Narrative Review of the Post-Operative Management of Prostate Cancer Patients: Is It Really the End of Adjuvant Radiotherapy?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Adjuvant Radiotherapy Versus Salvage Radiotherapy
3. Adjuvant Radiotherapy Versus Early Salvage Radiotherapy
- -
- When given (RADICALS-RT and GETUG-AFU-17), ADT artificially prolongs bRFS. Indeed, BCR under ADT at this stage of the disease almost never happens. On the aRT arm, ADT is administered shortly after the randomization and probably 1 to 2 months before the start of aRT. On the eSRT arm, ADT and eSRT could start concomitantly. This design adds a systematic bias that probably negatively impacts the aRT’s results
- -
- Because of the definition of BCR, patients with the same biochemical control can be classified differently only because of their affected treatment group. For instance, in the GETUG-AFU-17 trial: BCR will be reached as soon as the PSA rises to 0.4 ng/mL at least 6 months after RT completion for the aRT arm, whereas in the SRT arm, BCR will be reached at the time of the follow-up meetings several months after RT completion. Similarly, defining the bRFS from the date of randomization contributes to this statistical bias. This difference adds a systematic extension of the bRFS in the SRT arm that is problematic with such a short follow-up. This directly induces a possible bias as observed in the RAVES trial with a 5-year BCR-free rate of 86% and 87% for the aRT and eSRT arm, while the 8-year BCR-free rate fell to 80% and 75% for the aRT and eSRT arms, respectively [7].
- -
- The GETUG-AFU-17 trial was closed prematurely because of the low rate of events.
4. Impact of an LNI in the Choice of aRT and eSRT
5. Impact of ADT on the Choice of aRT and eSRT
6. Optimizing the Selection of Patients for aRT: Novel Biological and Diagnostic Approaches
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolla, M.; van Poppel, H.; Tombal, B.; Vekemans, K.; Da Pozzo, L.; de Reijke, T.M.; Verbaeys, A.; Bosset, J.F.; van Velthoven, R.; Colombel, M.; et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: Long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 2012, 380, 2018–2027. [Google Scholar] [CrossRef]
- Kupelian, P.A.; Elshaikh, M.; Reddy, C.A.; Zippe, C.; Klein, E.A. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: A large single-institution experience with radical prostatectomy and external-beam radiotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3376–3385. [Google Scholar] [CrossRef]
- Han, M.; Partin, A.W.; Zahurak, M.; Piantadosi, S.; Epstein, J.I.; Walsh, P.C. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol. 2003, 169, 517–523. [Google Scholar] [CrossRef]
- Thompson, I.M.; Tangen, C.M.; Paradelo, J.; Lucia, M.S.; Miller, G.; Troyer, D.; Messing, E.; Forman, J.; Chin, J.; Swanson, G.; et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: Long-term followup of a randomized clinical trial. J. Urol. 2009, 181, 956–962. [Google Scholar] [CrossRef]
- Wiegel, T.; Bartkowiak, D.; Bottke, D.; Bronner, C.; Steiner, U.; Siegmann, A.; Golz, R.; Storkel, S.; Willich, N.; Semjonow, A.; et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur. Urol. 2014, 66, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sargos, P.; Chabaud, S.; Latorzeff, I.; Magne, N.; Benyoucef, A.; Supiot, S.; Pasquier, D.; Abdiche, M.S.; Gilliot, O.; Graff-Cailleaud, P.; et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): A randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1341–1352. [Google Scholar] [CrossRef]
- Kneebone, A.; Fraser-Browne, C.; Duchesne, G.M.; Fisher, R.; Frydenberg, M.; Herschtal, A.; Williams, S.G.; Brown, C.; Delprado, W.; Haworth, A.; et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): A randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 2020, 21, 1331–1340. [Google Scholar] [CrossRef]
- Parker, C.C.; Clarke, N.W.; Cook, A.D.; Kynaston, H.G.; Petersen, P.M.; Catton, C.; Cross, W.; Logue, J.; Parulekar, W.; Payne, H.; et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): A randomised, controlled phase 3 trial. Lancet 2020, 396, 1413–1421. [Google Scholar] [CrossRef]
- Vale, C.L.; Fisher, D.; Kneebone, A.; Parker, C.; Pearse, M.; Richaud, P.; Sargos, P.; Sydes, M.R.; Brawley, C.; Brihoum, M.; et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: A prospectively planned systematic review and meta-analysis of aggregate data. Lancet 2020, 396, 1422–1431. [Google Scholar] [CrossRef]
- Feng, F.Y.; Huang, H.C.; Spratt, D.E.; Zhao, S.G.; Sandler, H.M.; Simko, J.P.; Davicioni, E.; Nguyen, P.L.; Pollack, A.; Efstathiou, J.A.; et al. Validation of a 22-Gene Genomic Classifier in Patients With Recurrent Prostate Cancer: An Ancillary Study of the NRG/RTOG 9601 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 544–552. [Google Scholar] [CrossRef]
- Stephenson, A.J.; Scardino, P.T.; Kattan, M.W.; Pisansky, T.M.; Slawin, K.M.; Klein, E.A.; Anscher, M.S.; Michalski, J.M.; Sandler, H.M.; Lin, D.W.; et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2035–2041. [Google Scholar] [CrossRef] [PubMed]
- Daly, T.; Hickey, B.E.; Lehman, M.; Francis, D.P.; See, A.M. Adjuvant radiotherapy following radical prostatectomy for prostate cancer. Cochrane Database Syst. Rev. 2011, 12, CD007234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, S.C.; Waldron, T.S.; Eapen, L.; Mayhew, L.A.; Winquist, E.; Lukka, H.; Genitourinary Cancer Disease Site Group of the Cancer Care Ontario Program in Evidence-based, C. Adjuvant radiotherapy following radical prostatectomy for pathologic T3 or margin-positive prostate cancer: A systematic review and meta-analysis. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2008, 88, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hackman, G.; Taari, K.; Tammela, T.L.; Matikainen, M.; Kouri, M.; Joensuu, T.; Luukkaala, T.; Salonen, A.; Isotalo, T.; Petas, A.; et al. Randomised Trial of Adjuvant Radiotherapy Following Radical Prostatectomy Versus Radical Prostatectomy Alone in Prostate Cancer Patients with Positive Margins or Extracapsular Extension. Eur. Urol. 2019, 76, 586–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakic, N.; Sood, A.; Dalela, D.; Arora, S.; Malovana, U.; Keeley, J.; Rogers, C.; Peabody, J.; Menon, M.; Abdollah, F. A Nationwide Persistent Underutilization of Adjuvant Radiotherapy in North American Prostate Cancer Patients. Clin. Genitourin. Cancer 2020, 18, 489–499.e6. [Google Scholar] [CrossRef]
- Zaffuto, E.; Gandaglia, G.; Fossati, N.; Dell’Oglio, P.; Moschini, M.; Cucchiara, V.; Suardi, N.; Mirone, V.; Bandini, M.; Shariat, S.F.; et al. Early Postoperative Radiotherapy is Associated with Worse Functional Outcomes in Patients with Prostate Cancer. J. Urol. 2017, 197, 669–675. [Google Scholar] [CrossRef]
- Fossati, N.; Karnes, R.J.; Boorjian, S.A.; Moschini, M.; Morlacco, A.; Bossi, A.; Seisen, T.; Cozzarini, C.; Fiorino, C.; Noris Chiorda, B.; et al. Long-term Impact of Adjuvant Versus Early Salvage Radiation Therapy in pT3N0 Prostate Cancer Patients Treated with Radical Prostatectomy: Results from a Multi-institutional Series. Eur. Urol. 2017, 71, 886–893. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Hilton, J.F.; Carroll, P.R. The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 2011, 117, 5039–5046. [Google Scholar] [CrossRef]
- Abdollah, F.; Suardi, N.; Cozzarini, C.; Gallina, A.; Capitanio, U.; Bianchi, M.; Sun, M.; Fossati, N.; Passoni, N.M.; Fiorino, C.; et al. Selecting the optimal candidate for adjuvant radiotherapy after radical prostatectomy for prostate cancer: A long-term survival analysis. Eur. Urol. 2013, 63, 998–1008. [Google Scholar] [CrossRef]
- D’Rummo, K.A.; Chen, R.C.; Shen, X. Narrative review of management strategies and outcomes in node-positive prostate cancer. Transl. Androl. Urol. 2021, 10, 3176–3187. [Google Scholar] [CrossRef]
- Abdollah, F.; Karnes, R.J.; Suardi, N.; Cozzarini, C.; Gandaglia, G.; Fossati, N.; Vizziello, D.; Sun, M.; Karakiewicz, P.I.; Menon, M.; et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Abdollah, F.; Dalela, D.; Sood, A.; Keeley, J.; Alanee, S.; Briganti, A.; Montorsi, F.; Peabody, J.O.; Menon, M. Impact of Adjuvant Radiotherapy in Node-positive Prostate Cancer Patients: The Importance of Patient Selection. Eur. Urol. 2018, 74, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Touijer, K.A.; Karnes, R.J.; Passoni, N.; Sjoberg, D.D.; Assel, M.; Fossati, N.; Gandaglia, G.; Eastham, J.A.; Scardino, P.T.; Vickers, A.; et al. Survival Outcomes of Men with Lymph Node-positive Prostate Cancer After Radical Prostatectomy: A Comparative Analysis of Different Postoperative Management Strategies. Eur. Urol. 2018, 73, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Shipley, W.U.; Seiferheld, W.; Lukka, H.R.; Major, P.P.; Heney, N.M.; Grignon, D.J.; Sartor, O.; Patel, M.P.; Bahary, J.P.; Zietman, A.L.; et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N. Engl. J. Med. 2017, 376, 417–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandaglia, G.; Fossati, N.; Karnes, R.J.; Boorjian, S.A.; Colicchia, M.; Bossi, A.; Seisen, T.; Cozzarini, C.; Di Muzio, N.; Noris Chiorda, B.; et al. Use of Concomitant Androgen Deprivation Therapy in Patients Treated with Early Salvage Radiotherapy for Biochemical Recurrence After Radical Prostatectomy: Long-term Results from a Large, Multi-institutional Series. Eur. Urol. 2018, 73, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Dess, R.T.; Sun, Y.; Jackson, W.C.; Jairath, N.K.; Kishan, A.U.; Wallington, D.G.; Mahal, B.A.; Stish, B.J.; Zumsteg, Z.S.; Den, R.B.; et al. Association of Presalvage Radiotherapy PSA Levels After Prostatectomy With Outcomes of Long-term Antiandrogen Therapy in Men With Prostate Cancer. JAMA Oncol. 2020, 6, 735–743. [Google Scholar] [CrossRef]
- Bravi, C.A.; Tin, A.; Vertosick, E.; Mazzone, E.; Bandini, M.; Dell’Oglio, P.; Stabile, A.; Gandaglia, G.; Fossati, N.; Sjoberg, D.; et al. Androgen deprivation therapy in men with node-positive prostate cancer treated with postoperative radiotherapy. Urol. Oncol. 2020, 38, 204–209. [Google Scholar] [CrossRef]
- Bottke, D.; Golz, R.; Storkel, S.; Hinke, A.; Siegmann, A.; Hertle, L.; Miller, K.; Hinkelbein, W.; Wiegel, T. Phase 3 study of adjuvant radiotherapy versus wait and see in pT3 prostate cancer: Impact of pathology review on analysis. Eur. Urol. 2013, 64, 193–198. [Google Scholar] [CrossRef]
- Montironi, R.; Lopez-Beltran, A.; Cheng, L.; Montorsi, F.; Scarpelli, M. Central prostate pathology review: Should it be mandatory? Eur. Urol. 2013, 64, 199–201, discussion 202–193. [Google Scholar] [CrossRef]
- Schmidt-Hegemann, N.S.; Zamboglou, C.; Thamm, R.; Eze, C.; Kirste, S.; Spohn, S.; Li, M.; Stief, C.; Bolenz, C.; Schultze-Seemann, W.; et al. A Multi-Institutional Analysis of Prostate Cancer Patients with or without 68Ga-PSMA PET/CT Prior to Salvage Radiotherapy of the Prostatic Fossa. Front. Oncol. 2021, 11, 723536. [Google Scholar] [CrossRef]
- Schmidt-Hegemann, N.S.; Fendler, W.P.; Buchner, A.; Stief, C.; Rogowski, P.; Niyazi, M.; Eze, C.; Li, M.; Bartenstein, P.; Belka, C.; et al. Detection level and pattern of positive lesions using PSMA PET/CT for staging prior to radiation therapy. Radiat. Oncol. 2017, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranzbuhler, B.; Muller, J.; Becker, A.S.; Garcia Schuler, H.I.; Muehlematter, U.; Fankhauser, C.D.; Kedzia, S.; Guckenberger, M.; Kaufmann, P.A.; Eberli, D.; et al. Detection Rate and Localization of Prostate Cancer Recurrence Using (68)Ga-PSMA-11 PET/MRI in Patients with Low PSA Values </= 0.5 ng/mL. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Robin, S.; Jolicoeur, M.; Palumbo, S.; Zilli, T.; Crehange, G.; De Hertogh, O.; Derashodian, T.; Sargos, P.; Salembier, C.; Supiot, S.; et al. Prostate Bed Delineation Guidelines for Postoperative Radiation Therapy: On Behalf Of The Francophone Group of Urological Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.G.; Queiroz, M.A.; Nunes, R.F.; Viana, P.C.C.; Marin, J.F.G.; Cerri, G.G.; Buchpiguel, C.A. Revisiting Prostate Cancer Recurrence with PSMA PET: Atlas of Typical and Atypical Patterns of Spread. Radiographics 2019, 39, 186–212. [Google Scholar] [CrossRef]
- Emmett, L.; van Leeuwen, P.J.; Nandurkar, R.; Scheltema, M.J.; Cusick, T.; Hruby, G.; Kneebone, A.; Eade, T.; Fogarty, G.; Jagavkar, R.; et al. Treatment Outcomes from (68)Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA After Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2017, 58, 1972–1976. [Google Scholar] [CrossRef] [Green Version]
- Gore, J.L.; du Plessis, M.; Santiago-Jimenez, M.; Yousefi, K.; Thompson, D.J.S.; Karsh, L.; Lane, B.R.; Franks, M.; Chen, D.Y.T.; Bandyk, M.; et al. Decipher test impacts decision making among patients considering adjuvant and salvage treatment after radical prostatectomy: Interim results from the Multicenter Prospective PRO-IMPACT study. Cancer 2017, 123, 2850–2859. [Google Scholar] [CrossRef] [PubMed]
- Dalela, D.; Loppenberg, B.; Sood, A.; Sammon, J.; Abdollah, F. Contemporary Role of the Decipher(R) Test in Prostate Cancer Management: Current Practice and Future Perspectives. Rev. Urol. 2016, 18, 1–9. [Google Scholar] [PubMed]
- Davicioni, E.; Choeurng, V.; Luo, B.; Yousefi, K.; Shin, H.; Haddad, Z.; Ross, A.; Schaeffer, E.M.; Den, R.B.; Dicker, A.; et al. Recalibration of genomic risk prediction models in prostate cancer to improve individual-level predictions. J. Clin. Oncol. 2015, 33, e16122. [Google Scholar] [CrossRef]
- Bourbonne, V.; Fournier, G.; Vallieres, M.; Lucia, F.; Doucet, L.; Tissot, V.; Cuvelier, G.; Hue, S.; Le Penn Du, H.; Perdriel, L.; et al. External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer. Cancers 2020, 12, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Shiradkar, R.; Leo, P.; Algohary, A.; Fu, P.; Tirumani, S.H.; Mahran, A.; Buzzy, C.; Obmann, V.C.; Mansoori, B.; et al. A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI. EBioMedicine 2021, 63, 103163. [Google Scholar] [CrossRef]
- Gharzai, L.A.; Jiang, R.; Wallington, D.; Jones, G.; Birer, S.; Jairath, N.; Jaworski, E.M.; McFarlane, M.R.; Mahal, B.A.; Nguyen, P.L.; et al. Intermediate clinical endpoints for surrogacy in localised prostate cancer: An aggregate meta-analysis. Lancet Oncol. 2021, 22, 402–410. [Google Scholar] [CrossRef]
Trial | SWOG S8794 [4] | EORTC 22911 [1] | ARO 96-02/AUO AP 09/95 [5] | ||||||
---|---|---|---|---|---|---|---|---|---|
Inclusion/Exclusion criteria | Inclusion criteria:
| Inclusion criteria: pT2-pT3 + pN0 + at least one adverse feature
| Inclusion criteria:
| ||||||
Modality of radiotherapy |
|
|
| ||||||
RT trigger | aRT: Randomization in the 16 weeks following surgery, start of RT in the 10 working days following randomization Observation: rising PSA | aRT: start of RT in the 16 weeks following surgery Observation: rising PSA | aRT: start of RT in the 6–12 weeks following surgery Observation: rising PSA | ||||||
Primary Endpoint | MFS | bRFS | PFS: biochemical recurrence, local or distant clinical recurrence or death of any cause | ||||||
Secondary Endpoints |
|
|
| ||||||
Population | Total: n = 425 | Total: n = 1005 | Total: n = 385 | ||||||
Observation: n = 211 | aRT: n = 214 | p | Observation: n = 503 | aRT: n = 502 | p | Observation: n = 159 | aRT: n = 148 | p | |
Pathology extent of disease | |||||||||
Positive surgical margins only | - | - | - | 15.7% | 16.7% | 0.73 | - | - | - |
Excapsular extension (ECE) | 68% * | 67% * | 0.91 | 58.8% | 57.4% | 0.70 | 47% | 51% | 0.56 |
Seminal vesicle invasion (SVI) | 11% | 10% | 0.86 | 25.4% | 25.5% | 0.97 | 17% | 16% | 0.93 |
Both ECE/positive margins and SVI | 21% | 23% | 0.70 | - | - | - | 27% | 27% | 1.00 |
Invasion of surrounding organs | 0.0% | 0.0% | - | - | - | - | 8% | 3% | 0.10 |
Pathology Gleason score | |||||||||
2–6 | 46% | 57% | 0.03 | WHO-Evaluated | 36% | 38% | 0.81 | ||
7 | 38% | 34% | 0.45 | 54% | 50% | 0.56 | |||
8–10 | 16% | 9.0% | 0.04 | 10% | 12% | 0.71 | |||
Central pathology review | Incomplete: available for 73% | No | Incomplete: available for 85% | ||||||
Pre-RT PSA level | |||||||||
Available data | 186 (88.2%) | 190 (88.8%) | 0.97 | 502 (99.8%) | 497 (99.0%) | - | - | - | |
<0.2 ng/mL | 68% | 65% | 0.58 | 68.6% | 70.3% | 100% | 100% | - | |
≥0.2 ng/mL | 32% | 35% | 31.2% | 28.7% | - | - | - | ||
Percentage of performed RT | 33.2% | 100%? | <0.0001 | 30.8% | 91.0% | ? | (34 patients refused aRT) | - | |
Follow-up (median, years) | 12.5 (IQR 11.1–14.0) | 12.7 (IQR 11.4–15.1) | - | 10.6 (IQR 8.4–12.5) | 9.4 (IQR 7.2–10.8) | 9.3 (IQR 7.3–10.7) | - | ||
bRFS (median, years) | 3.1 | 10.3 | - | 6.1 | 13.2 | - | - | - | - |
PFS (median, years) | - | - | - | - | - | - | 4.9 | Not reached | - |
Proportion with 10-year MFS | 61% | 71% | 0.04 | 71.3% | 76.5% | 0.07 | - | - | - |
Proportion with 10-year OS | 66% | 74% | 0.09 | 80.7% | 76.9% | 0.16 | - | - | - |
Grade 2 or higher late genitourinary toxicity | 9.5% | 17.8% | 0.02 | 13.5% | 21.3% | 0.003 | 0.0% | 2.0% ** | 0.23 ** |
Grade 2 or higher late genitointestinal toxicity | 0.0% | 3.3% | 0.02 | 1.9% | 2.5% | 0.47 | 0.0% | 1.4% | 0.42 |
Trial | RADICALS-RT [8] | GETUG-AFU 17 [6] | RAVES [7] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Inclusion/Exclusion criteria | Inclusion criteria: patients with at least one risk feature among:
| Inclusion criteria:
| Inclusion criteria: patients with at least one risk feature among:
| |||||||
Modality of radiotherapy |
|
|
| |||||||
RT trigger | aRT: initiation within both 2 months of randomization and 26 weeks of radical prostatectomy Observation: initiation within 2 months of biochemical recurrence Start of RT could be delayed by up to 2 months in case of ADT | aRT: start of RT within 3–6 months of radical prostatectomy Observation: when BCR occurred | aRT: start of RT within 4 months of radical prostatectomy Observation: within 4 months of BCR | |||||||
Primary Endpoint | EFS | EFS | bRFS | |||||||
Secondary Endpoints |
|
|
| |||||||
Population | Total: n = 1396 | Total: n = 424 | Total: n = 333 | |||||||
Observation: n = 699 | aRT: n = 697 | p | Observation: n = 212 | aRT: n = 212 | p | Observation: n = 167 | aRT: n = 166 | p | ||
Pathology extent of disease | ||||||||||
Positive surgical margin | 63% | 63% | - | - | - | - | 68% | 66% | 0.79 | |
Excapsular extension or positive margin (pT3a) | 56% | 58% | 0.48 | 77% | 77% | - | - | - | - | |
Seminal vesicle invasion (pT3b) | 19% | 18% | 0.68 | 20% | 21% | 0.89 | 20% | 19% | 0.93 | |
Invasion of surrounding organs (pT4) | 1% | 1% | - | 2% | 1% | 0.65 | - | - | - | |
Pathology Gleason score | ||||||||||
2–6 | 7% | 7% | - | 10% | 10% | - | 2% | 4% | 0.45 | |
7 | 75% | 77% | 0.42 | 79% | 82% | 0.51 | 83% | 81% | 0.74 | |
8–10 | 18% | 16% | 0.36 | 11% | 8% | 0.37 | 15% | 15% | - | |
Lymph node involvement | ||||||||||
Involved | 5% | 4% | 0.44 | 0% | 0% | - | 1% | 0% | 0.61 | |
Not involved or unknown | 95% | 96% | 100% | 100% | - | 100% | 99% | |||
CAPRA-S risk group | ||||||||||
Low (0–2) | 8% | 8% | - | Not available | 13% | 13% | - | |||
Intermediate (3–5) | 55% | 55% | - | 60% | 59% | 0.94 | ||||
High (≥6) | 37% | 37% | - | 27% | 29% | 0.78 | ||||
Central pathology review | No | No | Available but pathology reporting based on pathology results from local institution | |||||||
Percentage of performed RT | 32.0% | 93% | <0.0001 | 54% | 97% | <0.0001 | 50% | 95.8% | <0.0001 | |
Follow-up (median, years) | 4.9 | 6.2 (IQR 3.9–8.3) | 6.5 (IQR 4.3–8.1) | - | 6.1 (IQR 4.3–7.5) | - | ||||
Proportion with 5-year EFS | 85% | 88% | 0.12 | 90% | 92% | 0.58 | 89% | 86% | 0.51 | |
Proportion with 8-year EFS | - | - | - | - | - | - | 79% | 80% | 0.93 | |
MFS | Immature | Immature | - | - | - | |||||
Proportion with 8-year OS | Immature | Immature | 97% | 92% | 0.08 | |||||
Grade 2 or higher late genitourinary toxicity | - | - | - | 7% | 27% | <0.0001 | 54% * | 70% * | 0.002 | |
Grade 2 or higher late genitointestinal toxicity | - | - | - | 5% | 8% | 0.24 | 10% * | 14% * | 0.53 | |
Late diarrhea | G1 or 2 | 8% | 17% | <0.0001 | 7% | 12% | - | - | ||
G3 | <1% | 1% | - | 0% | 0% | - | ||||
G4 | 0% | <1% | - | 0% | 0% | - | ||||
Late proctitis | G1 or 2 | 5% | 13% | <0.0001 | 3% | 8% | - | - | ||
G3 | <1% | 1% | - | 0% | 1% | - | ||||
G4 | 0% | 0% | - | 0% | 0% | - | ||||
Late cystitis | G1 or 2 | 7% | 13% | <0.0005 | 0% | 0% | - | - | ||
G3 | 1% | 1% | - | 0% | <1% | - | ||||
G4 | 0% | 0% | - | 0% | 0% | - | ||||
Late hematuria | G1 or 2 | 4% | 12% | <0.0001 | 4% | 12% | - | - | ||
G3 | <1% | 4% | - | <1% | 2% | - | ||||
G4 | 0% | 0% | - | <1% | 0% | - | ||||
Late urethral stricture | G1 or 2 | 3% | 6% | 0.0025 | 6% | 9% | - | - | ||
G3 | 2% | 4% | - | 0% | <1% | - | ||||
G4 | <1% | 0% | - | 0% | 0% | - |
Prediction Tool | Endpoint | Result | Setting |
---|---|---|---|
Presalvage PSA level [27] | OS | HR 1.57, p = 0.004 | Post-hoc analysis |
Genomics-only [10] | MFS | HR 1.26, p < 0.001 | Post-hoc analysis |
OS | HR 1.21, p < 0.001 | ||
Radiomics-only [39] | bRFS | HR 5.5, p < 0.0001 | External validation |
Radiomics + Genomics [40] | bRFS | HR 1.6 p = 0.04 | Multi-institutional validation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourbonne, V.; Pradier, O.; Schick, U. Narrative Review of the Post-Operative Management of Prostate Cancer Patients: Is It Really the End of Adjuvant Radiotherapy? Cancers 2022, 14, 719. https://doi.org/10.3390/cancers14030719
Bourbonne V, Pradier O, Schick U. Narrative Review of the Post-Operative Management of Prostate Cancer Patients: Is It Really the End of Adjuvant Radiotherapy? Cancers. 2022; 14(3):719. https://doi.org/10.3390/cancers14030719
Chicago/Turabian StyleBourbonne, Vincent, Olivier Pradier, and Ulrike Schick. 2022. "Narrative Review of the Post-Operative Management of Prostate Cancer Patients: Is It Really the End of Adjuvant Radiotherapy?" Cancers 14, no. 3: 719. https://doi.org/10.3390/cancers14030719
APA StyleBourbonne, V., Pradier, O., & Schick, U. (2022). Narrative Review of the Post-Operative Management of Prostate Cancer Patients: Is It Really the End of Adjuvant Radiotherapy? Cancers, 14(3), 719. https://doi.org/10.3390/cancers14030719