Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. ADT
2.1. History of ADT
2.2. ADT for High-Risk Localized and Locally Advanced PC
2.2.1. Negative Data of ADT for High-Risk Localized and Locally Advanced PC
2.2.2. Positive Data of ADT for High-Risk Localized and Locally Advanced PC
2.2.3. Differences in the Efficacy of ADT by Race
2.2.4. Position of ADT in High-Risk Localized and Locally Advanced PC
2.3. Evidence of ARST for Castration-Sensitive Prostate Cancer
2.4. Adverse Effects of ADT in Older Patients
2.4.1. Risk of Developing Dementia Due to ADT in Older Patients
2.4.2. Risk of ADT-Induced Dementia in Older Patients
2.4.3. Risk of CV Toxicity Due to ADT in Older Patients
2.5. ADT in the Older
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer Treatment and Survivorship Statistics, 2014. CA Cancer J. Clin. 2014, 64, 252–271. [Google Scholar] [CrossRef] [PubMed]
- Cetin, K.; Beebe-Dimmer, J.L.; Fryzek, J.P.; Markus, R.; Carducci, M.A. Recent Time Trends in the Epidemiology of stage IV Prostate Cancer in the United States: Analysis of Data from the Surveillance, Epidemiology, and End Results Program. Urology 2010, 75, 1396–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, H.; Nakanishi, H.; Miki, T.; Kubota, Y.; Takahashi, S.; Suzuki, K.; Kanayama, H.O.; Mikami, K.; Homma, Y. Oncological Outcomes of the Prostate Cancer Patients Registered in 2004: Report from the Cancer Registration Committee of the JUA. Int. J. Urol. 2011, 18, 876–881. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Shimada, T.; Kano, H.; Kadomoto, S.; Makino, T.; Naito, R.; Yaegashi, H.; Shigehara, K.; Kadono, Y.; et al. Androgen Receptor Signaling-Targeted Therapy and Taxane Chemotherapy Induce Visceral Metastasis in Castration-Resistant Prostate Cancer. Prostate 2021, 81, 72–80. [Google Scholar] [CrossRef]
- Byers, T.; Barrera, E.; Fontham, E.T.; Newman, L.A.; Runowicz, C.D.; Sener, S.F.; Thun, M.J.; Winborn, S.; Wender, R.C.; American Cancer Society Incidence and Mortality Ends Committee. A Midpoint Assessment of the American Cancer Society Challenge Goal to Halve the U.S. Cancer Mortality Rates between the Years 1990 and 2015. Cancer 2006, 107, 396–405. [Google Scholar] [CrossRef]
- Schröder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Prostate-Cancer Mortality at 11 Years of Follow-Up. N. Engl. J. Med. 2012, 366, 981–990. [Google Scholar] [CrossRef]
- Catalona, W.J. Prostate Cancer Screening. Med. Clin. N. Am. 2018, 102, 199–214. [Google Scholar] [CrossRef]
- Welch, H.G.; Albertsen, P.C. Reconsidering Prostate Cancer Mortality—The Future of PSA Screening. N. Engl. J. Med. 2020, 382, 1557–1563. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Broering, J.M.; Carroll, P.R. Time Trends and Local Variation in Primary Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2010, 28, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggener, S.E.; Scardino, P.T.; Walsh, P.C.; Han, M.; Partin, A.W.; Trock, B.J.; Feng, Z.; Wood, D.P.; Eastham, J.A.; Yossepowitch, O.; et al. Predicting 15-Year Prostate Cancer Specific Mortality After Radical Prostatectomy. J. Urol. 2011, 185, 869–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rider, J.R.; Sandin, F.; Andrén, O.; Wiklund, P.; Hugosson, J.; Stattin, P. Long-Term Outcomes Among Noncuratively Treated Men According to Prostate Cancer Risk Category in a Nationwide, Population-Based Study. Eur. Urol. 2013, 63, 88–96. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical Outcome After Radical Prostatectomy, External Beam Radiation Therapy, or Interstitial Radiation Therapy for Clinically Localized Prostate Cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Prostate Cancer 2021, 2, 185–197. [Google Scholar]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S.; ESMO Guidelines Committee. Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- Huggins, C.; Hodges, C.V. Studies on Prostatic Cancer: I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. J. Urol. 2002, 168, 9–12. [Google Scholar] [CrossRef]
- Schally, A.V.; Arimura, A.; Kastin, A.J.; Matsuo, H.; Baba, Y.; Redding, T.W.; Nair, R.M.; Debeljuk, L.; White, W.F. Gonadotropin-Releasing Hormone: One Polypeptide Regulates Secretion of Luteinizing and Follicle-Stimulating Hormones. Science 1971, 173, 1036–1038. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.L.; Tosteson, T.D.; Schmitt, B.; Weinberg, P.D.; Ernstoff, M.S.; Ross, S.D. Maximum Androgen-Blockade with Medical or Surgical Castration in Advanced Prostate Cancer: A Meta-Analysis of Nine Published Randomized Controlled Trials and 4128 Patients Using Flutamide. Prostate Cancer Prostatic Dis. 1999, 2, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Prostate Cancer Trialists’ Collaborative Group. Maximum Androgen Blockade in Advanced Prostate Cancer: An Overview of the Randomised Trials. Lancet 2000, 355, 1491–1498. [Google Scholar] [CrossRef]
- Seidenfeld, J.; Samson, D.J.; Hasselblad, V.; Aronson, N.; Albertsen, P.C.; Bennett, C.L.; Wilt, T.J. Single-Therapy Androgen Suppression in Men with Advanced Prostate Cancer: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2000, 132, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Samson, D.J.; Seidenfeld, J.; Schmitt, B.; Hasselblad, V.; Albertsen, P.C.; Bennett, C.L.; Wilt, T.J.; Aronson, N. Systematic Review and Meta-Analysis of Monotherapy Compared with Combined Androgen Blockade for Patients with Advanced Prostate Carcinoma. Cancer 2002, 95, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Garje, R.; Chennamadhavuni, A.; Mott, S.L.; Chambers, I.M.; Gellhaus, P.; Zakharia, Y.; Brown, J.A. Utilization and Outcomes of Surgical Castration in Comparison to Medical Castration in Metastatic Prostate Cancer. Clin. Genitourin. Cancer 2020, 18, e157–e166. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Labrie, C.; Simard, J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: Intracrinology. Front. Neuroendocrinol. 2001, 22, 185–212. [Google Scholar] [CrossRef]
- Mizokami, A.; Koh, E.; Fujita, H.; Maeda, Y.; Egawa, M.; Koshida, K.; Honma, S.; Keller, E.T.; Namiki, M. The Adrenal Androgen Androstenediol Is Present in Prostate Cancer Tissue after Androgen Deprivation Therapy and Activates Mutated Androgen Receptor. Cancer Res. 2004, 64, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, T.; Hashimoto, Y.; Takahashi, K. The Influence of Androgen Deprivation Therapy on Dihydrotestosterone Levels in the Prostatic Tissue of Patients with Prostate Cancer. Clin. Cancer Res. 2004, 10, 7121–7126. [Google Scholar] [CrossRef] [Green Version]
- Labrie, F.; Dupont, A.; Belanger, A.; Cusan, L.; Lacourciere, Y.; Monfette, G.; Laberge, J.G.; Emond, J.P.; Fazekas, A.T.; Raynaud, J.P.; et al. New Hormonal Therapy in Prostatic Carcinoma: Combined Treatment with an LHRH Agonist and an Antiandrogen. Clin. Investig. Med. 1982, 5, 267–275. [Google Scholar]
- Bélanger, A.; Dupont, A.; Labrie, F. Inhibition of Basal and Adrenocorticotropin-Stimulated Plasma Levels of Adrenal Androgens After Treatment with an Antiandrogen in Castrated Patients with Prostatic Cancer. J. Clin. Endocrinol. Metab. 1984, 59, 422–426. [Google Scholar] [CrossRef]
- Labrie, F. Endocrine Therapy for Prostate Cancer. Endocrinol. Metab. Clin. N. Am. 1991, 20, 845–872. [Google Scholar] [CrossRef]
- Van Poppel, H.; Nilsson, S. Testosterone Surge: Rationale for Gonadotropin-Releasing Hormone Blockers? Urology 2008, 71, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, I.; Kubota, Y.; Nakada, T.; Suzuki, H.; Hirano, J.; Sugano, O.; Kato, H.; Imamura, A.; Mastushita, K.; Onmura, Y.; et al. Influence of Luteinizing Hormone-Releasing Hormone Analogues on Serum Levels of Prostatic Acid Phosphatase and Prostatic Specific Antigen in Patients with Metastatic Carcinoma of the Prostate. Int. Urol. Nephrol. 1998, 30, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M.; Zeidman, E.J.; Rodriguez, F.R. Sudden Death Due to Disease Flare with Luteinizing Hormone-Releasing Hormone Agonist Therapy for Carcinoma of the Prostate. J. Urol. 1990, 144, 1479–1480. [Google Scholar] [CrossRef]
- Klotz, L.; Boccon-Gibod, L.; Shore, N.D.; Andreou, C.; Persson, B.E.; Cantor, P.; Jensen, J.K.; Olesen, T.K.; Schröder, F.H. The Efficacy and Safety of Degarelix: A 12-Month, Comparative, Randomized, Open-Label, Parallel-Group phase III Study in Patients with Prostate Cancer. BJU Int. 2008, 102, 1531–1538. [Google Scholar] [CrossRef]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer After Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide Treatment and Metastasis-Free Survival in Prostate Cancer. N. Engl. J. Med. 2018, 378, 1408–1418. [Google Scholar] [CrossRef]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2019, 380, 1235–1246. [Google Scholar] [CrossRef]
- Iwamoto, H.; Kano, H.; Shimada, T.; Naito, R.; Makino, T.; Kadamoto, S.; Yaegashi, H.; Shigehara, K.; Izumi, K.; Kadonoa, Y.; et al. Effectiveness of Vintage Hormone Therapy as Alternative Androgen Deprivation Therapy for Non-Metastatic Castration-Resistant Prostate Cancer. In Vivo 2021, 35, 1247–1252. [Google Scholar] [CrossRef]
- Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- Shimura, Y.; Suga, Y.; Itai, S.; Iwamoto, H.; Takezawa, Y.; Yaegashi, H.; Izumi, K.; Shimada, T.; Sai, Y.; Matsushita, R.; et al. Comparison of Tolerability Between 2-Weekly and 3-Weekly Docetaxel Regimen in Castration-Resistant Prostate Cancer. Anticancer Res. 2020, 40, 4291–4297. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus Cabazitaxel or Mitoxantrone for Metastatic Castration-Resistant Prostate Cancer Progressing After Docetaxel Treatment: A Randomised Open-Label Trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Iwamoto, H.; Kano, H.; Shimada, T.; Naito, R.; Makino, T.; Kadomoto, S.; Yaegashi, H.; Shigehara, K.; Izumi, K.; Kadono, Y.; et al. Sarcopenia and Visceral Metastasis at Cabazitaxel Initiation Predict Prognosis in Patients with Castration-Resistant Prostate Cancer Receiving Cabazitaxel Chemotherapy. In Vivo 2021, 35, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Shahinian, V.B.; Kuo, Y.F.; Freeman, J.L.; Orihuela, E.; Goodwin, J.S. Increasing Use of Gonadotropin-Releasing Hormone Agonists for the Treatment of Localized Prostate Carcinoma. Cancer 2005, 103, 1615–1624. [Google Scholar] [CrossRef]
- The Medical Research Council Prostate Cancer Working Party Investigators Group. Immediate versus deferred treatment for advanced prostatic cancer: Initial results of the Medical Research Council Trial. Br. J. Urol. 1997, 79, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.M.; Tran, S.; Robinson, J.W. Luteinizing hormone-releasing hormone agonists: A quick reference for prevalence rates of potential adverse effects. Clin. Genitourin. Cancer 2013, 11, 375–384. [Google Scholar] [CrossRef]
- Holzbeierlein, J.M.; McLaughlin, M.D.; Thrasher, J.B. Complications of androgen deprivation therapy for prostate cancer. Curr. Opin. Urol. 2004, 14, 177–183. [Google Scholar] [CrossRef]
- Kunath, F.; Grobe, H.R.; Rücker, G.; Motschall, E.; Antes, G.; Dahm, P.; Wullich, B.; Meerpohl, J.J. Non-steroidal antiandrogen monotherapy compared with luteinizing hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer: A Cochrane systematic review. BJU Int. 2015, 116, 30–36. [Google Scholar] [CrossRef]
- Magnan, S.; Zarychanski, R.; Pilote, L.; Bernier, L.; Shemilt, M.; Vigneault, E.; Fradet, V.; Turgeon, A.F. Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2015, 1, 1261–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciarra, A.; Fasulo, A.; Ciardi, A.; Petrangeli, E.; Gentilucci, A.; Maggi, M.; Innocenzi, M.; Pierella, F.; Gentile, V.; Salciccia, S.; et al. A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer. Medicine 2016, 95, e3845. [Google Scholar] [CrossRef]
- Fowler, F.J., Jr.; McNaughton Collins, M.; Walker Corkery, E.; Elliott, D.B.; Barry, M.J. The impact of androgen deprivation on quality of life after radical prostatectomy for prostate carcinoma. Cancer 2002, 95, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Potosky, A.L.; Knopf, K.; Clegg, L.X.; Albertsen, P.C.; Stanford, J.L.; Hamilton, A.S.; Gilliland, F.D.; Eley, J.W.; Stephenson, R.A.; Hoffman, R.M. Quality-of-life outcomes after primary androgen deprivation therapy: Results from the Prostate Cancer Outcomes Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 3750–3757. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.; McLeod, D.G.; See, W.A.; Morris, T.; Armstrong, J.; Wirth, M.P. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: Final results from the bicalutamide Early Prostate Cancer programme at a median follow-up of 9.7 years. BJU Int. 2010, 105, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Cormio, L.; Palangi, L.; Lewin, R.; Santanelli di Pompeo, F.; Elander, A.; Selvaggi, G. Gynecomastia in Patients with Prostate Cancer: A Systematic Review. PLoS ONE 2015, 10, e0136094. [Google Scholar] [CrossRef] [PubMed]
- Nead, K.T.; Sinha, S.; Yang, D.D.; Nguyen, P.L. Association of androgen deprivation therapy and depression in the treatment of prostate cancer: A systematic review and meta-analysis. Urol. Oncol. 2017, 35, 664.e661–664.e669. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, A.; Epstein, M.; Marchese, M.; Dickerman, B.A.; Cole, A.P.; Lipsitz, S.R.; Nguyen, P.L.; Kibel, A.S.; Choueiri, T.K.; Basaria, S.; et al. Risk of dementia following androgen deprivation therapy for treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2020, 23, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Jayadevappa, R.; Chhatre, S.; Malkowicz, S.B.; Parikh, R.B.; Guzzo, T.; Wein, A.J. Association Between Androgen Deprivation Therapy Use and Diagnosis of Dementia in Men with Prostate Cancer. JAMA Netw. Open 2019, 2, e196562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.; Garmo, H.; Van Hemelrijck, M.; Damber, J.E.; Bratt, O.; Holmberg, L.; Wahlund, L.O.; Stattin, P.; Adolfsson, J. Androgen deprivation therapy for prostate cancer and risk of dementia. BJU Int. 2019, 124, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M.; Shen, C.Y.; Lau, W.C.Y.; Shao, S.C.; Man, K.K.C.; Hsu, R.J.; Wu, C.T.; Lai, E.C. Association between Androgen Deprivation Therapy and Risk of Dementia in Men with Prostate Cancer. Cancers 2021, 13, 3861. [Google Scholar] [CrossRef] [PubMed]
- Nead, K.T.; Sinha, S.; Nguyen, P.L. Androgen deprivation therapy for prostate cancer and dementia risk: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017, 20, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, Y.; Li, F.; He, G.; Jiang, Z.; Gang, X.; Wang, G. Quantifying observational evidence for risk of dementia following androgen deprivation therapy for prostate cancer: An updated systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2021, 24, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Lee, W.C.; Brandman, J.; Wang, Q.; Botteman, M.; Pashos, C.L. Gonadotropin-releasing hormone agonists and fracture risk: A claims-based cohort study of men with nonmetastatic prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 7897–7903. [Google Scholar] [CrossRef]
- Alibhai, S.M.; Duong-Hua, M.; Cheung, A.M.; Sutradhar, R.; Warde, P.; Fleshner, N.E.; Paszat, L. Fracture types and risk factors in men with prostate cancer on androgen deprivation therapy: A matched cohort study of 19,079 men. J. Urol. 2010, 184, 918–923. [Google Scholar] [CrossRef]
- Shahinian, V.B.; Kuo, Y.F.; Freeman, J.L.; Goodwin, J.S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 2005, 352, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Beebe-Dimmer, J.L.; Cetin, K.; Shahinian, V.; Morgenstern, H.; Yee, C.; Schwartz, K.L.; Acquavella, J. Timing of androgen deprivation therapy use and fracture risk among elderly men with prostate cancer in the United States. Pharmacoepidemiol. Drug Saf. 2012, 21, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Lee, J.Y.; Kim, K.J.; Hong, N.; Kim, J.W.; Hah, Y.S.; Koo, K.C.; Kim, J.H.; Cho, K.S. Effect of Androgen-Deprivation Therapy on Bone Mineral Density in Patients with Prostate Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Finkelstein, J.S.; McGovern, F.J.; Zietman, A.L.; Fallon, M.A.; Schoenfeld, D.A.; Kantoff, P.W. Changes in body composition during androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab. 2002, 87, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Keating, N.L.; O’Malley, A.J.; Freedland, S.J.; Smith, M.R. Diabetes and cardiovascular disease during androgen deprivation therapy: Observational study of veterans with prostate cancer. J. Natl. Cancer Inst. 2010, 102, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga-Basaria, M.; Dobs, A.S.; Muller, D.C.; Carducci, M.A.; John, M.; Egan, J.; Basaria, S. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 3979–3983. [Google Scholar] [CrossRef] [PubMed]
- Crawley, D.; Garmo, H.; Rudman, S.; Stattin, P.; Haggstrom, C.; Zethelius, B.; Holmberg, L.; Adolfsson, J.; Van Hemelrijck, M. Association between duration and type of androgen deprivation therapy and risk of diabetes in men with prostate cancer. Int. J. Cancer 2016, 139, 2698–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.R.; Lee, H.; Nathan, D.M. Insulin sensitivity during combined androgen blockade for prostate cancer. J. Clin. Endocrinol. Metab. 2006, 91, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Crawley, D.; Adolfsson, J.; Rudman, S.; Van Hemelrijck, M. Quantifying the evidence for the risk of metabolic syndrome and its components following androgen deprivation therapy for prostate cancer: A meta-analysis. PLoS ONE 2015, 10, e0117344. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, X.; Zhao, L.; Chen, X.; Zhao, J. Androgen deprivation therapy is associated with diabetes: Evidence from meta-analysis. J. Diabetes Investig. 2016, 7, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, N.L.; O’Malley, A.J.; Smith, M.R. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4448–4456. [Google Scholar] [CrossRef]
- O’Farrell, S.; Garmo, H.; Holmberg, L.; Adolfsson, J.; Stattin, P.; Van Hemelrijck, M. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1243–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Farrell, S.; Sandström, K.; Garmo, H.; Stattin, P.; Holmberg, L.; Adolfsson, J.; Van Hemelrijck, M. Risk of thromboembolic disease in men with prostate cancer undergoing androgen deprivation therapy. BJU Int. 2016, 118, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhu, S.; Sun, L.; Meng, F.; Zhao, L.; Zhao, Y.; Tian, H.; Li, P.; Niu, Y. Androgen deprivation therapy for prostate cancer is associated with cardiovascular morbidity and mortality: A meta-analysis of population-based observational studies. PLoS ONE 2014, 9, e107516. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhu, S.; Zhao, J.; Vados, L.; Wang, L.; Zhao, Y.; Zhao, D.; Niu, Y. Stroke related to androgen deprivation therapy for prostate cancer: A meta-analysis and systematic review. BMC Cancer 2016, 16, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibhai, S.M.; Duong-Hua, M.; Sutradhar, R.; Fleshner, N.E.; Warde, P.; Cheung, A.M.; Paszat, L.F. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 3452–3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, P.L.; Je, Y.; Schutz, F.A.; Hoffman, K.E.; Hu, J.C.; Parekh, A.; Beckman, J.A.; Choueiri, T.K. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: A meta-analysis of randomized trials. JAMA 2011, 306, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Sammon, J.D.; Abdollah, F.; Reznor, G.; Pucheril, D.; Choueiri, T.K.; Hu, J.C.; Kim, S.P.; Schmid, M.; Sood, A.; Sun, M.; et al. Patterns of Declining Use and the Adverse Effect of Primary Androgen Deprivation on All-cause Mortality in Elderly Men with Prostate Cancer. Eur. Urol. 2015, 68, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Merglen, A.; Schmidlin, F.; Fioretta, G.; Verkooijen, H.M.; Rapiti, E.; Zanetti, R.; Miralbell, R.; Bouchardy, C. Short- and long-term mortality with localized prostate cancer. Arch Intern. Med. 2007, 167, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, A.; Huang, H.H.; Lau, W.K.O. Primary androgen deprivation therapy as monotherapy in unfavourable intermediate- and high-risk localised prostate cancer: A Singaporean single-centre perspective. Int. Urol. Nephrol. 2018, 50, 665–673. [Google Scholar] [CrossRef]
- Lu-Yao, G.L.; Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; DiPaola, R.S.; Yao, S.L. Survival following primary androgen deprivation therapy among men with localized prostate cancer. JAMA 2008, 300, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Potosky, A.L.; Haque, R.; Cassidy-Bushrow, A.E.; Ulcickas Yood, M.; Jiang, M.; Tsai, H.T.; Luta, G.; Keating, N.L.; Smith, M.R.; Van Den Eeden, S.K. Effectiveness of primary androgen-deprivation therapy for clinically localized prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Lu-Yao, G.L.; Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; DiPaola, R.S.; Yao, S.L. Fifteen-year survival outcomes following primary androgen-deprivation therapy for localized prostate cancer. JAMA Intern. Med. 2014, 174, 1460–1467. [Google Scholar] [CrossRef] [Green Version]
- Labrie, F.; Candas, B.; Gomez, J.L.; Cusan, L. Can combined androgen blockade provide long-term control or possible cure of localized prostate cancer? Urology 2002, 60, 115–119. [Google Scholar] [CrossRef]
- Akaza, H.; Homma, Y.; Usami, M.; Hirao, Y.; Tsushima, T.; Okada, K.; Yokoyama, M.; Ohashi, Y.; Aso, Y. Efficacy of primary hormone therapy for localized or locally advanced prostate cancer: Results of a 10-year follow-up. BJU Int. 2006, 98, 573–579. [Google Scholar] [CrossRef]
- Kawakami, J.; Cowan, J.E.; Elkin, E.P.; Latini, D.M.; DuChane, J.; Carroll, P.R. Androgen-deprivation therapy as primary treatment for localized prostate cancer: Data from Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE). Cancer 2006, 106, 1708–1714. [Google Scholar] [CrossRef]
- Akaza, H. Future prospects for luteinizing hormone-releasing hormone analogues in prostate cancer treatment. Pharmacology 2010, 85, 110–120. [Google Scholar] [CrossRef]
- Matsumoto, K.; Hagiwara, M.; Tanaka, N.; Hayakawa, N.; Ishida, M.; Ninomiya, A.; Nakajima, Y.; Nakamura, S. Survival following primary androgen deprivation therapy for localized intermediate- or high-risk prostate cancer: Comparison with the life expectancy of the age-matched normal population. Med. Oncol. 2014, 31, 979. [Google Scholar] [CrossRef] [PubMed]
- Studer, U.E.; Whelan, P.; Wimpissinger, F.; Casselman, J.; de Reijke, T.M.; Knönagel, H.; Loidl, W.; Isorna, S.; Sundaram, S.K.; Collette, L. Differences in time to disease progression do not predict for cancer-specific survival in patients receiving immediate or deferred androgen-deprivation therapy for prostate cancer: Final results of EORTC randomized trial 30891 with 12 years of follow-up. Eur. Urol. 2014, 66, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Fukagai, T.; Namiki, T.S.; Carlile, R.G.; Yoshida, H.; Namiki, M. Comparison of the clinical outcome after hormonal therapy for prostate cancer between Japanese and Caucasian men. BJU Int. 2006, 97, 1190–1193. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Hinotsu, S.; Namiki, M.; Carroll, P.R.; Akaza, H. Trans-Pacific variation in outcomes for men treated with primary androgen-deprivation therapy (ADT) for prostate cancer. BJU Int. 2016, 117, 102–109. [Google Scholar] [CrossRef]
- Kupelian, P.A.; Elshaikh, M.; Reddy, C.A.; Zippe, C.; Klein, E.A. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: A large single-institution experience with radical prostatectomy and external-beam radiotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3376–3385. [Google Scholar] [CrossRef]
- Bill-Axelson, A.; Holmberg, L.; Filén, F.; Ruutu, M.; Garmo, H.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.O.; Bratell, S.; et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: The Scandinavian prostate cancer group-4 randomized trial. J. Natl. Cancer Inst. 2008, 100, 1144–1154. [Google Scholar] [CrossRef] [Green Version]
- Bill-Axelson, A.; Holmberg, L.; Garmo, H.; Rider, J.R.; Taari, K.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.O.; Spångberg, A.; et al. Radical prostatectomy or watchful waiting in early prostate cancer. N. Engl. J. Med. 2014, 370, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Bolla, M.; Collette, L.; Blank, L.; Warde, P.; Dubois, J.B.; Mirimanoff, R.O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): A phase III randomised trial. Lancet 2002, 360, 103–106. [Google Scholar] [CrossRef]
- Roach, M., 3rd; Bae, K.; Speight, J.; Wolkov, H.B.; Rubin, P.; Lee, R.J.; Lawton, C.; Valicenti, R.; Grignon, D.; Pilepich, M.V. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: Long-term results of RTOG 8610. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 585–591. [Google Scholar] [CrossRef]
- Wallis, C.J.D.; Saskin, R.; Choo, R.; Herschorn, S.; Kodama, R.T.; Satkunasivam, R.; Shah, P.S.; Danjoux, C.; Nam, R.K. Surgery Versus Radiotherapy for Clinically-Localized Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Ennis, R.D.; Hu, L.; Ryemon, S.N.; Lin, J.; Mazumdar, M. Brachytherapy-Based Radiotherapy and Radical Prostatectomy Are Associated with Similar Survival in High-Risk Localized Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.D.; Martin, A.J.; Stockler, M.R.; Begbie, S.; Chi, K.N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W.E.; Horvath, L.G.; et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Chi, K.N.; Chowdhury, S.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez, A.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; et al. Apalutamide in Patients with Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 2294–2303. [Google Scholar] [CrossRef]
- Attard, G.; Murphy, L.; Clarke, N.W.; Cross, W.; Jones, R.J.; Parker, C.C.; Gillessen, S.; Cook, A.; Brawley, C.; Amos, C.L.; et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: A meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet 2021, 399, 447–460. [Google Scholar] [CrossRef]
- Carcaillon, L.; Brailly-Tabard, S.; Ancelin, M.L.; Tzourio, C.; Foubert-Samier, A.; Dartigues, J.F.; Guiochon-Mantel, A.; Scarabin, P.Y. Low testosterone and the risk of dementia in elderly men: Impact of age and education. Alzheimers Dement. 2014, 10, S306–S314. [Google Scholar] [CrossRef]
- Gandy, S.; Almeida, O.P.; Fonte, J.; Lim, D.; Waterrus, A.; Spry, N.; Flicker, L.; Martins, R.N. Chemical andropause and amyloid-beta peptide. JAMA 2001, 285, 2195–2196. [Google Scholar] [CrossRef]
- Manolagas, S.C.; Weinstein, R.S. New Developments in the Pathogenesis and Treatment of Steroid-Induced Osteoporosis. J. Bone Miner. Res. 1999, 14, 1061–1066. [Google Scholar] [CrossRef]
- Riggs, B.L.; Khosla, S.; Melton, L.J., 3rd. Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocr. Rev. 2002, 23, 279–302. [Google Scholar] [CrossRef]
- Dewey, M.E.; Saz, P. Dementia, Cognitive Impairment and Mortality in Persons Aged 65 and over Living in the Community: A Systematic Review of the Literature. Int. J. Geriatr. Psychiatry 2001, 16, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Poon, Y.; Pechlivanoglou, P.; Alibhai, S.M.H.; Naimark, D.; Hoch, J.S.; Papadimitropoulos, E.; Hogan, M.E.; Krahn, M. Systematic Review and Network Meta-Analysis on the Relative Efficacy of Osteoporotic Medications: Men with Prostate Cancer on Continuous Androgen-Deprivation Therapy to Reduce Risk of Fragility Fractures. BJU. Int. 2018, 121, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Tan, B.; Fu, F.; Chen, Q.; Li, W.; Chen, W.; He, H. Exercise vs Conventional Treatment for Treatment of Primary Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Orthop. Surg. 2021, 13, 1474–1487. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; D’Amico, A.V.; Berger, P.; Clark, P.E.; Eckel, R.H.; Keating, N.L.; Milani, R.V.; Sagalowsky, A.I.; Smith, M.R.; Zakai, N.; et al. Androgen-Deprivation Therapy in Prostate Cancer and Cardiovascular Risk: A Science Advisory from the American Heart Association, American Cancer Society, and American Urological Association: Endorsed by the American Society for Radiation Oncology. CA Cancer J. Clin. 2010, 60, 194–201. [Google Scholar] [CrossRef]
- Muniyan, S.; Xi, L.; Datta, K.; Das, A.; Teply, B.A.; Batra, S.K.; Kukreja, R.C. Cardiovascular Risks and Toxicity—The Achilles Heel of Androgen Deprivation Therapy in Prostate Cancer Patients. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188383. [Google Scholar] [CrossRef]
- Makhsida, N.; Shah, J.; Yan, G.; Fisch, H.; Shabsigh, R. Hypogonadism and Metabolic Syndrome: Implications for Testosterone Therapy. J. Urol. 2005, 174, 827–834. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk a Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Wing, R.R.; Blair, E.H.; Bononi, P.; Marcus, M.D.; Watanabe, R.; Bergman, R.N. Caloric Restriction Per Se Is a Significant Factor in Improvements in Glycemic Control and Insulin Sensitivity During Weight Loss in Obese NIDDM Patients. Diabetes Care 1994, 17, 30–36. [Google Scholar] [CrossRef]
- Lee, D.C.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Das, A.; Durrant, D.; Salloum, F.N.; Xi, L.; Kukreja, R.C. PDE5 Inhibitors as Therapeutics for Heart Disease, Diabetes and Cancer. Pharmacol. Ther. 2015, 147, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannetta, E.; Feola, T.; Gianfrilli, D.; Pofi, R.; Dall’Armi, V.; Badagliacca, R.; Barbagallo, F.; Lenzi, A.; Isidori, A.M. Is Chronic Inhibition of Phosphodiesterase type 5 Cardioprotective and Safe? A Meta-Analysis of Randomized Controlled Trials. BMC Med. 2014, 12, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertsen, P.C.; Klotz, L.; Tombal, B.; Grady, J.; Olesen, T.K.; Nilsson, J. Cardiovascular Morbidity Associated with Gonadotropin Releasing Hormone Agonists and an Antagonist. Eur. Urol. 2014, 65, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D.; Saad, F.; Cookson, M.S.; George, D.J.; Saltzstein, D.R.; Tutrone, R.; Akaza, H.; Bossi, A.; van Veenhuyzen, D.F.; Selby, B.; et al. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N. Engl. J. Med. 2020, 382, 2187–2196. [Google Scholar] [CrossRef]
- Melloni, C.; Slovin, S.F.; Blemings, A.; Goodman, S.G.; Evans, C.P.; Nilsson, J.; Bhatt, D.L.; Zubovskiy, K.; Olesen, T.K.; Dugi, K.; et al. Cardiovascular Safety of Degarelix Versus Leuprolide for Advanced Prostate Cancer: The PRONOUNCE Trial Study Design. JACC Cardiooncol. 2020, 2, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.; Solimando, A.G.; Kalogirou, C.; Marquardt, A.; Frank, T.; Sokolakis, I.; Hatzichristodoulou, G.; Kneitz, S.; Bargou, R.; Kübler, H.; et al. miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro. J. Clin. Med. 2020, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Solimando, A.G.; Kalogirou, C.; Krebs, M. Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer—Narrowing the Gap between Bench and Bedside. Front. Immunol. 2022, 13, 842038. [Google Scholar] [CrossRef] [PubMed]
Risk | Clinical Stage | Initial PSA | Gleason Score | References | |||||
---|---|---|---|---|---|---|---|---|---|
D’Amico et al. | High | ≥T2c | or | >20 ng/mL | or | ≥8 | [14] | ||
NCCN 2021 | High | T3a | or | >20 ng/mL | or | Grade Group 4 or Grade Group 5 | [15] | ||
Very high | T3b/T4 | or | or | Primary Gleason pattern 5 or > 4 cores with Grade Group 4 or 5 | or | 2 or 3 high-risk features | |||
EAU 2020 | High | T2c | or | >20 ng/mL | or | ≥8 | [16] | ||
Locally advanced | T3/T4 or N1 | and | Any | and | Any | ||||
ESMO 2020 | High | ≥T2c | or | >20 ng/mL | or | ≥8 | [17] |
Study | Study Specification | Patient Characteristics | Size | Findings | References |
---|---|---|---|---|---|
Merglen et al. (2007) | retrospective cohort study | Patients with localized PC treated with either total prostatectomy, radiation therapy, watchful waiting, hormone therapy, or other treatment | 844 | Patients who received ADT alone already had an increased risk of PCSM at 5 years (HR 3.5, 95% CI 1.4–8.7) | [83] |
Lee et al. (2018) | retrospective study | Patients diagnosed with localized PC who underwent ADT or treatment-free follow-up | 340 | In clinically unfavorable localized intermediate- and high-risk PC, initiation of ADT within 12 months of diagnosis was not associated with improved 5-year all-cause mortality or PCSM compared with patients who received no conservative treatment | [84] |
Lu-Yao et al. (2008) | retrospective cohort study | Patients diagnosed with localized PC who underwent ADT or treatment-free follow-up | 19,271 | ADT is not associated with improved survival among the majority of elderly men with localized prostate cancer when compared with conservative management | [85] |
Potosky et al. (2014) | retrospective cohort study | Newly diagnosed patients with localized PC | 15,170 | ADT was associated with neither a risk of all-cause mortality (HR 1.04, 95% CI 0.97–1.11) nor PCSM (HR 1.03, 95% CI 0.89–1.19). | [86] |
Lu-Yao et al. (2014) | retrospective cohort study | Patients aged 66 years or older with localized PC who did not receive curative treatment | 66,717 | ADT is not associated with improved long-term overall or disease-specific survival for men with localized PC. | [87] |
Sammon et al. (2015) | retrospective cohort study | Newly diagnosed patients with locally advanced or localized PC | 46,376 | There was an increased risk of all-cause mortality in the ADT group compared to the observation group (HR 1.37, 95% CI 1.20–1.56) | [82] |
Study | Study Specification | Patient Characteristics | Size | Findings | References |
---|---|---|---|---|---|
Labrie et al. (2002) | prospective study | Patients with newly diagnosed locally advanced or localized PC who have undergone CAB | 57 | In patients with stage T2–T3 cancer who continued CAB for more than 6.5 years and discontinued treatment there were only two cases of PSA elevation. Long-term continuous CAB was suggested to be a possibility for long-term control or cure of localized PC | [88] |
Akaza et al. (2006) | prospective cohort study | Patients with newly diagnosed locally advanced or localized PC who have undergone ADT | 151 | In men with localized or locally advanced PC, primary ADT inhibited PC progression and resulted in a life expectancy similar to that of the normal population | [89] |
Kawakami et al. (2006) | retrospective cohort study | Newly diagnosed localized PC patients with or without ADT | 7044 | The use of ADT therapy appeared to control disease in the majority of patients who received it, at least for an intermediate period | [90] |
Akaza et al. (2010) | retrospective cohort study | Patients with newly diagnosed locally advanced or localized PC who have undergone ADT | 15,461 | ADT resulted in a long-term survival rate comparable to the general population | [91] |
Matsumoto et al. (2014) | retrospective cohort study | Patients with newly diagnosed locally PC at intermediate to high risk who have undergone ADT | 410 | When prostate cancer with no capsular invasion and a GS of less than 8 was treated with ADT, the expected survival rate was similar to that of the general population | [92] |
Studer et al. (2014) | randomized controlled trial | PC patients without distant metastasis treated with immediate or delayed ADT | 985 | Deferred ADT was inferior to immediate ADT in terms of overall survival (HR 1.21; 95% CI 1.05–1.39) | [93] |
Nguyen et al. (2011) | meta-analysis of randomized controlled trial | Patients diagnosed with PC | 4141 | ADT was associated with lower PCSM (443/2527 vs. 552/2278 events; RR, 0.69; 95% CI, 0.56–0.84; p < 0.001) and lower all-cause mortality (1140/2527 vs. 1213/2278 events; RR, 0.86; 95% CI 0.80–0.93; p < 0.001) | [80] |
Study | Study Specification | Patient Characteristics | Size | Findings | References |
---|---|---|---|---|---|
Krasnova et al. (2020) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 100,414 | The risk of dementia was 17% higher and the risk of Alzheimer’s disease 23% higher in the group that received ADT | [56] |
Jayadevappa et al. (2019) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 154,089 | Exposure to ADT, compared with no ADT exposure, was associated with a diagnosis of Alzheimer disease (HR 1.14, 95% CI, 1.10–1.18, p < 0.001) and dementia (HR 1.20, 95% CI 1.17–1.24, p < 0.001) | [57] |
Robinson et al. (2019) | retrospective cohort study | Patients with PC and matched prostate-cancer-free controls (Older patients accounted for about 90%) | 146,985 | In men with prostate cancer, GnRH agonist treatment (HR 1.15, 95% CI 1.07–1.23) and orchiectomy (HR 1.60, 95% CI 1.32–1.93) were associated with an increased risk of dementia, as compared to no treatment in PC-free men | [58] |
Liu et al. (2021) | retrospective cohort study | Patients diagnosed with PC who have received ADT or who have not received ADT (Older patients accounted for about 70%) | 47,384 | There was no statistical difference in the incidence of dementia between the ADT group and the group not receiving ADT (aHR, 1.12, 95% CI 0.87–1.43 in Taiwan, aHR 1.02, 95% CI: 0.85–1.23 in the UK) | [59] |
Nead et al. (2017) | meta-analysis | Patients diagnosed with PC who have received ADT or who have not received ADT | 50,541 | ADT administration was associated with a 47% increase in dementia risk (HR 1.47, 95% CI 1.08–2.00, p = 0.02) | [60] |
Cui et al. (2021) | meta-analysis | Patients diagnosed with PC who have received ADT or who have not received ADT | 776,251 | ADT administration was associated with a 21% increase in dementia risk (pooled HR = 1.21, 95% CI 1.13–1.30, p < 0.001) | [61] |
Study | Study Specification | Patient Characteristics | Size | Findings | References |
---|---|---|---|---|---|
Smith et al. (2005) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 11,661 | The rate of any clinical fracture was 7.88 per 100 person-years at risk in men receiving a GnRH agonist compared with 6.51 per 100 person-years in matched controls (RR 1.21, 95% CI, 1.14–1.29, p = 0.001) | [62] |
Alibhai et al. (2010) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 38,158 | ADT was associated with an increased risk of fragility fracture (HR 1.65, 95% CI 1.53–1.78) and any fracture (HR 1.46, 95% CI 1.39–1.54) | [63] |
Shahinian et al. (2005) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 50,613 | In patients who received ADT as primary treatment, the RR of any fracture was 1.44 (95% CI 1.33–1.56) | [64] |
Beebe-Dimer et al. (2012) | retrospective cohort study | Older patients diagnosed with PC who have received ADT or who have not received ADT | 80,844 | ADT was associated with an increased rate of fracture in both non-metastatic patients (aHR 1.34, 95% CI 1.29–1.39) and metastatic patients (aHR 1.51, 95% CI 1.36–1.67) | [65] |
Kim et al. (2019) | meta-analysis of prospective cohort study | Patients diagnosed with PC who have received ADT or who have not received ADT | 533 | Statistically significant decreases of BMD change relative to the control group were observed in the ADT treatment group in the lumbar spine (95% CI −6.72 to −0.47, p = 0.02), femoral neck (95% CI −4.73 to −1.48, p = 0.0002), and total hip (95% CI −2.99 to −0.19, p = 0.03) | [66] |
Study | Study Specification | Patient Characteristics | Size | Findings | References |
---|---|---|---|---|---|
Keating et al. (2006) | retrospective cohort study | Older patients with localized PC | 73,196 | GnRH agonist use was associated with increased risk of coronary heart disease (aHR 1.16, p < 0.001), myocardial infarction (adjusted HR 1.11, p = 0.03), and sudden cardiac death (aHR 1.16, p = 0.004) | [74] |
Keating et al. (2010) | retrospective cohort study | Patients diagnosed with local or regional PC (older patients accounted for about 60%) | 37,443 | The group of patients who received ADT was significantly more likely to have coronary artery disease (aHR 1.19, 95% CI = 1.10–1.28), myocardial infarction (aHR 1.28, 95% CI = 1.08–1.52), sudden cardiac death (aHR 1.35, 95% CI = 1.18–1.54), and stroke (aHR 1.22, 95% CI = 1.10–1.36) were increased | [68] |
O’Farrell et al. (2015) | retrospective cohort study | Patients with PC and matched PC-free controls (older patients accounted for about 90%) | 229,147 | CVD risk was increased in men on GnRH agonists compared with the comparison cohort (HR 1.21, 95% CI 1.18–1.25) | [75] |
O’Farrell et al. (2016) | retrospective cohort study | Patients with PC and matched PC-free controls (older patients accounted for about 90%) | 233,193 | GnRH agonist users and surgically castrated men had a higher risk of thromboembolic disease than the comparison cohort: HR 1.67, 95% CI 1.40–1.98 and HR 1.61, 95% CI 1.15–2.28, respectively | [76] |
Zhao et al. (2014) | meta-analysis of retrospective cohort study | Patients diagnosed with PC who have received ADT or who have not received ADT | 295,407 | CVD was related to GnRH (HR 1.19, 95% CI 1.04–1.36, p < 0.001) and GnRH plus oral antiandrogen (HR 1.46, 95% CI 1.03–2.08, p = 0.04). ADT was associated with cardiovascular mortality (HR 1.17, 95% CI 1.04–1.32, p = 0.01) | [77] |
Meng et al. (2016) | meta-analysis of retrospective cohort study | Patients diagnosed with PC who have received ADT or who have not received ADT | 160,485 | The incidence of stroke in ADT users was 12% higher than control groups, (HR 1.12, 95% CI 0.95–1.32, p = 0.16) | [78] |
Alibhai et al. (2009) | retrospective cohort study | Older patients diagnosed with prostate cancer who received ADT or who were not diagnosed with prostate cancer who did not receive ADT | 38,158 | ADT use was not associated with AMI (HR 0.91, 95% CI 0.84–1.00) or sudden cardiac death (HR 0.96, 95% CI 0.83–1.10) | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamoto, H.; Izumi, K.; Makino, T.; Mizokami, A. Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer. Cancers 2022, 14, 1803. https://doi.org/10.3390/cancers14071803
Iwamoto H, Izumi K, Makino T, Mizokami A. Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer. Cancers. 2022; 14(7):1803. https://doi.org/10.3390/cancers14071803
Chicago/Turabian StyleIwamoto, Hiroaki, Kouji Izumi, Tomoyuki Makino, and Atsushi Mizokami. 2022. "Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer" Cancers 14, no. 7: 1803. https://doi.org/10.3390/cancers14071803
APA StyleIwamoto, H., Izumi, K., Makino, T., & Mizokami, A. (2022). Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer. Cancers, 14(7), 1803. https://doi.org/10.3390/cancers14071803