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Simple Summary: Reported clinical outcomes of proton therapy (PT) for localized prostate cancer
are similar to photon-based external beam radiotherapy. Apparently, the dosimetric advantages
of PT have yet to be translated to clinical benefits. The suboptimal clinical outcomes of PT might
be attributable to inadequate dose prescription, as indicated by the ASCENDE-RT trial. Moreover,
uncertainties involved in the treatment planning and delivery processes, as well as technological
limitations in PT treatment systems, may lead to discrepancies between planned doses and actual
doses delivered to patients. In this article, we reviewed the current status of PT for prostate cancer
and discussed different clinical implementations that could potentially improve the clinical outcome
of PT for prostate cancer. Various technological advancements under which uncertainties in dose
calculations can be minimized, including MRI-guided PT, dual-energy photon-counting CT and
high-resolution Monte Carlo-based treatment planning systems, are highlighted.

Abstract: The dosimetric advantages of proton therapy (PT) treatment plans are demonstrably
superior to photon-based external beam radiotherapy (EBRT) for localized prostate cancer, but the
reported clinical outcomes are similar. This may be due to inadequate dose prescription, especially in
high-risk disease, as indicated by the ASCENDE-RT trial. Alternatively, the lack of clinical benefits
with PT may be attributable to improper dose delivery, mainly due to geometric and dosimetric
uncertainties during treatment planning, as well as delivery procedures that compromise the dose
conformity of treatments. Advanced high-precision PT technologies, and treatment planning and
beam delivery techniques are being developed to address these uncertainties. For instance, external
magnetic resonance imaging (MRI)-guided patient setup rooms are being developed to improve the
accuracy of patient positioning for treatment. In-room MRI-guided patient positioning systems are
also being investigated to improve the geometric accuracy of PT. Soon, high-dose rate beam delivery
systems will shorten beam delivery time to within one breath hold, minimizing the effects of organ
motion and patient movements. Dual-energy photon-counting computed tomography and high-
resolution Monte Carlo-based treatment planning systems are available to minimize uncertainties in
dose planning calculations. Advanced in-room treatment verification tools such as prompt gamma
detector systems will be used to verify the depth of PT. Clinical implementation of these new
technologies is expected to improve the accuracy and dose conformity of PT in the treatment of
localized prostate cancers, and lead to better clinical outcomes. Improvement in dose conformity
may also facilitate dose escalation, improving local control and implementation of hypofractionation
treatment schemes to improve patient throughput and make PT more cost effective.

Keywords: prostate; proton therapy; magnetic resonance imaging

1. Introduction

Proton therapy (PT) was first proposed by Robert R Wilson in 1946 [1] because of the
unique dosimetric property of proton beams known as the Bragg peak. In theory, a proton
beam traversing a medium deposits a relatively small amount of radiation before it reaches
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the Bragg peak, and no radiation beyond it. The depth of the Bragg peak in the medium is
determined by the energy of the protons. By irradiating the medium with proton beams
of different energies, a range of spread-out Bragg peaks (SOBPs) can be positioned at a
pre-defined depth of the medium, as determined by the range of the beam energies. PT
takes advantage of this dosimetric property to deliver a conformal therapeutic dose of
radiation to the patient by positioning the SOBP of a proton beam, of appropriate field
size and range of beam energies, to precisely cover the tumor volume without damaging
the normal surrounding tissue. Treatment planning studies have demonstrated superior
dosimetric benefits of PT plans compared with plans for conventional external beam
radiotherapy (EBRT), such as intensity-modulated radiotherapy (IMRT) and volumetric
modulated RapidArc therapy (VMAT) [2,3].

Treatment of patients with PT began around 1954 [4], but progress in the develop-
ment of this modality has been slow due to numerous technical hurdles. Challenges for
PT pioneers included the immaturity of the PT accelerator and dose-delivery systems in
handling complex treatments, lack of knowledge on dosimetric properties such as the
relative biological effectiveness (RBE) of proton beams, and lack of interest and incentive in
the manufacturing industry to invest in developments of PT equipment [5]. This situation
changed when the US Food and Drug Administration approved the clinical use of PT in
1988 [6], and the world'’s first hospital-based PT system was established, at Loma Linda
University Medical Center in California, in 1990. Since then, the number of hospital-based
PT facilities has increased exponentially, with 104 PT treatment facilities operating globally
by the end of 2021 and many more under construction and planning [7]. By the end of 2020,
over 250,000 patients had been treated with PT worldwide [7]. Although prostate cancer
has been one of the main treatment sites in PT, the practice has been controversial because
of a lack of clinical evidence to justify the treatment cost [8]. Reported clinical outcomes in
both local control and toxicity of PT for prostate cancer are similar to those for EBRT. The
theoretical dosimetric benefits of PT have not translated to greater clinical benefits than
EBRT for the prostate, as they have in other diseases sites, including pediatric malignancies
of the central nervous system, large liver cancers, ocular melanomas, chordomas and chon-
drosarcomas [9,10]. The far-below-expected performance of PT in treatment outcomes in
prostate cancer has been attributed to two main causes. First, the results of the randomized
controlled Androgen Suppression Combined with Elective Nodal and Dose Escalated Radi-
ation Therapy (ASCENDE-RT) trial [11] point to inadequate dose prescription, particularly
in patients with high-risk disease, indicative of a dose-response characteristic of radio-
therapy (RT) of the prostate. Second, improper dose delivery due to large uncertainties
associated with the individual processes involved in PT and pre-treatment workflow may
compromise the dose conformity of PT treatment, as demonstrated by robust planning [12].
The objectives of this review are twofold: (1) examine the underlying reasons behind the
disappointing clinical outcomes in PT treatment of prostate cancer; and (2) investigate
new PT technologies and innovative work procedures that are being implemented, how
they may improve the accuracy and quality of PT treatment and facilitate a reduction in
treatment margins, and the possibility of dose escalation to the appropriate level.

2. Potential Benefits of PT and Reported Clinical Outcomes of Prostate Treatments

Given the different beam characteristics of protons and photons, a modulated proton
beam confines dose deposition to the target region, with a rapid depth- and lateral-dose
fall-off favoring normal tissue sparing and target dose escalation. Several dose—volume
comparison studies showed that both passive scattering [13,14] and pencil beam scan-
ning [2,15] PT reduced the mean dose and percentage of volume receiving low dose in the
rectum and bladder compared with IMRT. In the prostate, PT maintained dose coverage,
demonstrating superior dose conformity over IMRT. In most circumstances, a simple bilat-
eral proton beam is employed for localized prostate cancer. Other arrangements, such as
anterior—posterior or anterior-oblique beams may be used in patients with a hip prosthesis
or previously irradiated hip [16-18]. Nevertheless, PT has consistently been shown to have
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a smaller irradiated volume of normal tissue and lower integral non-target dose [14,15],
as illustrated in Figure 1. A systematic review showed that the risk of radiation-induced
second primary cancer appears to be small (range, 1 in 290 to 1 in 220 over all durations of
follow-up), but does increase over time [19]. As prostate cancer survival improves, the risk
of radiation-induced second malignancies becomes more relevant [20].
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Figure 1. Integral dose comparison of volumetric modulated RapidArc therapy (VMAT)-full rotation
(A) and photon therapy (PT)-bilateral (B) in prostate treatment plans. The most significant differences
were in the 10% and 30% isodose distributions of the 78-Gy prescription.

There is diverging evidence regarding the superiority of PT over IMRT in terms of
disease control, survival and toxicity. A retrospective study at Loma Linda University
reported overall 5- and 8-year actuarial biochemical disease-free survival rates of 75%
and 73%, respectively, for PT in localized prostate cancer [21]. Another study compared
the 5-year biochemical recurrence-free survival (bRFS) rates for intermediate-risk prostate
cancer patients after surgical intervention and RT, which were 85.7% and 89.5% in patients
treated with EBRT and permanent seed implant, respectively [22]. A randomized trial
showed a similar biochemical failure rate for localized prostate cancer treated with high-
dose PT and permanent brachytherapy [23]. Recently, a single-center retrospective study in
Japan showed that 5- and 10-year freedom-from-biochemical-relapse rates were 93% and
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86%, respectively, for intermediate-risk prostate cancer patients receiving 74 Gy (RBE) in
37 fractions of PT [24]. Apart from disease control and survival, several patient-reported
prospective studies compared genitourinary (GU) and gastrointestinal (GI) toxicity, as
well as sexual domain issues, between photon- and proton-based treatments [25-27]. Two
studies, with follow-up duration up to 2 years, reported no differences in the GU, GI
or sexual quality of life (QoL) scores [25,26]. Massachusetts General Hospital reported
improvement in bowel QoL at 2-3 months after PT, but worsened urinary QoL at 1 year
after PT. At the 2-year follow-up, however, there were no differences in either bowel/rectal
QoL or urinary QoL between photon- and proton-based treatments [25]. Other claim-based
studies showed degraded GI QoL [8,28,29]. Currently there are limited randomized trial
data with which to evaluate the efficacy of proton- versus photon-based treatments, and
various single-center/institute studies have reported mixed data. Therefore, a consensus
has yet to be reached.

The theoretical dosimetric advantages of PT have not borne fruit clinically. Dose pre-
scription might be a factor in the suboptimal clinical outcomes of PT. Numerous randomized
trials have compared various dose prescriptions (range, 64 to 86.4 Gy) of 3D-conformal
RT or IMRT, in which higher dose prescription demonstrated superior biochemical tumor
control and decreased the risk of distant metastases for prostate cancer in different risk
groups [30-36]. In the ASCENDE-RT trial, the low-dose rate brachytherapy (LDR-PB) boost
arm received an iodine-125 implant prescribed at the minimum peripheral dose of 115 Gy,
while the dose-escalation external beam (DE-EBRT) boost arm received an additional 32 Gy
(total, 78 Gy) in 16 fractions. The LDR-PB boost patients were twice as likely to be free
of biochemical failure at a median follow-up of 6.5 years [37]. Recalling the two largest
single-center studies, a PT dose of 74 Gy, which lies in the middle of the dose-prescription
spectrum, was employed. The authors speculated that there was room for escalating the
dose prescription with PT, provided that the dose was delivered precisely and accurately.

Another factor limiting the potential of PT could be discrepancies between planned
doses and actual doses delivered to patients. Major contributors to such discrepancies
include uncertainties involved in the treatment planning and delivery processes, as well as
technological limitations in PT treatment systems. Proton beams manifest an intrinsic range
uncertainty due to range straggling, in which the absolute straggling width increases with
energy. Water equivalent thickness is a one-dimensional range estimate in a heterogeneous
medium. Monte Carlo (MC)-based studies have demonstrated that not only is the range
related to water equivalent thickness, but it is also sensitive to the geometry and position of
tissue density variation relative to the depth of the Bragg peak [38-43]. A study analyzed the
inter-fraction motion of prostate cases with daily volumetric megavoltage X-ray computed
tomography (CT). It showed that the higher uncertainties for inter-fraction range changes
in lateral beams compared to anterior beams are likely due to the relative positions of the
femoral head and the prostate between fractions of PT [44]. Range uncertainty can also be
related to stopping power ratio (SPR) conversion. SPR is commonly converted from the
Hounsfield unit (HU) in CT images using a generic look-up table. Studies have analyzed
the uncertainties from various sources, including CT image noise [45], artifacts [46,47],
tissue composition variation [48-51], and others. A notable study by Yang et al. reported
that the 95th percentile of composite range uncertainty in the prostate region is 3% [48].
Apart from range uncertainty, setup error and inter-/intra-fraction organ motion also
played important roles in dose delivery accuracy because of the steep dose gradient in
PT. A study by Park et al. [52] compared dose variations upon the introduction of various
systematic and random setup errors (Gaussian distribution with standard deviation of
2 mm) in proton clinical plans for prostate cancer. Although the target coverage in the
prostate was retained (—0.3% to nominal plan), the standard deviation of Vy5¢y for the
rectum was 5.6%, suggesting that noticeable deviations from the nominal plan may result
from setup errors [52].

The RBE of PT has typically been taken as a spatially invariant value of 1.1, regardless
of clinical endpoint [38]. However, dose- and depth-dependence of RBE has been demon-
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strated in which the RBE values in the distal edge rose to 1.21 [53,54]. A wide RBE range
was reported in low «/ 3 biological systems, with RBE values often above 1.1 within the
SOBP linear energy transfer (LET) range, compared with the lower RBE values of high o/ 3
systems (below 1.1). Dose per fraction was also reported to have an impact on RBE for
low o/ 3 biological systems [55]. Based on existing in vitro and in vivo studies, the RBE
uncertainty in normal tissue is higher (compared to the nominal value of 1.1), potentially
causing unexpected complications and toxicity.

3. Opportunities for Improvement with New Technologies and Innovative Techniques

For decades, PT treatment systems with double scattering or a wobbling beam with
brass aperture collimation and compensator have been used to treat prostate cancer. Large
treatment margins of up to 10 mm or more were used in “large field” conventional PT
techniques [50,56], and contributed to critical organ toxicity [57]. Most of the reported
clinical data were based on treatments delivered with this large field technique. With
the recent commercial availability of the latest generation of PT technologies, clinical
implementation of new techniques such as intensity modulated proton therapy (IMPT) can
now be realized. IMPT is capable of delivering treatment with superior dose conformity,
which can potentially provide better protection of critical organs, as illustrated by the dose
displays of two treatment plans shown in Figure 2. In principle, a reduction in the regions of
critical organs that are exposed to high radiation doses will help reduce related toxicity [15].
In reality, dose conformity of IMPT treatment plans may not always be reproducible in a
patient’s course of treatment because of the various uncertainties involved in treatment
and pre-treatment processes.
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Figure 2. Isodose distribution comparison of two different proton therapy techniques: conventional
passive scattering (A) and modern intensity-modulated proton therapy (IMPT) (B). IMPT shows
improved dose conformity near critical organs.

Proton range uncertainty is one factor that can severely compromise dose conformity
and affect treatment outcome. For instance, in their study on head and neck treatments,
Tattenberg et al. found that a reduction from the currently adopted range uncertainty
of approximately 4% to a potentially achievable level of 1% could reduce the probability
of brainstem necrosis by up to 1.3% in the nominal scenario, and by up to 2.9% in the
worst-case scenario [58].

Proton range uncertainties are mainly caused by uncertainties arising from: (1) errors
introduced when deriving the mass density or SPR for PT dose calculation in treatment
planning; and (2) patient positioning errors introduced during treatment setup. We have
performed simulated studies on the dosimetric effects of different robust optimization
scenarios of range and setup uncertainties in IMPT prostate plans. The results from
nominal plans are presented in Table 1, and clearly demonstrate a dependence of critical
normal organ dose on setup uncertainties. There is a minor dosimetric effect for range
uncertainty because of the bilateral delivered beam in prostate treatment. The non-target
tissue was defined as body tissue that excludes the clinical target volume (CTV) and limits
the region between 1 cm superior and inferior from the CTV. Such uncertainties should
be minimized before the dosimetric benefits of PT can be realized as clinical benefits in
prostate treatment.
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Table 1. Comparative effects of simulated robust optimization uncertainties in proton beam range

and setup on dosimetry in a prostate intensity-modulated proton therapy (IMPT) planning system.

Clinical Scenarios

Range uncertainty

3.5% 3.0% 2.5% 2.0% 1.5% 1.0%

Setup error

5 mm 3 mm 2 mm 1 mm 1 mm

CTV, V7say

99.9% 99.6% 99.1% 98.4% 98.8% 98.5% 98.8% 99.3% 99.6%

Rectum, V7ogy

30.8% 25.9% 24.5% 20.1% 19.7% 20.1% 18.2% 19.5% 19.5%

Bladder, V7gy 35.2% 30.6% 29.1% 25.3% 24.7% 24.7% 24.5% 23.6% 23.5%
Rectum, Dpean (Gy) 37.1 33.3 324 28.8 28.5 289 27.1 28.4 28.5
Bladder, Dimean (Gy) 40.4 37.0 36.1 32.8 32.3 32.5 32.2 31.8 31.7

Non-target tissue, Dmean (Gy) 14.6 13.6 13.3 12.3 12.1 12.1 11.7 11.8 11.7

Non-target tissue describes body tissue that excludes the clinical target volume (CTV) and limits the region
between 1 cm superior and inferior from the CTV.

In traditional PT of prostate cancer, large margins are used to account for the two

major sources of uncertainties mentioned above. Such planning strategies may compro-
mise the dose conformity of the treatment, thereby affecting the clinical outcome. These
uncertainties can now be minimized using new technologies and innovative techniques in
the PT workflow, as discussed below.

1.

The large uncertainties in CT HU values, and CT conversion to mass density or
SPR [45,50], can now be overcome by modern CT, which can acquire mass density
maps or SPR directly [59] from CT image reconstruction data. Mass density and
SPR are less sensitive to patient scan conditions than HU [60], and thus have less
uncertainty. With this approach, the range uncertainty could be decreased from 3.5% to
2-2.5%. There is also an increasing interest in dual energy CT (DECT) as an alternative
imaging modality for PT treatment planning because of its ability to discriminate
between changes in patient density and chemical composition [61]. SPR calculation
accuracy was found to be superior, on average, for DECT relative to single energy CT
(SECT). Maximum errors of 12.8% and 2.2% were found in SPR data derived from
SECT imaging and DECT imaging, respectively [61]. Quantitatively, the maximum
dose calculation error in the SECT plan was 7.8%, compared to a value of 1.4% in
the DECT plan [62]. Additionally, a novel spectral CT imaging technique based on
a dual-layer detector-based approach has been used to demonstrate improvement
in SPR prediction for particle therapy treatment planning, and would minimize the
beam range uncertainty, allowing for the use of reduced safety margins in patient
plans [63].

Because of the inferior soft tissue contrast, orthogonal X-ray imaging systems rely on
bony structures for verification of treatment position during patient setup. This type
of setup technique can result in large positioning errors due to daily movement of the
target and organs at risk (OARs) relative to the bony structures in the former technique.
With fiducial markers implanted inside the prostate, many studies concluded that
image registration by fiducial markers would reduce matching error. However, some
patients may not accept marker implantation. Migration of markers with time may
introduce registration errors. Such problems can now be minimized using on-board
cone beam CT (CBCT). The better image quality of CBCT can provide 3D images
and more information on the anatomic relationships between organs [64,65], which
can be used to improve the accuracy of patient setup. Besides patient positioning,
CBCT images can also provide information about inter-fractional changes in patient
anatomy. In a recent study, an image-based correction method to generate pseudo-
CT images from CBCT images was investigated for possible application in proton
dose calculations [66] in adaptive PT. MRI, which has the ability to offer fast real-
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time imaging with high soft tissue contrast in the absence of ionizing radiation
exposure [67], is being investigated for use in patient setup in RT. Our study using
an external MRI setup room [68] and studies by others [69] indicated that patient
positioning accuracy on the order of 1 mm is feasible, and is a significant reduction
from that of conventional setup systems.

Improving the levels of accuracy in determining the penetration ranges of proton
beams and positioning patients for treatment can facilitate better organ sparing, as illus-
trated in Table 1. Reduction in PT range and patient positioning uncertainties can also help
improve dose conformity in PT treatment, leading to better protection of normal tissues
and reduced toxicity, and facilitating the possibility of dose escalation to improve local
control. The concept of in-room or integrated MRI-guided PT, although still investigational,
is gaining momentum [70-72]. Integrated PT with MR gantry systems have created many
engineering problems that must be overcome. Deflection of complex charge particles
observed in magnetic fields changed the direction vectors, depending on the energy and
heterogeneity. Optimized IMPT plans should account for the scanning beam in the complex
fringe field. Compared with integrated MRI-guided PT, there is less uncertainty in a PT
system combined with in-room MRI equipment. With in-room or on-line MRI-guided pa-
tient positioning, as illustrated in Figure 3 (upper panel), further improvements in accuracy
and dose conformity in PT treatment are possible, and we should remember that MRI
delivers superior soft-tissue contrast compared with CT (lower panel). Development of
such a treatment modality will be technologically and economically challenging, and is
unlikely to be accomplished in the near future.

B

W

(B)

Figure 3. (A) Diagram of a proton therapy system with in-room magnetic resonance (MR). MR images
are acquired first, with the patient lying on a robotic couch in position A, followed by relocation
to position B for proton delivery, directly after image registration. (B) Comparison of computed
tomography and MR images of prostate cancer.
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Significant advancements in treatment planning system (ITPS) technology have also
been made in recent years. The MC-based TPS dose calculation algorithm is considered to
be the most accurate method, and it has been demonstrated that it could lead to a significant
reduction in treatment planning margins [50,73]. However, the lengthy time required for
MC-based dose calculations in the past was impractical for routine clinical treatment
planning. In recent years, computer graphic processing units (GPUs) have drawn great
attention due to their tremendous ability to accelerate a variety of computationally intensive
tasks. A TPS running on a GPU computer makes the MC-based dose calculation algorithm
in RT treatment planning feasible. TPS options based on simplified MC algorithms and
GPU computers are now commercially available for routine clinical use. Because of these
efforts, the calculation time of MC-based proton dose calculation has been significantly
shortened. MC-based dose planning and calculation in PT is now becoming routine,
helping to reduce treatment uncertainties. Additionally, the resolution of dose grid and
MC simulation uncertainties are improved with a GPU-based TPS, further improving the
dosimetric accuracy of the treatment plans.

As mentioned earlier, PT is very sensitive to changes in the position and shape of
the target and OARs in patients, both between treatment fractions and within a fraction.
With reduction in treatment uncertainties and higher dose conformity, accurate quality
assurance (QA) verification of the treatment plan, especially treatment geometry at every
treatment fraction, is essential. Several efforts [74] are ongoing to develop new QA tools and
techniques that can be used to ensure geometric and dosimetric accuracies of PT treatments.
QA tools and techniques based on proton radiography and tomography, positron emission
tomography, and prompt gamma imaging are under investigation. Currently, verification
of proton range in vivo is mostly based on detection of secondary radiation, such as prompt
gamma rays [75]. Various approaches to on-line monitoring of PT have been reported, and
some have already been successfully tested clinically with patients [76]. A recent European
Society for Radiotherapy and Oncology conference (ESTRO 2020) revealed a new study
of on-line MRI that verified the proton beam range of PT [77]. PT range verification using
positron emission tomography has been investigated at several institutions [78].

TPS with robust planning optimization that accounts for uncertainties that cannot be
corrected (e.g., movement of the target and critical OARs during treatment) are in routine
clinical application. This technique helps to predict and illustrate the actual dose to be
delivered to the patient, which in turn can further improve dose optimization and clinical
decision making. The uncertainty in RBE is a dosimetric issue under active investigation,
with the aim to improve the accuracy of patient dose. TPS dosimetry algorithms are
available that test the dependency of RBE on the LET of protons. It is well-known that
the current adopted average RBE value of 1.1 assumes that proton doses are about 10%
more biologically damaging than MV X-ray RT. However, experimental data indicate
that RBE depends on dose, LET and o/ 3 ratio [79-83], as protons traversing a patient
change energy as they travel. They have higher LET at the distal end of an SOBP, and
such variations, if not taken into account in dose calculation, can theoretically have an
impact on patient dosimetry. Clinical evidence on the effect of RBE variations on treatment
outcome has yet to be reported. By contrast, biological treatment planning and LET-guided
dose optimization have been developed and commercially available for testing and clinic
planning studies. They are mainly used in generating reference plans with LET-based dose
optimization for guiding the planning of complex treatment involving critical normal tissue
structures [84-86]. Subject to satisfactory demonstration of clinical evidence, LET-based
dose optimization may potentially improve the quality of PT treatment plans.

MC-based algorithms calculate the variable RBE from the LET of the proton interac-
tions at different locations in the patient, and incorporate the variable RBE data into patient
dose calculation and optimization. As a result, a theoretically more accurate dose map of
the target and OARs of the treatment can be constructed. This information can serve as a
valuable reference for protecting OARs from excessive dose [87,88]. In the case of prostate
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treatment, if variance of RBE is incorporated into robust optimization, biological dose for
critical organs such as the rectum and bladder could be minimized to protect these organs.
Additionally, LET-based dose optimization will be applied to the treatment plan,
which provides a useful reference map for plan assessment. All of the new technologies
mentioned above provide us with the appropriate tools to go a step further with treatment
of the prostate using PT. DECT and spectral CT reduce conventional CT uncertainty and
handle well-defined shrunken tumor margins. By applying the use of implanted fiducial
markers, CBCT or in-room MR imaging guided system, setup errors could be controlled
to within a relatively small amount. Furthermore, the new technological developments
described above will better protect critical organs from unnecessary radiation dose.

4. Potential Clinical Benefits and Cost Effectiveness of PT in Treatment of Prostate Cancer

The overall survival of localized prostate cancer patients treated with PT, photon-based
EBRT, and brachytherapy in the US between 2004 and 2015 were analyzed and compared
by Liu et al. [89]. They concluded that PT was associated with a significant overall sur-
vival benefit compared to EBRT, and delivered outcomes were similar to brachytherapy.
PARTIQoL, an ongoing phase IIl randomized trial [NCT01617161], will determine whether
IMRT or PT best minimizes the side effects of treatment for low- or intermediate-risk
prostate cancer. Another ongoing study, COMPARE [NCT03561220], will compare the
patient-centric outcomes (quality of life, toxicity, and disease control) between parallel
cohorts of men with prostate cancer treated simultaneously at PT facilities and at geograph-
ically similar conventional IMRT facilities. With the latest generation of PT technologies
and high-precision innovative treatment and pre-treatment techniques that have been
developed to improve the accuracy and quality of PT treatment, we can soon expect to see
clinical data with more favorable outcomes in prostate treatment using PT. Dose escalation
is one treatment strategy that may now be safely implemented to improve local control, and
yet an important question remains: is dose escalation with PT superior to photon-based
treatment? Based on the fundamental principles of dose-response characteristics in RT,
it is likely that the dosimetric advantages of PT, particularly regarding dose escalation,
will translate into clinical benefits and outperform conventional EBRT. With better dose
conformity, more appropriately escalated dose prescriptions to the target, together with
clinically acceptable OAR dose constraints, can be used in PT treatments. Additionally,
the dosimetric advantages of PT in prostate treatment can be enhanced further by the
use of rectal spacers [90,91], particularly when IMPT is used [92,93]. Apart from toxicity,
studies comparing IMRT versus 3D-conformal RT [94] and IMRT versus PT [95] suggest
that conformity of the treatment is associated with the risk of radiation-induced second
malignancies. Based on organ equivalent dose calculations, the risk of secondary malig-
nancies in out-of-field organs, including the stomach, lungs and thyroid, was at least 5
times higher for IMRT than for PT in prostate treatment. In the prostate, smaller irradiated
volume to normal tissue and lower integral non-target dose in PT may reduce the risk
of secondary malignancies. Furthermore, a lower OAR dose from previous delivery also
favors re-treatment upon recurrence and successive treatment [96].

The cost-effectiveness of PT has been questionable, mainly due to the high infras-
tructure and machinery costs [97]. In a systematic review that analyzed the costs and
cost-effectiveness of PT for different disease types [98], Verma et al. indicated that the cost-
effectiveness of PT is generally lower for low-risk prostate cancer. While patient selection
plays a crucial role in such analyses, with considerations of treatment efficacy and costs
associated with acute/late toxicities, we note that the cost of PT is coming down as the
technology advances. The weight and size of accelerators and gantries have been decreased
by half since the 1990s [99], and novel designs with superconducting magnets have been
proposed that would significantly scale down their sizes even further [100]. The upfront
costs for infrastructure and machine units are on a downward trend. Regarding operational
costs, IMPT is theoretically cost saving compared with passive scattering PT, which involves
the use of a patient-specific brass aperture and compensator; however, few studies have
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discussed this cost implication [9]. Moreover, a number of clinical trials have suggested
a higher therapeutic ratio for hypo-fractionation in low «/{3 prostate cancer [101-103].
Improvement in dose conformity in PT treatment may allow hypo-fractionation treatment
schemes to be implemented as the standard of care, which can effectively increase patient
throughput [104]. The concept of remote patient positioning in the patient setup room may
also increase patient throughput [105,106]. Collectively, these efforts at making PT more
accurate and efficient will surely improve the efficacy and cost effectiveness of PT in the
treatment of prostate cancer.

5. Conclusions

Despite its dosimetric advantage, the use of PT for the treatment of prostate cancer
has been limited, mainly by inadequate dose prescription and improper dose delivery.
Advanced high-precision PT technologies, dose planning and beam delivery techniques
have been developed and commercially available for implementation and are expected to
optimize the dose conformity of PT in prostate treatment. Improvement in dose conformity
can enhance local disease control, patient throughput and cost-effectiveness by allowing
for implementation of dose escalation and hypofractionation treatment schemes.
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