Post-Neoadjuvant Treatment Strategies in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Post-Neoadjuvant Chemotherapy/Immunotherapy
3. Residual Disease following Neoadjuvant Therapy
4. PARP Inhibitors
5. ER-Positive/HER2-Negative Disease and CDK4/6 Inhibitors
6. De-Escalation Approaches
7. Locoregional Therapy
8. Future Approaches
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wolmark, N.; Wang, J.; Mamounas, E.; Bryant, J.; Fisher, B. Preoperative chemotherapy in patients with operable breast cancer: Nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. JNCI Monogr. 2001, 2001, 96–102. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Lee, S.J.; Ohtani, S.; Im, Y.H.; Lee, E.S.; Yokota, I.; Kuroi, K.; Im, S.A.; Park, B.W.; Kim, S.B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- Loibl, S.; Marmé, F.; Martin, M.; Untch, M.; Bonnefoi, H.; Kim, S.B.; Bear, H.; McCarthy, N.; Melé Olivé, M.; Gelmon, K.; et al. Palbociclib for Residual High-Risk Invasive HR-Positive and HER2-Negative Early Breast Cancer-The Penelope-B Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 1518–1530. [Google Scholar] [CrossRef]
- Chan, A.; Delaloge, S.; Holmes, F.A.; Moy, B.; Iwata, H.; Harvey, V.J.; Robert, N.J.; Silovski, T.; Gokmen, E.; von Minckwitz, G.; et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016, 17, 367–377. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Rezai, M.; Tesch, H.; Huober, J.; Gerber, B.; Zahm, D.M.; Hilfrich, J.; Costa, S.D.; Dubsky, P.; Blohmer, J.U.; et al. Zoledronate for patients with invasive residual disease after anthracyclines-taxane-based chemotherapy for early breast cancer—The Phase III NeoAdjuvant Trial Add-oN (NaTaN) study (GBG 36/ABCSG 29). Eur. J. Cancer 2016, 64, 12–21. [Google Scholar] [CrossRef]
- Mayer, I.A.; Zhao, F.; Arteaga, C.L.; Symmans, W.F.; Park, B.H.; Burnette, B.L.; Tevaarwerk, A.J.; Garcia, S.F.; Smith, K.L.; Makower, D.F.; et al. Randomized Phase III Postoperative Trial of Platinum-Based Chemotherapy Versus Capecitabine in Patients With Residual Triple-Negative Breast Cancer Following Neoadjuvant Chemotherapy: ECOG-ACRIN EA1131. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 2539–2551. [Google Scholar] [CrossRef]
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.; Sinn, B.V.; Blohmer, J.U.; Grischke, E.M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1279–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Ditsch, N.; Untch, M.; Kolberg-Liedtke, C.; Jackisch, C.; Krug, D.; Friedrich, M.; Janni, W.; Müller, V.; Albert, U.S.; Banys-Paluchowski, M.; et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2020. Breast Care 2020, 15, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Fasching, P.A.; Fehm, T.; Gerber, B.; Jackisch, C.; Loibl, S.; Schmidt, M.; Stickeler, E.; Wöckel, A.; Janni, W.; et al. AGO Algorithms for the Treatment of Breast Cancer: Update 2021. Geburtshilfe Frauenheilkd 2021, 81, 1101–1111. [Google Scholar] [CrossRef]
- Denkert, C.; Seither, F.; Schneeweiss, A.; Link, T.; Blohmer, J.U.; Just, M.; Wimberger, P.; Forberger, A.; Tesch, H.; Jackisch, C.; et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: Pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials. Lancet Oncol. 2021, 22, 1151–1161. [Google Scholar] [CrossRef]
- Pelizzari, G.; Gerratana, L.; Basile, D.; Fanotto, V.; Bartoletti, M.; Liguori, A.; Fontanella, C.; Spazzapan, S.; Puglisi, F. Post-neoadjuvant strategies in breast cancer: From risk assessment to treatment escalation. Cancer Treat. Rev. 2019, 72, 7–14. [Google Scholar] [CrossRef]
- Anand, K.; Patel, T.; Niravath, P.; Rodriguez, A.; Darcourt, J.; Belcheva, A.; Boone, T.; Ensor, J.; Chang, J. Targeting mTOR and DNA repair pathways in residual triple negative breast cancer post neoadjuvant chemotherapy. Sci. Rep. 2021, 11, 82. [Google Scholar] [CrossRef]
- Zujewski, J.A.; Rubinstein, L. CREATE-X a role for capecitabine in early-stage breast cancer: An analysis of available data. NPJ Breast Cancer 2017, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Harbeck, N.; Rastogi, P.; Martin, M.; Tolaney, S.M.; Shao, Z.M.; Fasching, P.A.; Huang, C.S.; Jaliffe, G.G.; Tryakin, A.; Goetz, M.P.; et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: Updated efficacy and Ki-67 analysis from the monarchE study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1571–1581. [Google Scholar] [CrossRef]
- Hatschek, T.; Foukakis, T.; Bjöhle, J.; Lekberg, T.; Fredholm, H.; Elinder, E.; Bosch, A.; Pekar, G.; Lindman, H.; Schiza, A.; et al. Neoadjuvant Trastuzumab, Pertuzumab, and Docetaxel vs Trastuzumab Emtansine in Patients With ERBB2-Positive Breast Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1360–1367. [Google Scholar] [CrossRef]
- Hatschek, T.; Andersson, A.; Bjöhle, J.; Bosch, A.; Carlsson, L.; Dreifaldt, A.C.; Einbeigi, Z.; Elinder, E.; Fredholm, H.; Isaksson-Friman, E.; et al. 97O PREDIX HER2 trial: Event-free survival and pathologic complete response in clinical subgroups and stromal TILs levels. Ann. Oncol. 2020, 31, S49. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Martin, M.; Jung, K.H.; Huang, C.S.; Harbeck, N.; Valero, V.; Stroyakovskiy, D.; Wildiers, H.; Campone, M.; Boileau, J.F.; et al. Neoadjuvant Trastuzumab Emtansine and Pertuzumab in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Three-Year Outcomes From the Phase III KRISTINE Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2206–2216. [Google Scholar] [CrossRef]
- Nitz, U.A.; Gluz, O.; Christgen, M.; Grischke, E.M.; Augustin, D.; Kuemmel, S.; Braun, M.; Potenberg, J.; Kohls, A.; Krauss, K.; et al. De-escalation strategies in HER2-positive early breast cancer (EBC): Final analysis of the WSG-ADAPT HER2+/HR- phase II trial: Efficacy, safety, and predictive markers for 12 weeks of neoadjuvant dual blockade with trastuzumab and pertuzumab ± weekly paclitaxel. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2768–2772. [Google Scholar] [CrossRef]
- Dubsky, P.; Pinker, K.; Cardoso, F.; Montagna, G.; Ritter, M.; Denkert, C.; Rubio, I.T.; de Azambuja, E.; Curigliano, G.; Gentilini, O.; et al. Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: The Lucerne toolbox. Lancet Oncol. 2021, 22, e18–e28. [Google Scholar] [CrossRef]
- Heil, J.; Kuerer, H.M.; Pfob, A.; Rauch, G.; Sinn, H.P.; Golatta, M.; Liefers, G.J.; Vrancken Peeters, M.J. Eliminating the breast cancer surgery paradigm after neoadjuvant systemic therapy: Current evidence and future challenges. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Reig, B.; Heacock, L.; Lewin, A.; Cho, N.; Moy, L. Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer. J. Magn. Reson. Imaging 2020, 52. [Google Scholar] [CrossRef]
- Friedrich, M.; Kühn, T.; Janni, W.; Müller, V.; Banys-Pachulowski, M.; Kolberg-Liedtke, C.; Jackisch, C.; Krug, D.; Albert, U.S.; Bauerfeind, I.; et al. AGO Recommendations for the Surgical Therapy of the Axilla After Neoadjuvant Chemotherapy: 2021 Update. Geburtshilfe Frauenheilkd 2021, 81, 1112–1120. [Google Scholar] [CrossRef]
- Pfob, A.; Sidey-Gibbons, C.; Lee, H.B.; Tasoulis, M.K.; Koelbel, V.; Golatta, M.; Rauch, G.M.; Smith, B.D.; Valero, V.; Han, W.; et al. Identification of breast cancer patients with pathologic complete response in the breast after neoadjuvant systemic treatment by an intelligent vacuum-assisted biopsy. Eur. J. Cancer 2021, 143, 134–146. [Google Scholar] [CrossRef]
- Krug, D.; Baumann, R.; Budach, W.; Dunst, J.; Feyer, P.; Fietkau, R.; Haase, W.; Harms, W.; Hehr, T.; Piroth, M.D.; et al. Neoadjuvant chemotherapy for breast cancer-background for the indication of locoregional treatment. Strahlenther. Onkol. 2018, 194, 797–805. [Google Scholar] [CrossRef]
- Krug, D.; Baumann, R.; Budach, W.; Dunst, J.; Feyer, P.; Fietkau, R.; Haase, W.; Harms, W.; Hehr, T.; Piroth, M.D.; et al. Individualization of post-mastectomy radiotherapy and regional nodal irradiation based on treatment response after neoadjuvant chemotherapy for breast cancer: A systematic review. Strahlenther. Onkol. 2018, 194, 607–618. [Google Scholar] [CrossRef]
- Ashok, A.; Sude, N.S.; Rakesh, B.A.; Karanam, V.P.K. Prospective Evaluation of Response Outcomes of Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer. Cureus 2022, 14, e21831. [Google Scholar] [CrossRef]
- Yau, C.; Osdoit, M.; van der Noordaa, M.; Shad, S.; Wei, J.; de Croze, D.; Hamy, A.S.; Laé, M.; Reyal, F.; Sonke, G.S.; et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: A multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022, 23, 149–160. [Google Scholar] [CrossRef]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1410–1415. [Google Scholar] [CrossRef]
- Marmé, F.; Solbach, C.; Michel, L.; Schneeweiss, A.; Blohmer, J.U.; Huober, J.; Fasching, P.A.; Jackisch, C.; Nekljudova, V.; Link, T.; et al. Utility of the CPS + EG scoring system in triple-negative breast cancer treated with neoadjuvant chemotherapy. Eur. J. Cancer 2021, 153, 203–212. [Google Scholar] [CrossRef]
Trial | N | Cohort | Design | Result |
---|---|---|---|---|
CREATE-X Trial Masuda et al. 2017 [6] | 910 | HER2-neg. BC, residual invasive disease after neoadjuvant therapy | Capecitabine 1250 mg/m2 b.i.d. d1-14 for 6-8 cycles vs. control | DFS HR 0.70 (0.53–0.92) OS HR 0.59 (0.39–0.90) |
286 | Subgroup with TNBC | DFS HR 0.58 (0.39–0.87) OS HR 0.52 (0.30–0.90) | ||
EXTENET Chan et al., 2020 [8] | 2840 | HER2-pos. BC + RD | Neratinib vs. placebo | DFS advantage |
NaTaN study (GBG 36/ABCSG 29) Von Minckwitz et al., 2016 [9] | 693 | RD | Zolendronic acid vs. observation | No difference |
KATHERINE Study von Minckwitz 2019 [5] | 1486 | HER2-pos. BC, residual invasive disease after neoadjuvant therapy | Trastuzumab emtansine (T-DM1) vs. trastuzumab for 14 cycles | iDFS HR 0.50 (0.39–0.64) More grade 3–4 toxicity with T-DM1 |
ECOG-ACRIN EA1131 Mayer et al., 2021 [10] | 410 | Clinical stage II/III TNBC with ≥1 cm residual disease in the breast | Carboplatin or cisplatin every 3 weeks for 4 cycles vs. capecitabine 1000 mg/m2 b.i.d. d1-14 for 6 cycles | iDFS HR 1.06 (0.62–1.81) More grade 3–4 toxicity with platinum |
PENELOPE-B Loibl et al., 2021 [11] | 1250 | HR-pos. HER2-neg. BC with residual disease; CPS-EG score of 3 or of 2 with ypN+ | Palbociclib 125 mg d1-d21 for 13 cycles vs. placebo | DFS HR 0.93 (0.74–1.17) More grade 3–4 toxicity with Palbociclib |
OlympiA Tutt et al., 2021 [4] | 1836 | HER2-negative with BRCA1 or BRCA2 after local treatment and neoadjuvant or adjuvant chemotherapy. | Olaparib vs. placebo. | IDFS HR 0.41 to 0.82 p < 0.001 ) DFS (0.39 to 0.83; p < 0.001)) Death (HR CI, 0.44 to 1.05 p < 0.001) No substiantial increase in adverse events |
Keynote 522 | 1174 | Triple-negative | Neoadjuvant: chemotherapy+placeb adjuvant: placebo vs. neoadjuvant: chemotherapy + pembrolizumab adjuvant: prembolizumab | OS (HR 0.72 [95% CI, 0.51–1.02) Grade ≥3 treatment-related AE Pembrolizumab: 77.1% Placebo: 73.3% |
IMpassion 031 Mittendorf et al., 2020 [12] | 455 | Triple-negative | Neoadjuvant chemotherapy plus intravenous atezolizumab chemotherapy plus | Pathologic complete response-rate superior for chemotherapy plus atezolizumab (p = 0.0044) |
A-Brave Trial Conte et al., 2020 Not published | 474 |
| Avelumab vs. observation | Results pending |
SASCIA NCT04595565 | HER2 neg. following neoadjuvant chemotherapy and local therapy | Arm A: Sacituzumab govitecan (days 1, 8 q3w for eight cycles); Arm B: treatment of physician’s choice |
DESTINY-Breast05 NCT04622319 | HER2-+ without complete response after neoadjuvant therapy | Arm A trastuzumab deruxtecan Arm B: trastuzumab emtansine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuschek, C.; Jazmati, D.; Bölke, E.; Tamaskovics, B.; Corradini, S.; Budach, W.; Krug, D.; Mohrmann, S.; Ruckhäberle, E.; Fehm, T.; et al. Post-Neoadjuvant Treatment Strategies in Breast Cancer. Cancers 2022, 14, 1246. https://doi.org/10.3390/cancers14051246
Matuschek C, Jazmati D, Bölke E, Tamaskovics B, Corradini S, Budach W, Krug D, Mohrmann S, Ruckhäberle E, Fehm T, et al. Post-Neoadjuvant Treatment Strategies in Breast Cancer. Cancers. 2022; 14(5):1246. https://doi.org/10.3390/cancers14051246
Chicago/Turabian StyleMatuschek, Christiane, Danny Jazmati, Edwin Bölke, Bálint Tamaskovics, Stefanie Corradini, Wilfried Budach, David Krug, Svjetlana Mohrmann, Eugen Ruckhäberle, Tanja Fehm, and et al. 2022. "Post-Neoadjuvant Treatment Strategies in Breast Cancer" Cancers 14, no. 5: 1246. https://doi.org/10.3390/cancers14051246
APA StyleMatuschek, C., Jazmati, D., Bölke, E., Tamaskovics, B., Corradini, S., Budach, W., Krug, D., Mohrmann, S., Ruckhäberle, E., Fehm, T., Nestle Krämling, C., Dommach, M., & Haussmann, J. (2022). Post-Neoadjuvant Treatment Strategies in Breast Cancer. Cancers, 14(5), 1246. https://doi.org/10.3390/cancers14051246