Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of CT Findings
2.3. Diagnosis of ILD during Durvalumab Treatment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Incidence and Severity of ILD during Durvalumab Treatment
3.3. Comparison of Characteristics between Patients with and without Grade ≥2 ILD
3.4. Logistic Regression Analysis of the Risk Factors for Grade ≥2 ILD
3.5. Risk Factors for Early Onset Grade ≥2 ILD
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- SEER Cancer Statistics Review (CSR) 1975–2016. Available online: https://seer.cancer.gov/archive/csr/1975_2016/ (accessed on 23 March 2022).
- Scott, J.A.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar]
- Scott, J.A.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC—An Update from the Pacific Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- NCCN. Guidelines ver.3 2022. Available online: https://www.nccn.org/guidelines/recently-published-guidelines (accessed on 20 March 2022).
- Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients with Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hong, D.; Zhang, X.; Lu, X.; Miao, J. PD-1 inhibitors increase the incidence and risk of pneumonitis in cancer patients in a dose-independent manner: A meta-analysis. Sci. Rep. 2017, 7, 44173. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Saito, G.; Oya, Y.; Taniguchi, Y.; Kawachi, H.; Daichi, F.; Matsumoto, H.; Iwasawa, S.; Suzuki, H.; Niitsu, T.; Miyauchi, E.; et al. Real-world survey of pneumonitis and its impact on durvalumab consolidation therapy in patients with non-small cell lung cancer who received chemoradiotherapy after durvalumab approval (HOPE-005/CRIMSON). Lung Cancer 2021, 161, 86–93. [Google Scholar] [CrossRef]
- Shintani, T.; Kishi, N.; Matsuo, Y.; Ogura, M.; Mitsuyoshi, T.; Araki, N.; Fujii, K.; Okomura, S.; Nakamatsu, K.; Kishi, T.; et al. Incidence and Risk Factors of Symptomatic Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy and Consolidation Durvalumab. Clin. Lung Cancer 2021, 22, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Mouri, A.; Kaira, K.; Yamaguchi, O.; Shiono, A.; Hashimoto, K.; Nishihara, F.; Shinomiya, S.; Akagami, T.; Marayama, Y.; et al. Chemoradiotherapy followed by durvalumab in patients with unresectable advanced non-small cell lung cancer: Management of adverse events. Thorac. Cancer 2020, 11, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Ono, A.; Kawabata, T.; Mamesaya, N.; Kawamura, T.; Kobayashi, H.; Omori, S.; Wakuda, K.; Kenmotsu, H.; Naito, T.; et al. Clinical and radiation dose-volume factors related to pneumonitis after treatment with radiation and durvalumab in locally advanced non-small cell lung cancer. Investig. New Drugs 2020, 38, 1612–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.A.; Noh, J.M.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Ahn, M.J.; Pyo, H.; Chan Ahn, Y.; Park, K. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-small-cell lung cancer. Lung Cancer 2020, 146, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, K.; Bi, N.; Zhang, L.; Jiang, W.; Liang, J.; Deng, L.; Wang, X.; Wang, J.; Wang, J.; et al. Efficacy and safety of immune checkpoint inhibitor consolidation after chemoradiation in patients of Asian ethnicity with unresectable stage III non-small cell lung cancer: Chinese multicenter report and literature review. Thorac. Cancer 2020, 11, 2916–2923. [Google Scholar] [CrossRef]
- Mayahara, H.; Uehara, K.; Harada, A.; Kitatani, K.; Yabuuchi, T.; Miyazaki, S.; Ishihara, T.; Kawaguchi, H.; Kubota, H.; Okada, H.; et al. Predicting factors of symptomatic radiation pneumonitis induced by durvalumab following concurrent chemoradiotherapy in locally advanced non-small cell lung cancer. Radiat. Oncol. 2022, 17, 7. [Google Scholar] [CrossRef]
- Hatabu, H.; Hunninghake, G.M.; Lynch, D.A. Interstitial Lung Abnormality: Recognition and Perspectives. Radiology 2019, 291, 1–3. [Google Scholar] [CrossRef]
- Hatabu, H.; Hunninghake, G.M.; Richeldi, L.; Brown, K.K.; Wells, A.U.; Remy-Jardin, M.; Verschakelen, J.; Nicholson, A.G.; Beasley, M.B.; Christiani, D.C.; et al. Interstitial lung abnormalities detected incidentally on CT: A Position Paper from the Fleischner Society. Lancet Respir. Med. 2020, 8, 726–737. [Google Scholar] [CrossRef]
- Ledda, R.E.; Milanese, G.; Milone, F.; Leo, L.; Balbi, M.; Silva, M.; Sverzellati, N. Interstitial lung abnormalities: New insights between theory and clinical practice. Insights Imaging 2022, 13, 6. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Masuda, T.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Nakashima, T.; Miyamoto, S.; Tsutani, Y.; Iwamoto, H.; Fujitaka, K.; et al. Pre-existing interstitial lung abnormalities are risk factors for immune checkpoint inhibitor-induced interstitial lung disease in non-small cell lung cancer. Respir. Investig. 2019, 57, 451–459. [Google Scholar] [CrossRef]
- Shimoji, K.; Masuda, T.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Nakashima, T.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; Hamada, H.; et al. Association of Preexisting Interstitial Lung Abnormalities with Immune Checkpoint Inhibitor-Induced Interstitial Lung Disease Among Patients with Nonlung Cancers. JAMA Netw. Open 2020, 3, e2022906. [Google Scholar] [CrossRef]
- Palma, D.A.; Senan, S.; Tsujino, K.; Barriger, R.B.; Rengan, R.; Moreno, M.; Bradley, J.D.; Kim, T.H.; Ramella, S.; Marks, L.B.; et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Li, G.; Zang, S.; Zhang, S.; Yao, L. Risk and predictors for early radiation pneumonitis in patients with stage III non-small cell lung cancer treated with concurrent or sequential chemoradiotherapy. Radiat. Oncol. 2014, 9, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhou, Z.; Wu, A.; Cai, Y.; Wu, H.; Chen, M.; Liang, S. Preexisting radiological interstitial lung abnormalities are a risk factor for severe radiation pneumonitis in patients with small-cell lung cancer after thoracic radiation therapy. Radiat. Oncol. 2018, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Vogelius, I.R.; Bentzen, S.M. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol. 2012, 51, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Lei, Z.; Wu, H.; Lu, H. Evaluating risk factors of radiation pneumonitis after stereotactic body radiation therapy in lung tumor: Meta-analysis of 9 observational studies. PLoS ONE 2018, 13, e0208637. [Google Scholar] [CrossRef] [PubMed]
- Putman, R.K.; Hatabu, H.; Araki, T.; Gudmundsson, G.; Gao, W.; Nishino, M.; Okajima, Y.; Dupuis, J.; Latourelle, J.C.; Cho, M.H.; et al. Association Between Interstitial Lung Abnormalities and All-Cause Mortality. JAMA 2016, 315, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Hata, A.; Schiebler, M.L.; Lynch, D.A.; Hatabu, H. Interstitial Lung Abnormalities: State of the Art. Radiology 2021, 301, 19–34. [Google Scholar] [CrossRef]
- Washko, G.R.; Hunninghake, G.M.; Fernandez, I.E.; Nishino, M.; Okajima, Y.; Yamashiro, T.; Ross, J.C.; José Estépar, R.S.; Lynch, D.A.; Brehm, J.M.; et al. Lung volumes and emphysema in smokers with interstitial lung abnormalities. N. Engl. J. Med. 2011, 364, 897–906. [Google Scholar] [CrossRef] [Green Version]
- Araki, T.; Putman, R.K.; Hatabu, H.; Gao, W.; Dupuis, J.; Latourelle, J.C.; Nishino, M.; Zazueta, O.E.; Kurugol, S.; Ross, J.C.; et al. Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study. Am. J. Respir. Crit. Care Med. 2016, 194, 1514–1522. [Google Scholar] [CrossRef] [Green Version]
- Doyle, T.J.; Washko, G.R.; Fernandez, I.E.; Nishino, M.; Okajima, Y.; Yamashiro, T.; Divo, M.J.; Celli, B.R.; Sciurba, F.C.; Silverman, E.K.; et al. Interstitial lung abnormalities and reduced exercise capacity. Am. J. Respir. Crit. Care Med. 2012, 185, 756–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelsson, G.T.; Gudmundsson, G. Interstitial lung abnormalities—Current knowledge and future directions. Eur. Clin. Respir. J. 2021, 8, 1994178. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Hirano, C.; Horimasu, Y.; Nakashima, T.; Miyamoto, S.; Iwamoto, H.; Ohshimo, S.; Fujitaka, K.; Hamada, H.; Nattori, N. The extent of ground-glass attenuation is a risk factor of chemotherapy-related exacerbation of interstitial lung disease in patients with non-small cell lung cancer. Cancer Chemother. Pharmacol. 2018, 81, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, M.N.; Harrison, N.K. New perspectives on basic mechanisms in lung disease. 1. Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax 1992, 47, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Sekine, Y.; Yoshida, S.; Suzuki, M.; Shibuya, K.; Yonemori, Y.; Hiroshima, K.; Nakatani, Y.; Mizuno, S.; Takiguchi, Y.; et al. Risk of acute exacerbation of interstitial pneumonia after pulmonary resection for lung cancer in patients with idiopathic pulmonary fibrosis based on preoperative high-resolution computed tomography. Surg. Today 2011, 41, 914–921. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Huang, Y.; Li, W.; Zhao, J.; Yang, Y.; Li, C.; Wang, L.; Bi, N. Real-World Safety and Efficacy of Consolidation Durvalumab After Chemoradiation Therapy for Stage III Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1154–1164. [Google Scholar] [CrossRef]
Patient Characteristics | Patients, No. (%) (n = 148) |
---|---|
Age, years median (range) | 71 (43–86) |
Sex Male/female | 106 (71.6)/42 (28.4) |
BMI median (range) | 21.2 (13.4–31.2) |
ECOG PS 0/1/2 | 111 (75.0)/34 (23.0)/3 (2.0) |
Smoking status Non-smokers/former or current smokers | 23 (15.5)/125 (84.5) |
Brinkman Index median (range) | 857.5 (0–3840) |
Autoimmune disease +/− | 7 (4.7)/141 (95.3) |
Clinical stage II/III/IV/postoperative recurrence | 12 (8.1)/134 (90.5)/1 (0.7)/1 (0.7) |
Histological diagnosis Adenocarcinoma/squamous cell carcinoma/others | 77 (52.0)/64 (43.2)/7 (4.7) |
Driver mutation EGFR/ALK/-/not tested | 14 (9.5)/1 (0.7)/85 (57.4)/48 (32.4) |
PD-L1 TPS <1%/1–49%/≥50%/not tested | 29 (19.6)/35 (23.6)/41 (27.7)/43 (29.1) |
Laboratory findings | Median (range) (n = 148) |
WBC count (/μL) | 3830 (1300–8880) |
Lymphocyte count (/μL) | 730 (180–5000) |
LDH level (IU/L) | 192 (126–413) |
CRP level (mg/dL) | 0.485 (0.016–13.58) |
KL-6 level (U/mL) | 295 (116–2221) |
SpO2 level (%) | 98 (92–100) |
Information of CRT | Patients, No. (%) (n = 148) |
Concurrent chemotherapy | |
Weekly carboplatin + paclitaxel | 87 (58.8) |
Cisplatin + S-1 | 18 (12.2) |
Cisplatin + vinorelbine | 34 (23.0) |
Daily carboplatin | 5 (3.4) |
Carboplatin + paclitaxel | 1 (0.7) |
Cisplatin + docetaxel | 3 (2.0) |
Total irradiation dose, Gy median (range) | 65 (40–70) |
V5, % median (range) | 42.3 (10.7–83.2) |
V20, % median (range) | 21.6 (2.9–40.7) |
Mean lung dose, Gy median (range) | 12.1 (2.8–19.2) |
Radiation technique, (%) 3D/IMRT/3D+IMRT | 84 (56.8)/53 (35.8)/11 (7.4) |
Best tumor response, (%) CR/PR/SD/PD/not evaluated | 6 (4.1)/102 (68.9)/38 (25.7)/1 (0.7)/1 (0.7) |
Interval between CRT and durvalumab, days median (range) | 17 (1–54) |
CT findings | Patients, No. (%) (n = 148) |
IP +/− | 2 (1.4)/146 (98.6) |
Emphysema +/− | 82 (55.4)/66 (44.6) |
ILAs +/− | 56 (37.8)/92 (62.2) |
Type of ILAs | |
GGA +/− | 41 (27.7)/107 (72.3) |
Reticulation +/− | 30 (20.1)/118 (80.8) |
Honeycombing +/− | 1 (0.7)/147 (99.3) |
Other +/− | 6 (4.1)/142 (95.9) |
Characteristics | Patients, No. (%) (n = 148) |
---|---|
No ILD | 54 (36.5) |
ILD CTCAE Grade 1 2 3 | 44 (29.7) 38 (25.7) 12 (8.1) |
Withdrawal or discontinuation of durvalumab + - | 54 (36.5) 40 (27.0) |
Use of systemic corticosteroids + - | 40 (27.0) 54 (36.5) |
Patient Characteristics | ILD Grade ≤1, n = 98 | ILD Grade ≥2, n = 50 | p-Value |
---|---|---|---|
Age, years median (range) | 71 (43–86) | 73 (51–85) | 0.003 |
Sex, (%) Male/female | 67 (68.4)/31 (31.6) | 39 (26.3)/11 (7.4) | 0.219 |
BMI median (range) | 20.9 (13.36–31.24) | 21.37 (16.36–28.25) | 0.150 |
ECOG-PS, (%) 0/≥1 | 77 (78.6)/21 (21.4) | 34 (68.0)/16 (32.0) | 0.160 |
Smoking status, (%) Non-smokers/former or current smokers | 83 (56.1)/15 (10.1) | 42 (84.0)/8 (16.0) | 0.912 |
Brinkman Index median (range) | 820 (0–2700) | 920 (0–3840) | 0.603 |
Autoimmune disease, (%) +/− | 4 (4.1)/94 (95.9) | 3 (6.0)/47 (94.0) | 0.841 |
Histology, (%) Ad/non-Ad | 55 (56.1)/43 (43.9) | 22 (44.0)/28 (56.0) | 0.163 |
Clinical stage, (%) II/III/IV/post operative recurrence | 8 (8.2)/87 (88.8)/ 2 (2.0)/1 (1.0) | 4 (8.0)/45 (90.0)/ 0 (0.0)/1 (2.0) | 0.915 |
Driver mutation, (%) +/−/not tested | 9 (9.2)/61 (62.2)/ 28 (28.6) | 6 (12.0)/24 (48.0)/ 20 (40.0) | 0.359 |
PD-L1 TPS, (%) <1%/1–49%/≥50%/not tested | 18 (18.4)/23 (23.4)/ 31 (31.6)/26 (26.5) | 11 (22.0)/12 (24.0)/ 10 (20.0)/17 (34.0) | 0.440 |
Laboratory findings | |||
WBC count (/μL), median (range) | 4100 (1700–8880) | 3500 (1300–7000) | 0.018 |
Lymphocyte count (/μL), median (range) | 760 (210–2500) | 675 (180–5000) | 0.296 |
LDH level (IU/L), median (range) | 194 (126–343) | 187.5 (131–413) | 0.942 |
CRP level (mg/dL), median (range) | 0.52 (0–13.58) | 0.475 (0–4.7) | 0.440 |
KL-6 level (U/mL), median (range) | 272 (116–991) | 315 (135–2221) | 0.067 |
Information of CRT | |||
Concurrent chemotherapy | 0.472 | ||
Weekly carboplatin + paclitaxel | 55 (56.1) | 32 (64.0) | |
Cisplatin + S-1 | 12 (12.2) | 6 (12.0) | |
Cisplatin + vinorelbine | 24 (24.5) | 10 (20.0) | |
Daily carboplatin | 4 (4.1) | 1 (2.0) | |
Carboplatin + paclitaxel | 0 (0.0) | 1 (2.0) | |
Cisplatin + docetaxel | 3 (3.1) | 0 (0.0) | |
Total irradiation dose, Gy median (range) | 65 (40–70) | 63 (50–70) | 0.699 |
V5, %, (%) median (range) | 40.4 (10.7–83.2) | 47.6 (24–78.9) | 0.001 |
V20, %, (%) median (range) | 20.6 (2.9–40.7) | 23.75 (7–32.3) | 0.007 |
Mean lung dose, Gy median (range) | 11.3 (2.8–19) | 13.5 (5.3–19.2) | <0.001 |
Radiation technique 3D/IMRT/3D + IMRT | 56 (57.1)/34 (34.7) /8 (8.2) | 28 (56.0)/19 (38.0) /3 (6.0) | 0.853 |
Best tumor response CR/PR/SD/PD/not evaluated | 6 (6.1)/66 (67.3)/ 24 (24.5)/1 (1.0)/ 1 (1.0) | 0 (0.0)/36 (72.0)/ 14 (28.0)/0 (0.0)/ 0 (0.0) | 0.361 |
Interval between CRT and durvalumab, days median (range) | 18.5 (1–54) | 15 (1–54) | 0.441 |
CT findings | |||
IP, (%) +/− | 1 (1.0)/97 (99.0) | 1 (2.0)/49 (98.0) | 0.625 |
Emphysema, (%) +/− | 50 (51.0)/48 (49.0) | 32 (64.0)/18 (36.0) | 0.133 |
ILAs, (%) +/− | 26 (26.5)/72 (73.5) | 30 (60.0)/20 (40.0) | <0.001 |
Type of ILAs | |||
GGA +/− | 13 (13.3)/85 (86.7) | 28 (56.0)/22 (44.0) | <0.001 |
Reticulation +/− | 14 (14.3)/84 (85.7) | 16 (32.0)/34 (68.0) | 0.011 |
Honeycomb +/− | 0 (0.0)/98 (100.0) | 1 (2.0)/49 (98.0) | 0.160 |
Other +/− | 6 (6.1)/92 (93.9) | 0 (0.0)/50 (100.0) | 0.074 |
Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|
Age, years ≥65 | 4.36 | 1.58–12.05 | 0.005 |
ECOG-PS ≥1 | 1.726 | 0.80–3.71 | 0.162 |
WBC count (/µL) ≥3600 (cutoff) | 0.536 | 0.27–1.07 | 0.077 |
KL-6 level (U/mL) ≥500 | 0.94 | 0.35–2.51 | 0.905 |
V5, % ≥43.1 (cutoff) | 3.68 | 1.78–7.63 | <0.001 |
V20, % ≥22.4 (cutoff) | 2.81 | 1.39–5.68 | 0.005 |
MLD, Gy ≥12.3 (cutoff) | 3.66 | 1.78–7.54 | <0.001 |
Emphysema + | 1.70 | 0.85–3.44 | 0.135 |
ILAs + | 4.15 | 2.02–8.55 | <0.001 |
Type of ILAs | |||
GGA + | 8.31 | 3.71–18.66 | <0.001 |
Reticulation + | 2.82 | 1.25–6.49 | 0.013 |
Model A | |||
---|---|---|---|
Odds Ratio | 95% Confidence Interval | p-Value | |
Age, years ≥65 | 2.90 | 0.99–8.58 | 0.053 |
V20, % ≥22.4 | 2.64 | 1.24–5.62 | 0.012 |
ILAs + | 3.70 | 1.69–7.72 | 0.001 |
Model B | |||
Odds Ratio | 95% Confidence Interval | p-Value | |
Age, years ≥65 | 2.75 | 0.89–8.52 | 0.080 |
V20, % ≥22.4 | 2.68 | 1.20–6.00 | 0.016 |
GGA + | 6.71 | 2.80–16.08 | <0.001 |
Reticulation + | 1.47 | 0.54–3.95 | 0.441 |
Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|
ILAs + | 6.25 | 2.29–17.03 | <0.001 |
V5, % ≥43.1 | 4.58 | 1.60–13.11 | 0.005 |
V20, % ≥22.4 | 3.32 | 1.27–8.64 | 0.014 |
MLD, Gy ≥12.3 | 2.38 | 0.94–6.04 | 0.066 |
Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|
ILAs + | 6.19 | 2.22–17.24 | <0.001 |
V20, % ≥22.4 | 3.27 | 1.20–8.92 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daido, W.; Masuda, T.; Imano, N.; Matsumoto, N.; Hamai, K.; Iwamoto, Y.; Takayama, Y.; Ueno, S.; Sumii, M.; Shoda, H.; et al. Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer. Cancers 2022, 14, 6236. https://doi.org/10.3390/cancers14246236
Daido W, Masuda T, Imano N, Matsumoto N, Hamai K, Iwamoto Y, Takayama Y, Ueno S, Sumii M, Shoda H, et al. Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer. Cancers. 2022; 14(24):6236. https://doi.org/10.3390/cancers14246236
Chicago/Turabian StyleDaido, Wakako, Takeshi Masuda, Nobuki Imano, Naoko Matsumoto, Kosuke Hamai, Yasuo Iwamoto, Yusuke Takayama, Sayaka Ueno, Masahiko Sumii, Hiroyasu Shoda, and et al. 2022. "Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer" Cancers 14, no. 24: 6236. https://doi.org/10.3390/cancers14246236
APA StyleDaido, W., Masuda, T., Imano, N., Matsumoto, N., Hamai, K., Iwamoto, Y., Takayama, Y., Ueno, S., Sumii, M., Shoda, H., Ishikawa, N., Yamasaki, M., Nishimura, Y., Kawase, S., Shiota, N., Awaya, Y., Suzuki, T., Kitaguchi, S., Fujitaka, K., ... Hattori, N. (2022). Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer. Cancers, 14(24), 6236. https://doi.org/10.3390/cancers14246236