Advanced Tumor Imaging Approaches in Human Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Artificial Intelligence
3. Molecular Imaging
4. Real-Time Intravital Imaging Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.E.; Hudson, D.L.; Banda, P.W.; Blois, M.S. Neural network approach to detection of metastatic melanoma from chromatographic analysis of urine. In Annual Symposium on Computer Application in Medical Care Symposium on Computer Applications in Medical Care, Proceedings of the A Conference of the American Medical Informatics Association, Washington, DC, USA, 4–7 November 1990; IEEE Computer Society Press: Los Alamitos, CA, USA, 1991. [Google Scholar]
- Rodríguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.; Tan, T.; Mertelmeier, T.; et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. JNCI J. Natl. Cancer Inst. 2019, 111, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Nishikawa, R.M.; Schmidt, R.A.; Metz, C.E.; Giger, M.L.; Doi, K. Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 1999, 6, 22–33. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.J.; Kim, C.; Kim, W.H. Artificial intelligence in breast ultrasonography. Ultrasonography 2021, 40, 183–190. [Google Scholar] [CrossRef]
- Tschandl, P.; Rinner, C.; Apalla, Z.; Argenziano, G.; Codella, N.; Halpern, A.; Janda, M.; Lallas, A.; Longo, C.; Malvehy, J.; et al. Human-computer collaboration for skin cancer recognition. Nat. Med. 2020, 26, 1229–1234. [Google Scholar] [CrossRef]
- Lin, L.; Dou, Q.; Jin, Y.-M.; Zhou, G.-Q.; Tang, Y.-Q.; Chen, W.-L.; Su, B.-A.; Liu, F.; Tao, C.-J.; Jiang, N.; et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Quiroga-Garza, G.M.; Bien, L.; Heled, R.; Laifenfeld, D.; Linhart, C.; Sandbank, J.; Shach, A.A.; Shalev, V.; Vecsler, M.; et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: A blinded clinical validation and deployment study. Lancet Digit. Health 2020, 2, e407–e416. [Google Scholar] [CrossRef]
- Ma, K.; Harmon, S.A.; Klyuzhin, I.S.; Rahmim, A.; Turkbey, B. Clinical Application of Artificial Intelligence in Positron Emission Tomography: Imaging of Prostate Cancer. PET Clin. 2022, 17, 137–143. [Google Scholar] [CrossRef]
- Gharavi, S.M.H.; Faghihimehr, A. Clinical Application of Artificial Intelligence in PET Imaging of Head and Neck Cancer. PET Clin. 2022, 17, 65–76. [Google Scholar] [CrossRef]
- Le, E.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef]
- Abuzaid, M.; Tekin, H.; Reza, M.; Elhag, I.; Elshami, W. Assessment of MRI technologists in acceptance and willingness to integrate artificial intelligence into practice. Radiography 2021, 27, S83–S87. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.B.; O’Brien, C.M.; Bishop, K.; Fields, R.C.; Margenthaler, J.A.; Achilefu, S. Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery. J. Nucl. Med. 2020, 61, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lu, Z.-R. Molecular imaging of the tumor microenvironment. Adv. Drug Deliv. Rev. 2017, 113, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Sarabhai, T.; Schaarschmidt, B.M.; Wetter, A.; Kirchner, J.; Aktas, B.; Forsting, M.; Ruhlmann, V.; Herrmann, K.; Umutlu, L.; Grueneisen, J. Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur. J. Pediatr. 2018, 45, 67–76. [Google Scholar] [CrossRef]
- Boustani, A.M.; Pucar, D.; Saperstein, L. Molecular imaging of prostate cancer. Br. J. Radiol. 2018, 91, 20170736. [Google Scholar] [CrossRef] [PubMed]
- Ehlerding, E.B.; Sun, L.; Lan, X.; Zeng, D.; Cai, W. Dual-Targeted Molecular Imaging of Cancer. J. Nucl. Med. 2018, 59, 390–395. [Google Scholar] [CrossRef]
- Yang, Q.; Parker, C.L.; McCallen, J.D.; Lai, S.K. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. J. Control. Release 2015, 220, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Xu, Z.; De Geest, B.G.; Xu, H.; Yu, H. Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjug. Chem. 2020, 31, 404–415. [Google Scholar] [CrossRef]
- St-Arnaud, K.; Aubertin, K.; Strupler, M.; Madore, W.-J.; Grosset, A.-A.; Petrecca, K.; Trudel, D.; Leblond, F. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales. Med. Phys. 2017, 45, 328–339. [Google Scholar] [CrossRef]
- Bouché, M.; Hsu, J.C.; Dong, Y.C.; Kim, J.; Taing, K.; Cormode, D.P. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug. Chem. 2020, 31, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, E.M.; Fisher, D.T.; Evans, S.; Takabe, K.; Skitzki, J.J. Intravital microscopy in the study of the tumor microenvironment: From bench to human application. Oncotarget 2018, 9, 20165–20178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv. Drug Deliv. Rev. 2017, 113, 61–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayarmagnai, B.; Perrin, L.; Pourfarhangi, K.E.; Gligorijevic, B. Intravital Imaging of Tumor Cell Motility in the Tumor Microenvironment Context. Methods Pharmacol. Toxicol. 2018, 1749, 175–193. [Google Scholar] [CrossRef]
- Trumbull, D.A.; Lemini, R.; Bagaria, S.P.; Elli, E.F.; Colibaseanu, D.T.; Wallace, M.B.; Gabriel, E. Intravital Microscopy (IVM) in Human Solid Tumors: Novel Protocol to Examine Tumor-Associated Vessels. JMIR Res. Protoc. 2020, 9, e15677. [Google Scholar] [CrossRef]
- Gaustad, J.-V.; Simonsen, T.G.; Hansem, L.M.K.; Rofstad, E.K. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope. Eur. J. Pediatr. 2021, 48, 3089–3100. [Google Scholar] [CrossRef]
- Boulch, M.; Grandjean, C.; Cazaux, M.; Bousso, P. Tumor Immunosurveillance and Immunotherapies: A Fresh Look from Intravital Imaging. Trends Immunol. 2019, 40, 1022–1034. [Google Scholar] [CrossRef]
- Gabriel, E.M.; Kim, M.; Fisher, D.T.; Mangum, C.; Attwood, K.; Ji, W.; Mukhopadhyay, D.; Bagaria, S.P.; Robertson, M.W.; Dinh, T.A.; et al. A pilot trial of intravital microscopy in the study of the tumor vasculature of patients with peritoneal carcinomatosis. Sci. Rep. 2021, 11, 4946. [Google Scholar] [CrossRef]
- Lodygin, D.; Flügel, A. Intravital real-time analysis of T-cell activation in health and disease. Cell Calcium 2017, 64, 118–129. [Google Scholar] [CrossRef]
- Herskovits, E.H. Artificial intelligence in molecular imaging. Ann. Transl. Med. 2021, 9, 824. [Google Scholar] [CrossRef]
- Giampetraglia, M.; Weigelin, B. Recent advances in intravital microscopy for preclinical research. Curr. Opin. Chem. Biol. 2021, 63, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.P.; Pomper, M.G. Molecular imaging in oncology: Current impact and future directions. CA Cancer J. Clin. 2021. [Google Scholar] [CrossRef] [PubMed]
- Soulet, D.; Lamontagne-Proulx, J.; Aubé, B.; Davalos, D. Multiphoton intravital microscopy in small animals: Motion artefact challenges and technical solutions. J. Microsc. 2020, 278, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Date | Study Name | Major Findings |
---|---|---|
September 2019 | Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists |
|
August 2017 | Comparison of 18FDG-PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of uterine cervix |
|
March 2021 | A pilot trial of intravital microscopy in the study of the tumor vasculature of patients with peritoneal carcinomatosis |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nussbaum, S.; Shoukry, M.; Ashary, M.A.; Kasbi, A.A.; Baksh, M.; Gabriel, E. Advanced Tumor Imaging Approaches in Human Tumors. Cancers 2022, 14, 1549. https://doi.org/10.3390/cancers14061549
Nussbaum S, Shoukry M, Ashary MA, Kasbi AA, Baksh M, Gabriel E. Advanced Tumor Imaging Approaches in Human Tumors. Cancers. 2022; 14(6):1549. https://doi.org/10.3390/cancers14061549
Chicago/Turabian StyleNussbaum, Samuel, Mira Shoukry, Mohammed Ali Ashary, Ali Abbaszadeh Kasbi, Mizba Baksh, and Emmanuel Gabriel. 2022. "Advanced Tumor Imaging Approaches in Human Tumors" Cancers 14, no. 6: 1549. https://doi.org/10.3390/cancers14061549
APA StyleNussbaum, S., Shoukry, M., Ashary, M. A., Kasbi, A. A., Baksh, M., & Gabriel, E. (2022). Advanced Tumor Imaging Approaches in Human Tumors. Cancers, 14(6), 1549. https://doi.org/10.3390/cancers14061549