight new plausible targets to prevent
plasticity-driven relapse to well-known therapies.

Table 1. List of clinical trials.

Target Clinical trials Objective or Overall
Response Rate (%)

Median
Progression-Free

Survival (Months)

Most Common (Any Grade)
Adverse Events

BRAF **

Dacarbazine vs. Vemurafenib
(BRIM3 trial) [17,18] 5–9 vs. 48–57 1.6–1.7 vs. 5.3–6.9

Arthralgia, rash, fatigue, cuSCC *,
keratoacanthoma, nausea, alopecia,

diarrhea, neutropenia, abnormal liver
function tests,

and photosensitivity

Dacarbazine vs. Dabrafenib
(BREAK-3 trial) [19] 6 vs. 50 2.7 vs. 5.1 Skin-related toxic effects, fever,

arthralgia, fatigue, and headache

BRAF
+

MEK

Vemurafenib vs. Vemurafenib plus
Cobimetinib

(coBRIM trial) [20]
50 vs. 70 7.2 vs. 12.3 Pyrexia and dehydration

Dabrafenib or Vemurafenib vs.
Dabrafenib plus Trametinib

(COMBI-d and COMBI-v trials)
[21,22]

51–53 vs. 64–69 7.3–8.8 vs. 11–11.4 Pyrexia, hyperkeratosis, cuSCC *, and
keratoacanthoma

Vemurafenib vs. Encorafenib plus
Binimetinib

(COLUMBUS trial) [23]
40.8 vs. 63.5 7.3 vs. 14.9 Nausea, diarrhea. and vomiting
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Table 1. Cont.

Target Clinical trials Objective or Overall
Response Rate (%)

Median
Progression-Free

Survival (Months)

Most Common (Any Grade)
Adverse Events

Immune
checkpoints

Dacarbazine vs. Nivolumab
(CheckMate 066 trial) [24] 13.9 vs. 40 2.2 vs. 5.1 Fatigue, pruritus, and nausea

Ipilimumab vs. Nivolumab vs.
Nivolumab plus Ipilimumab

(CheckMate 067 trial) [25]
19 vs. 44 vs. 58 2.9 vs. 6.9 vs. 11.5 Skin-related and

gastrointestinal events

Ipilimumab vs. Pembrolizumab
every 2–3 weeks

(KEYNOTE-006 trial) [26]
13 vs. 37–36 2.8 vs. 5.6–4.1 Fatigue, pruritus, diarrhea, and rash

Dacarbazine vs. Dacarbazine plus
Ipilimumab

(CA184-024 trial) [27]
10.3 vs. 15.2 3 vs. 3

Elevation of alanine aminotransferase
and aspartate aminotransferase levels,

diarrhea, pruritus, and rash

BRAF
+

MEK
+

Immune
Checkpoint

Vemurafenib plus Cobimetinib
vs Atezolizumab plus

Vemurafenib plus Cobimetinib
(IMspire150) [28]

65 vs. 66.3 10.6 vs. 15.1

Blood creatinine phosphokinase
increased, diarrhea, rash, arthralgia,
pyrexia, alanine aminotransferase

increased, and lipase increased

* cuSCC: cutaneous squamous cell carcinoma; ** BRAFi can cause development of cuSCC or keratoacanthomas
due to the paradoxical activation of the MAPK pathway in cells harboring wild-type BRAF [29].

2. Phenotype Switching

In recent years, the concept of differentiation has evolved. The commitment of the
cell is no longer considered a unidirectional process. It is rather seen as a highly repro-
grammable state that can be easily influenced by environmental signaling. This ability to
transform is nowadays considered a new hallmark of cancer, defined as cell plasticity, and
is observed in a variety of tumors [15]. The phenomenon of plasticity can be determined
both by cell-intrinsic properties, such as a mutation that contributes to an oncogenic pheno-
type, and cell-extrinsic features, which are determined by the influence of the surrounding
microenvironment [30].

Since embryonic development, neural crest cells are highly motile cells that undergo
differentiation only once they reach their specific location within the body and own mi-
gration and epithelial–mesenchymal transition (EMT) capabilities. These cells originate
highly specialized and nonspecialized cells of the peripheral nervous system, such as
Schwann cells, peripheral neurons, osteocytes, chondrocytes, adipocytes, smooth muscle
cells, melanocytes, and keratinocytes. In 2021, Vidács and coworkers observed that human
adult epidermal melanocytes grown in a medium lacking cholera toxin and tumor pro-
moter 12-O-tetradecanoyl phorbol-13-acetate (PMA), became bipolar and unpigmented [31].
Molecularly, they revealed a spontaneous dedifferentiation process supported by a drop
in the expression of differentiation markers, such as tyrosinase-related protein-1 (TRP-1)
and mast/stem cell growth factor receptor Kit (c-Kit), along with sustained expression of
genes involved in dedifferentiation, such as epidermal growth factor receptor (EGFR) and
nestin [31].

The plasticity of melanoma can be classified at transcriptional levels; in the para-
graph below, different transcriptional programs are reported based on specific markers of
differentiation.

2.1. Transcriptional Programs of Differentiation

The state of differentiation of melanoma is usually categorized into 2 major tran-
scriptional programs: the proliferative and the invasive states (Figure 1) [32]. These two
programs have been highly characterized, and they are frequently driven by master reg-
ulators, favoring the generation of divergent transcriptional profiles. Well-established
markers of “proliferative” phenotype are microphthalmia-associated transcription factor
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(MITFHigh) and AXLLow, the latter being considered one of the determinant markers for
the dedifferentiation state. The proliferative state is recognized as a differentiated and
epithelial-like phenotype. MITF is the master regulator of lineage commitment and pig-
mentation in melanocytes and induces the transcription of prodifferentiation genes such
as premelanosome protein (PMEL), dopachrome tautomerase (DCT), tyrosinase (TYR),
and melan-A (MLANA). Upstream activators of MITF are SRY-box transcription factor 10
(SOX10), paired box 3 (PAX3), CAMP-responsive element-binding protein (CREB), and en-
dothelin receptor type B (EDNRB). They are frequently upregulated within the proliferative
phenotype [33,34].
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Figure 1. Different transcriptional programs have been defined throughout the years. Starting
from an initial dual classification recognizing only a more differentiated “proliferative” state and a
less differentiated “invasive” state, the range of transcriptional programs is nowadays increasing,
following a progressive model of plasticity. So far, six transcriptional programs have been described:
hyperdifferentiated cells, melanocytic proliferation cells, transitory-intermediate migrating cells,
therapy-induced starved-like melanoma cells, NCSC-like cells, and MITF-negative undifferentiated
cells. In the figure, all different transcriptional states are reported with their respective markers
(created with BioRender.com).
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Recently, the role of spalt-like transcription factor 4 (SALL4), an epigenetic player that
maintains melanocyte differentiation, has been explored in a Tyr::NrasQ61K; Cdkn2a−/−

melanoma mouse model [35]. This epigenetic factor is highly involved in primary melanoma
formation and cooperates with histone deacetylase 2 (HDAC2) to favor a more proliferative
state by epigenetically repressing genes of the invasive signature [35]. Similar to SALL4,
YY1 is another transcription factor (TF) that promotes melanoma initiation and tumor
growth while being averse to cancer invasiveness; indeed, mice conditionally depleted for
Yy1 show an increase in metastasis formation [36].

On the other hand, the invasive phenotype is characterized by MITFLow/SOX10Low/
AXLHigh. Epigenetic factors of the invasive transition are zinc finger E-box binding home-
obox 1 (ZEB1), homeobox A1 (HOXA1), and BMI1. Among the cell-intrinsic properties
supporting the invasive signature, BRN2 (brain-2) is a TF usually upregulated in dediffer-
entiated cells [37]. The expression of BRN2 and MITF is mutually exclusive. Indeed, BRN2
directly inactivates MITF transcription by binding to its promoter in 501-mel melanoma
cells ectopically expressing Brn-2, whereas high levels of MITF allow the transcription of
miR-211, which impairs BRN2 translation [38,39]. BRN2 can also activate the NOTCH
signaling, leading to dedifferentiation via the downstream effector EZH2 (enhancer of zeste
2 polycomb repressive complex 2 subunit) as demonstrated through gene set enrichment
analysis (GSEA) using The Cancer Genome Atlas (TCGA) dataset [40].

Of note, the oncogenic Yes1-associated transcriptional regulator (YAP)/tafazzin (TAZ)
pathway also plays its role in the dedifferentiation process by directly regulating AXL
transcriptionally [41]. When YAP/TAZ is free to enter the nucleus, it binds the TEA domain
transcription factors (TEADs) and forms further complexes with the activator protein 1
(AP-1). The cooperation of these factors allows the transcription of genes involved in
S-phase entry and mitosis [42]. More importantly for this context, however, some of the
most relevant AP-1 transcription factors were measured both at the cell population and
single-cell level in different melanoma lines using multiplexed transcriptional and protein
measurements. Via multivariate statistical modeling, researchers were able to determine
that among the AP-1 family members, some factors that sustain less differentiated programs
exist, such as Fos-related antigen 1 (FRA1), phospho-FRA1S265, FRA2, and cJUN and
phospho-cJUNS73 [43].

Inhibitor of differentiation protein 3 (ID3) is another player highly involved in pheno-
type switching; the transcription profiling of 21 BRAF-mutated melanomas revealed an
upregulation of ID3 in BRAF inhibitor (BRAFi)-resistant tumors compared to treatment-
naïves. ID3 upregulation has been confirmed in additional BRAFi-resistant lines, also
correlating with the transcriptional repression of SOX10 and MITF and transition towards
a more dedifferentiated state [44]. Moreover, a TF recently characterized as a regulator of
phenotype switching is the Aryl hydrocarbon Receptor (AhR). Indeed, the interaction of
AhR with SRC, as shown by proximity ligation assay, resulted in the phosphoactivation of
SRC and FAK, eventually converging in the translocation of the YAP/TAZ complex to the
nucleus [45,46], the role of which in these processes has already been discussed above.

Finally, recent findings suggest that a remarkable increase of fibroblast growth factor 7
(FGF7) in dedifferentiated nonmalignant melanocytes is a determinant factor involved in
transferring melanosomes towards keratinocytes. However, additional studies are needed
to fully understand the role of FGF7 in dedifferentiation [31].

2.2. New Progressive Model of Plasticity

Despite the previously defined features allowing the separation of the two well-
established transcriptional states, phenotype switching is a fluctuant mechanism that can
also rely on intermediate states of differentiation (Figure 1). Variable MITF expression levels
can be a valid example of progressive dedifferentiation and can determine various outputs
in terms of phenotypic state. The variability in MITF expression relies on the regulation
of its transcription factors, post-translational modifications (PTMs) of the protein, and its
competition with other TFs for common regulatory elements. MITF has been described as
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a rheostat model since its high activity promotes differentiation, whereas normal activity
leads cells to proliferation. Low levels of MITF confer invasiveness and stemness properties,
and its absence promotes senescence [33,47].

Since a dual classification of transcriptional states nowadays falls restrictive, new
progressive differentiation subtypes have been described and subsequently listed: hyper-
differentiated cells, melanocytic proliferating cells, transitory-intermediate migrating cells,
therapy-induced starved-like melanoma cells, neural crest stem cell-like (NCSC-like) cells,
and MITF-negative undifferentiated cells, respectively (Figure 1) [16,48].

Melanocytic proliferating cells and MITF-undifferentiated cells reflect, respectively,
proliferative and invasive transcriptional programs.

The hyperdifferentiated state is determined by short exposure to BRAFi. In this
context, melanoma cell lines display strong melanocytic features, such as upregulation of
melanocytic antigens MART-1 (also known as MLANA) and gp100 (also known as PMEL)
and increase in MITF expression [16].

The transitory state has been identified as a subset of cells enriched for gene ontology
(GO) terms associated with both differentiation and the neural crest phenotype. When
expression patterns of some TFs and receptor tyrosine kinases (RTK) genes were evaluated,
this state displayed MITFHigh/AXLLow/SOX10High as the proliferative state and NGFRHigh

(neural growth factor receptor) levels as the NCSC-like state [48]. The transitory phenotype
is moderately sensitive to targeted therapies and is stabilized by the underlying expression
of TFs such as SOX6, nuclear factor of activated T cells 2 (NFATC2), early growth response
3 (EGR3), E74 like ETS transcription factor 1 (ELF1), and ETS variant transcription factor 4
(ETV4), as identified by inferring gene regulatory network on single-cell and bulk RNAseq
data [49].

The transition towards starved-like melanoma cells occurs as a consequence of nutrient
deprivation. This phenotype is characterized by peculiar metabolic alteration and a more
slow-cycling dedifferentiated state [50]. Starved-like melanoma cells are usually no longer
able to synthesize monounsaturated fatty acids (MUFA), thus requiring fatty acids uptaken
from the TME, sustained by increased expression of CD36, a fatty acid transporter that
determines a slow-cycling dedifferentiated phenotype [50,51]. This slow-cycling persistent
state enables melanoma cells to survive selective pressure, and it can be easily switched
off once environmental insults end, as it relies on epigenetic programs. Slow-cycling cells
display high expression of H3K4 demethylase KDM5B (lysine demethylase 5B). KDM5B
has been depicted as a protein harboring a “Janus-faced” role since it apparently impairs
invasiveness and melanoma growth, but on the other side, it plays a fundamental role in
allowing survival of melanoma to therapeutic insults, as shown in models induced to have
a stable expression of KDM5B [52].

Longer exposure to BRAFi tends to stabilize the NCSC-like state [53]. Such phenotype
is described as MITFLow and is also known for its high expression of NGFR, SOX10, AXL,
aquaporin 1 (AQP1), GDNF family receptor alpha 2 (GFRA2), and retinoid X receptor
gamma (RXRγ) [48]. Besides well-established markers of NCSC-like status, a significant
increase in expression of lysine demethylase 4B (Kdm4b) has been recently characterized in
the Cancer Cell Line Encyclopedia (CCLE) dataset and other 21 human melanoma lines [54].
The NCSC-like phenotype also tends to acquire expression of neural markers, such as SOX2,
SOX5, and, SOX8 [55].

Finally, the MITF-negative undifferentiated cells are prone to lose the expression of
SOX10, hence acquiring a preneural crest phenotype upregulating SOX9, as demonstrated
in MITF-methylated melanoma cells knocked out for SOX10 [55].

2.3. Phenotype Switching: An Acquired or Pre-Existing Feature?

Despite the scientific dispute regarding the existence of cancer stem cells (CSCs),
scientific evidence has been highlighting that tumor growth relies on CSCs, at least in
some cancers, such as breast cancer, colorectal cancer, brain cancer, and leukemia [56]. The
hypothesis of a hierarchical organization started by CSCs in melanoma is still debated.
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In the meanwhile, several studies on patients with melanoma at different stages have
shown that melanoma CSCs are the result of peculiar dynamic and reversible mechanisms,
allowing phenotype transitions among differentiation states [57].

Over the years, the scientific community has been trying to determine the real origin of
such plasticity, particularly whether it is induced by stressors and therapies, or if different
phenotypes already exist in treatment-naïve tumors. In 2017, Ennen et al. found that
treatment-naïve primary human melanoma already shows a predominant presence of
MITFHigh cells, sprinkled with a sporadic dedifferentiated population of AXLHigh/MITFLow

cells [58]. Such evidence was confirmed in 2018 by Rambow and coworkers, who observed
the presence of different subpopulations (in terms of cell phenotypes) among drug-naïve
lesions in patients [59]. Notably, a coexistence of states defined as proliferative, invasive,
and NCSC was depicted [59]. Upon treatment with MAPK inhibitors (MAPKi), melanoma
exacerbates some of these subclones, such as NCSCs, and further emerging clones defined
as starved melanoma cells (SMCs), and MITFHigh pigmented populations arise [59].

In 2017, Shaffer and coworkers, after monitoring cells exposed to MAPKi by long-term
time-lapse imaging, hypothesized that phenotypic plasticity-driven resistance occurs in
two stages: a rare subpopulation of cells expressing some resistant markers is already
pre-resistant within the tumor and, upon drug exposure, these cells stabilize their resistant
phenotype via transcriptome changes [60].

Thus, different phenotype states may coexist in melanoma; however, when exposed to
environmental stressors or therapy insults, the tumors may employ their transcriptome
complexity to favor the development or selection of drug-tolerant phenotypes. Despite the
high genetic ITH of melanoma, most of the time resistance to therapies does not rely on
genetic mutations. Two major mechanisms of resistance have been described: Darwinian
selection, based on pre-existing subclones already resistant to treatments (given their
genetic or epigenetic landscape), or Lamarckian induction, consisting of therapy-induced
phenotypes that were not resistant to treatment a priori [61].

During Lamarckian induction, malignant cells exploit the ability to adapt to environ-
mental cues without turning to genetic lesions in a dynamic and plastic way [61].

Although research has been conducted to identify potential effectors of plasticity, the
major players have yet to be identified. However, phenotype transition can be stabilized
with treatment, and numerous external factors that vary with drug exposure can converge
to select a specific phenotype or facilitate phenotype switching.

For instance, proinflammatory response driven by immunotherapies leads to secretion
of cytokines [16]. Tumor necrosis factor (TNF)-α has been identified as a key cytokine im-
pacting melanocytic antigens and leading to the failure of adoptive T-cell transfer therapies
(ACTs) in the transgenic mouse-derived HCmel3 melanoma cell line [62]. This cytokine
induces downstream activation of the nuclear factor-κB (NFκB) and c-Jun pathways. Since
c-Jun and MITF transcriptionally repress each other, TNF-α induces MITF loss favoring c-
Jun induction and establishing a feed-forward mechanism nourishing MITFLow/c-JunHigh

subclones. The latter phenotype allows myeloid cell infiltration counteracting immune
responses towards immunotherapies [63].

Another key factor that varies upon immunotherapies is the environmental trans-
forming growth factor-beta 1 (TGF-β). This can drive resistance by lowering expression of
major histocompatibility complex class I (MHC-I) and limiting infiltration of T cells into
the tumor. The presence of this soluble factor within the melanoma microenvironment also
leads to the enrichment of the AXLHigh/MITFLow phenotype [64].

A key role concerning therapy resistance is played by the cells composing the TME;
indeed, MAPK inhibition also impacts the fibroblastic stroma. By using engineered cells
expressing a kinase biosensor revealing MAPK pathway activity, researchers observed that
BRAF inhibition leads to proliferation and paradoxical hyperactivation of extracellular
signal-regulated kinase (ERK) signaling in BRAF wild-type cells [65,66]. Activation of the
melanoma-associated fibroblasts (MAFs) leads to remodeling of the extracellular matrix
(ECM) and increases its stiffness, converging on the integrin β1/FAK/Src signaling in
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melanoma cells and further translocation of YAP/TAZ to the nucleus. YAP signaling
converges both on ERK activation, conferring melanoma a vertical resistance by down-
stream activation of the MAPK pathway, and on stabilization of a more dedifferentiated
status [66,67].

Despite big scientific efforts to identify factors involved in treatment-induced dedif-
ferentiation, the characterization of plasticity markers still results easier than determining
specific molecules driving resistance. Extensive and in-depth analyses are still needed to
determine who and what confers melanoma the ability to switch phenotypes.

3. Characteristics That Make Plasticity Advantageous for Melanoma
3.1. Reversibility

Melanoma plasticity mostly relies on non-mutational mechanisms driving phenotype
switching, thus making it a reversible process. Melanoma cells sense the inputs from
the TME and adapt their biological properties based on necessities. The advantage of
non-mutational adaptations is that they are proportional to the stress/situation perceived,
resulting in the activation of either short-term or stable transcriptional programs [59].

Treatment exposure leads to inevitable changes in chromatin conformation and sta-
bilization of the transcriptional-resistant states. Assay for transposase-accessible chro-
matin using sequencing (ATAC-seq) analyses confirmed a high reshaping of TF-accessible
sites [60]. Upon 4 weeks of treatment with vemurafenib (BRAFi), treated cells gain about
9000 TF accessible sites, determining a more open status of the chromatin. In particular,
during the first week of treatment with MAPKi, an incredible loss of accessible sites for
SOX10 binding and a gaining of accessible sites for TEAD and Jun/AP-1 occur [60].

Reversibility is a key feature employed by resistant cells to escape from treatments and
metastasize to other tissues. Dedifferentiation has been reported as a transient response of
adaptive resistance, providing the tumor a way out to acquire resistance [16].

The necessity of this dynamic switch between states has been proven by a study on
NGFRHigh cells. NGFRHigh subpopulation allows the tumor to transiently escape from
therapeutic insults. However, as demonstrated in xenograft mice injected with inducible
NGFR-overexpressing cells, efficient metastasization to the lungs could not be achieved
until NGFR was overexpressed. Thus, once reached the site of metastasis, the tumor recurs
to its reversibility properties to switch towards a more differentiated phenotype and restore
its proliferative features [68].

However, reversibility can also be a double-edged sword for the tumor. Indeed, despite
the reversibility of epigenetic mutations, when a tumor is exposed to MAPK inhibitors for
a prolonged time, a new phenotype is established, leading to adaptive resistance and to a
phenomenon known as “drug addiction”. When such a phenotype is highly stable and the
tumor becomes MAPKi-addicted, drug removal can result in cancer cell death since the cell
is no longer able to switch quickly its stable phenotype to a different one, as demonstrated
in melanoma cell lines, animal models, and patients [69].

3.2. Heterogeneity of Phenotypes: Treatment Failure and Metastasis

The dual classification of transcriptional cell states into melanocytic and invasive
phenotypes is now considered restrictive and incomplete. Multiple transcriptional pro-
grams have been identified over time, as reported in the previous paragraphs, and different
melanoma subpopulations can differently contribute to either tumor growth or metastatic
dissemination.

Melanoma takes advantage of the heterogeneity of subpopulations with different
tasks; for instance, there is a newly characterized population mainly devoted to promoting
metastatic dissemination without playing any role in the expansion of the primary tu-
mor [70]. These pre-migratory cells, defined as the pre-epithelial–mesenchymal transition
(pre-EMT) population, were identified by performing clonal analysis on tumors grafted into
syngeneic mouse models: such cells are supposed to function as “melanoma stem cells”.
These pre-mesenchymal melanoma cells strictly associate with tumor vasculature and give
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rise to two different offspring: cells that maintain features similar to the mother and are able
to further colonize the proximal vasculature, and another type of cell capable of detaching
from the local niche and reaching distant sites. By predicting cell-to-cell communication
within TME, scientists were able to characterize that stimulation and maintenance of the
pre-EMT population are sustained by activation of NOTCH signaling mediated by delta-
like 4 (DLL4) ligands present within endothelial cells (ECs) [70]. Thus, the cooperation of
cells from TME is also pivotal for the maintenance of this transcriptional heterogeneity and
cancer spread over the body.

Subpopulational heterogeneity is crucial for the establishment of more invasive pheno-
types. Indeed, researchers assessed that MITFHigh cells are fundamental for the outgrowth
of the resistant population of slow-cycling AXLHigh cells. Early upon BRAF inhibitor treat-
ment, cells that show high levels of MITF start to secrete endothelin 1 (EDN1), a master
regulator of heterogeneity. EDN1 plays a dual role since it is sensed both by AXLHigh cells
through the endothelin receptor type A (EDNRA) and by the MITFHigh population through
the EDNRB receptor. Downstream pathways activated by EDN1 lead to the expansion of
BRAF-resistant AXLHigh cells and to the protection of MITFHigh cells from MAPKi. The
latter was demonstrated in vivo since A375 cells knocked out for the EDNRB receptor and
injected into the zebrafish xenograft model were not protected from BRAF inhibition [71].

Finally, heterogeneity conferred by plasticity seems to be involved in metastasis.
Migration of clusters of cells has been observed in melanoma and results in efficient tumor
dissemination and premetastatic conditioning. Heterogeneity among phenotypes in these
clusters allows for the survival of migrating cells and easy seeding at the new site of
metastasis, as demonstrated using circulating tumor cells derived from the blood sample
of patients with metastatic cutaneous melanoma [72]. For instance, once detached from
the primary site, cells must face anoikis, the stress of detachment; in this case, only cells
harboring MITFLow result resistant to detachment from the ECM [73]. Since MITFHigh has
been found in clusters of circulating tumors, Arozarena et al. hypothesized that MIFTLow

cells within metastatic clusters protect a subpopulation sensitive to anoikis [14,74].

3.3. Plasticity and TME Are Highly Interconnected

Based on their surroundings, melanoma cells sense external inputs and use dynamic
switches among phenotypes to adapt to new environmental conditions; thus, plasticity is
highly dependent on signals of the TME.

Different outcomes exploited by YAP signaling based on environmental components
provide a good example of how easily TME influences phenotype switching. The YAP/TAZ
pathway can be activated by different inputs, such as loss of cell polarity, mechanical forces,
cell contact, and diffusible signals [75]. Activation of FAK1 is one of the leading causes
contributing to the activation of the YAP/TAZ pathway and the following switching to less
differentiated phenotypes [46,76].

Moreover, cancer-associated fibroblasts (CAFs) are able to suppress YAP/PAX activity
by the secretion of TGF-β leading to the activation of the alternative YAP/TEAD/SMAD
(sma- and mad-related protein) signaling pathway that promotes melanoma to dedifferen-
tiation. In the absence of CAFs, YAP collaborates with PAX to express MITF, as supported
by chromatin immunoprecipitation-PCR (ChIP-PCR) analysis showing an enrichment of
YAP localization at the MITF promoter [67].

In addition, nutrient supply by the TME plays a central role in phenotype switching;
indeed, glucose or glutamine starvation promotes the invasive phenotype [32,77]. Nutrient
restriction, oxygen limitation, and an acidic TME lead to the upregulation of activating
transcription factor 4 (ATF4), resulting in the transcriptional repression of MITF and an
increase in the expression of AXL [32].

Indeed, MITF is considered a lineage-restricted regulator of stearoyl-CoA desaturase
(SCD), sustaining cell growth and division through the production of necessary MUFAs [51].
Thus, through stable isotope labeling by amino acids in cell culture (SILAC) followed by
liquid chromatography-mass spectrophotometry (LC-MS), researchers observed that low
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levels of MITF correspond to a drop in SCD and a great reshaping of cell metabolism.
Consistent decrease of SCD activates a positive feedback loop driven by NFκB, establish-
ing the MITFLow/AXLHigh phenotype, typical of more dedifferentiated melanomas [51].
Once MUFA synthesis is decreased and it does not depend anymore on MITF regulation,
metastatic outgrowth is sustained by fatty acid uptake from the microenvironment by
standard or alternative fatty acid transporters such as CD36 or solute carrier family 27
member 1 (SLC27A1) [51].

However, the impact of TME on cancer plasticity is not unidirectional. Recently, a new
mechanism capable of reshaping the response of the innate immune system in melanoma
has been observed. In particular, natural killer (NK)-cell action is guided through recog-
nition of a specific ligand expressed by melanocytes, MHC Class I polypeptide-related
sequence A/B (MICA/B), mediated by its receptor natural-killer group 2 member D
(NKG2D) [78]. MICA/B ligand can be cleaved by a sheddase known as ADAM metal-
lopeptidase domain 10 (ADAM10) [78,79]. Since MITF directly regulates transcription
of ADAM10, high levels of MITF within melanoma cells lead to an upregulation of this
sheddase and a reduction of NK-cell recognition of the tumor [78].

4. Phenotype Switching as a Therapeutic Strategy Resource

As reported, cancer plasticity is a remarkable feature that confers cancer a great
advantage. On the other hand, this mechanism offers enormous availability of new targets
ready to be explored. Table 2 reports the degree of sensitivity displayed by different
dedifferentiation states to standard MAPKi and novel drugs targeting phenotype switching.

By high-throughput profiling of human melanoma cell lines, researchers have assessed
that every state of differentiation adapts to targeted therapy in a different fashion. For
instance, a more undifferentiated phenotype is associated with incomplete inhibition of
MAPKs, whereas an NCSC-like state adapts by reducing its MAPK signaling require-
ment. Thus, based on the dependence on the MAPK pathway, each state of differentia-
tion can be tackled by different therapeutic compounds, and among them are promising
epigenetic modulators [54]. In particular, BRAF-mutant melanoma cell lines expressing
NGFRLow/AXLHigh are sensitive to SP2509, a Kdm1a inhibitor, only if not pretreated with
MAPKi, probably by using the MAPK pathway to restore cell senescence [54]. On the other
hand, NCSC-like cells mutated for BRAF and expressing NGFRHigh/AXLLow are more
vulnerable to the combination of Kdm4b inhibitors with drugs targeting Braf and Mek [54].
Similar to Kdm4d inhibitors, bromodomain and extraterminal motif (BET) inhibitors, when
combined with BRAF/MEK inhibitors, can also efficiently kill melanoma cell lines mutated
for BRAF [54,80].

The use of these drugs seems very selective, with no effect on melanocytes that have
not been transformed. However, epigenetic modulators are not limited to a specific target
gene; epigenetic factors play a crucial role in the epigenetic homeostasis of the whole
chromatin.

Another valid strategy to avoid melanoma plasticity involves targeting ECM compo-
nents. Among all external factors affecting phenotype switching, the composition of the
ECM can be determinant for the dedifferentiation process. Recently, a study identified that
melanoma cells insensitive to BRAF inhibitors are characterized by a remarkable expression
of the metalloproteinase MT1-MMP and other components of ECM, such as fibronectin
and collagen. MT1-MMP is able to activate the survival signaling of melanoma by binding
integrin β1 (ITGB1), enabling the downstream activation of the survival pathway [81]. One
well-known downstream effector of ITGB1 is FAK1, which auto-phosphorylates at tyro-
sine 397, converging on pathways involved in dedifferentiation [81]. MT1-MMP inhibitor,
ND322, once combined with BRAFi can re-sensitize resistant clones, as demonstrated in a
patient-derived xenograft (PDX) model of BRAF-mutant K457-resistant cells [81].
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Different strategies to directly target phenotypic switching are now emerging. Among
these are downstream and upstream combined inhibition of BRN2 by small molecules
targeting its effectors EZH2 or its transcriptional regulator NFATc2, respectively, as ob-
served in NFAT2+ EZH2+ melanoma cell lines [40,82]. Moreover, enapotamab vedotin is
an antibody conjugated with an antimitotic drug that selectively binds and kills AXLHigh

cells, as previously shown in PDXs [83]. Finally, many efforts have been made to tar-
get the NCSC-like population using RXRγ antagonists (HX531) [50], NGFR inhibitors
(AG-879) [84], and FAK1 inhibitors (PF562271) [85]. Another important plausible strategy
to target dedifferentiated cells relies on SRC inhibition via Dasatinib combined with BRAFi
(Dabrafenib). According to recent findings, this last combination can double the overall
survival rate of Mel006R BRAFi-resistant PDX when compared to BRAFi alone [45].

Moreover, a therapy to delay the onset of acquired resistance has been developed.
Through the screening of pharmacological inhibitors, researchers have identified how to
selectively target a resistant subpopulation of melanoma by combining birinapant, an in-
hibitor of cellular inhibitor of apoptosis 1/2 (cIAP1/2), with Braf/Mek inhibitors. Proteins
of the cIAP family have a role in the inhibition of apoptosis, and they used to be overex-
pressed in SOX10-deficient cells. In A375 xenograft mouse models, the combination of
birinapant plus MEK and BRAF inhibitors displayed a durable response with no recurrence
after drug removal when compared to BRAFi plus MEKi alone [86].

Finally, targeting plasticity can enhance melanoma immunogenicity and immune
checkpoint inhibitor function [87]. Recent publications reported SOX10 as a promising
target, allowing the transformation of an immunological “cold” tumor into a “hot” one.
Indeed, SOX10 regulates programmed death-ligand 1 (PD-L1) expression through the
interferon regulatory factors IRF4-IRF1 axis. IRF1 determines tumor immunogenicity
through induction of targets, such as antigen-presenting molecules (MHC class I, TAP,
β2M) and ligands of immune inhibitory receptors (PD-L1 and PD-L2). SOX10 directly
induces the transcription of IRF4, a negative regulator of IRF1; thus, its inhibition can
enhance tumor responsiveness to anti-PD1 therapy, as observed in mice subcutaneously
implanted with murine D4M melanoma cells [87].

New therapies to tackle phenotype switching are continuously being developed;
however, the heterogeneity typically associated with plasticity makes melanoma a sneaky
target. As a result, personalized medicine combined with these alternative therapies
represents a potential option to challenge this tumor.
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Table 2. Sensitivity of different states of differentiation to most common MAPK inhibitors and new compounds targeting phenotype switching.

State of Differentiation Markers
of Differentiation

Sensitivity to Current MAPK
Therapies New Drugs * Effect of the Drugs

Hyperdifferentiated cells MART-1High, gp100High,
AXLLow [88]

MAPKi tolerant
Dabrafenib (BRAFi) + Trametinib

(MEKi) [16,50]

ACY-1215 (HDAC1i) + RGFP109
(HDAC3i) + anti-PD1 [87]

The combo of HDACs inhibitors
antagonizes SOX10 expression to

improve immunogenicity of “cold”
tumors [87]

Melanocytic
proliferating cells MITFHigh, SOX10High, AXLLow [48] Therapy sensitive [16]

Transitory-intermediate
migrating cells

MITFHigh, NGFRHigh, SOX10High,
AXLLow [48]

Low tolerance [16]

Therapy-induced
starved-like melanoma cells

CD36High [50], KDM5BHigh,
MITFLow [52]

TMECG (tyrosinase
(TYR)-processed antimetabolic

agent) + Cpd1 [52]

Medium tolerance
PLX4720 (BRAFi) + Cobinetinib (MEKi)
[52], Dabrafenib (BRAFi) + Trametinib

(MEKi) [16,50]

Cpd1 enhances KDM5BHigh expression
and sensitizes to TMECG [52]

NCSC-like cells NGFRHigh, SOX10High, AXLHigh,
RXRγHigh, MITFLow [48]

High tolerance due to reduced
requirement of MAPK pathway
Vemurafenib (BRAFi) alone or +

Trametinib (MEKi) [54],
Dabrafenib (BRAFi) + Trametinib

(MEKi) [50,84,85]

Kdm4bi + BRAFi/MEKi [54] Epigenetic modulator targeting
NgfrHigh populations [54]

Enapotamab vedotin [83] It kills selectively AXLHigh cells [83]

RXRγ antagonists (HX531) +
MAPKi [50]

It delays resistance onset and decreases
accumulation of NCSC-like cells

NGFRi (AG-879) [84] This drug has been reported to block
NGFR [84]

FAK1 inhibitors (PF562271)+ RXRγ
antagonists (HX531) +

Dabrafenib/Trametinib [85]

Combination to target nongenetic
resistance and efficiently remove

NCSC-like cells [85]

MITF-negative
undifferentiated cells

AXLHigh, SOX9High, MITFLow,
SOX10Low

[3]

High tolerance due to incomplete
inhibition of MAPK pathway

Vemurafenib (BRAFi) alone or +
Trametinib (MEKi) [54],

Dabrafenib (BRAFi) + Trametinib
(MEKi) [50,83,86]

Kdm1a inhibitor (SP2509) if not
pretreated with MAPKi [54]

Epigenetic modulator targeting
NGFRLow/AXLHigh populations [54]

Enapotamab vedotin [83] It kills selectively AXLHigh cells [83]

Birinapant combined with
BRAF/MEK inhibitors [86]

Birinapant is an inhibitor of cIAP1/2
able to kill SOX10-deficient cells [86]

* Enapotamab vedotin is in Phase II of clinical trials, whereas all the other new drugs targeting phenotype switching are in preclinical phase
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5. Conclusions

Melanoma is one of the rarest and deadliest forms of skin cancer. If not treated
at early stages, it tends to acquire a high metastatic potential and gains resistance to
standard therapies [1]. Most of the time, the resistance is acquired through non-mutational
mechanisms, resulting in the switching of cell phenotype (Figure 2). However, since
reprogramming is a feature shared by both malignant and non-malignant melanocytes,
resistant lines can already exist in treatment-naïve melanoma (Figure 2). As reported,
when cells are exposed to treatments, they tend to establish a more resistant phenotype,
while additional transient phenotypes emerge to challenge drug exposure. Reversibility,
heterogeneity, and crosstalk with TME are hallmarks of plasticity that provide melanoma
cells with significant metastatic potential and therapeutic resistance (Figure 2). Over the last
decade, researchers have attempted to identify even more markers, as well as effectors of
plasticity. Despite promising results shown by new compounds targeting the main players
of plasticity, tumors remain challenging to treat due to acquired dynamic plasticity and
heterogeneity. A promising solution relies on a combination of personalized medicine
with novel drugs targeting molecular players of phenotype switching (Figure 2). In this
review, we provided readers with brand-new insights into melanoma plasticity as well as
ground-breaking treatments to tackle phenotype switching. We also emphasized the need
to further develop this cancer biology field in order to identify new plausible therapeutic
strategies.
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