Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Frontline Treatment of Adult Ph ALL Patients
2.1. Intensive Chemotherapy plus TKIs
2.1.1. Imatinib plus Intensive Chemotherapy
2.1.2. 2G/3G-TKIS plus Intensive Chemotherapy
2.2. De-Intensification of Chemotherapy
2.2.1. Low Intensity Chemotherapy plus TKIs
2.2.2. Chemotherapy-Free Strategies
Steroids plus TKIs Regimens
Binatumomab Based Regimen
3. Allogeneic Hematopoietic Stem Cell
3.1. Allo-HSCT in the TKIs Era
3.2. Myelo-Ablative Conditioning (MAC) versus Reduced-Intensity Conditioning (RIC)
3.3. Post Allo-HSCT Maintenance
4. Auto-HSCT
5. Treatment of Relapsed/Refractory Ph+ ALL Patients
5.1. Ponatinib as Single Agent
5.2. Blinatumomab as Single Agent
5.3. Inotuzumab Ozogamicin (INO) as Single Agent
5.4. Ponatinib Plus Blinatumomab
5.5. Ponatinib Plus Venetoclax
5.6. Inotuzumab Ozogamicin + Bosutinib
5.7. Asciminib Plus TKIs
5.8. Chimeric Antigen Receptor T Cells
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iacobucci, I.; Kimura, S.; Mullighan, C.G. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J. Clin. Med. 2021, 10, 3792. [Google Scholar] [CrossRef]
- Burmeister, T.; Schwartz, S.; Bartram, C.R.; Gökbuget, N.; Hoelzer, D.; Thiel, E. GMALL study group Patients’ Age and BCR-ABL Frequency in Adult B-Precursor ALL: A Retrospective Analysis from the GMALL Study Group. Blood 2008, 112, 918–919. [Google Scholar] [CrossRef]
- Nowell, P.C.; Hungerford, D.A. Chromosome Studies on Normal and Leukemic Human Leukocytes. J. Natl. Cancer Inst. 1960, 25, 85–109. [Google Scholar]
- Kang, Z.-J.; Liu, Y.-F.; Xu, L.-Z.; Long, Z.-J.; Huang, D.; Yang, Y.; Liu, B.; Feng, J.-X.; Pan, Y.-J.; Yan, J.-S.; et al. The Philadelphia Chromosome in Leukemogenesis. Chin. J. Cancer 2016, 35, 48. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, H.; Cazzaniga, G.; van der Velden, V.H.J.; Cayuela, J.M.; Schäfer, B.; Spinelli, O.; Akiki, S.; Avigad, S.; Bendit, I.; Borg, K.; et al. Standardisation and Consensus Guidelines for Minimal Residual Disease Assessment in Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph + ALL) by Real-Time Quantitative Reverse Transcriptase PCR of E1a2 BCR-ABL1. Leukemia 2019, 33, 1910–1922. [Google Scholar] [CrossRef]
- Thomas, D.A.; Faderl, S.; Cortes, J.; O’Brien, S.; Giles, F.J.; Kornblau, S.M.; Garcia-Manero, G.; Keating, M.J.; Andreeff, M.; Jeha, S.; et al. Treatment of Philadelphia Chromosome-Positive Acute Lymphocytic Leukemia with Hyper-CVAD and Imatinib Mesylate. Blood 2004, 103, 4396–4407. [Google Scholar] [CrossRef] [Green Version]
- Fielding, A.K.; Rowe, J.M.; Richards, S.M.; Buck, G.; Moorman, A.V.; Durrant, I.J.; Marks, D.I.; McMillan, A.K.; Litzow, M.R.; Lazarus, H.M.; et al. Prospective Outcome Data on 267 Unselected Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Confirms Superiority of Allogeneic Transplantation over Chemotherapy in the Pre-Imatinib Era: Results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 2009, 113, 4489–4496. [Google Scholar] [CrossRef] [Green Version]
- Annino, L.; Vegna, M.L.; Camera, A.; Specchia, G.; Visani, G.; Fioritoni, G.; Ferrara, F.; Peta, A.; Ciolli, S.; Deplano, W.; et al. Treatment of Adult Acute Lymphoblastic Leukemia (ALL): Long-Term Follow-up of the GIMEMA ALL 0288 Randomized Study. Blood 2002, 99, 863–871. [Google Scholar] [CrossRef]
- Thomas, X.; Boiron, J.-M.; Huguet, F.; Dombret, H.; Bradstock, K.; Vey, N.; Kovacsovics, T.; Delannoy, A.; Fegueux, N.; Fenaux, P.; et al. Outcome of Treatment in Adults with Acute Lymphoblastic Leukemia: Analysis of the LALA-94 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 4075–4086. [Google Scholar] [CrossRef]
- Gleissner, B.; Gökbuget, N.; Bartram, C.R.; Janssen, B.; Rieder, H.; Janssen, J.W.G.; Fonatsch, C.; Heyll, A.; Voliotis, D.; Beck, J.; et al. Leading Prognostic Relevance of the BCR-ABL Translocation in Adult Acute B-Lineage Lymphoblastic Leukemia: A Prospective Study of the German Multicenter Trial Group and Confirmed Polymerase Chain Reaction Analysis. Blood 2002, 99, 1536–1543. [Google Scholar] [CrossRef] [Green Version]
- Dombret, H.; Gabert, J.; Boiron, J.-M.; Rigal-Huguet, F.; Blaise, D.; Thomas, X.; Delannoy, A.; Buzyn, A.; Bilhou-Nabera, C.; Cayuela, J.-M.; et al. Outcome of Treatment in Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia--Results of the Prospective Multicenter LALA-94 Trial. Blood 2002, 100, 2357–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laport, G.G.; Alvarnas, J.C.; Palmer, J.M.; Snyder, D.S.; Slovak, M.L.; Cherry, A.M.; Wong, R.M.; Negrin, R.S.; Blume, K.G.; Forman, S.J. Long-Term Remission of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia after Allogeneic Hematopoietic Cell Transplantation from Matched Sibling Donors: A 20-Year Experience with the Fractionated Total Body Irradiation-Etoposide Regimen. Blood 2008, 112, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, F.E.; Basak, G.W.; Soverini, S.; Martinelli, G.; Mauro, M.J.; Müller, M.C.; Hochhaus, A.; Chuah, C.; Dufva, I.H.; Rege-Cambrin, G.; et al. Allogeneic Stem Cell Transplantation for Patients Harboring T315I BCR-ABL Mutated Leukemias. Blood 2011, 118, 5697–5700. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, S.; Matsuo, K.; Yagasaki, F.; Yujiri, T.; Hatta, Y.; Kimura, Y.; Ueda, Y.; Kanamori, H.; Usui, N.; Akiyama, H.; et al. Pre-Transplant Imatinib-Based Therapy Improves the Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for BCR-ABL-Positive Acute Lymphoblastic Leukemia. Leukemia 2011, 25, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Guilhot, F.; Druker, B.; Larson, R.A.; Gathmann, I.; So, C.; Waltzman, R.; O’Brien, S.G. High Rates of Durable Response Are Achieved with Imatinib after Treatment with Interferon Alpha plus Cytarabine: Results from the International Randomized Study of Interferon and STI571 (IRIS) Trial. Haematologica 2009, 94, 1669–1675. [Google Scholar] [CrossRef]
- Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N. Engl. J. Med. 2017, 376, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Ottmann, O.G.; Wassmann, B.; Pfeifer, H.; Giagounidis, A.; Stelljes, M.; Dührsen, U.; Schmalzing, M.; Wunderle, L.; Binckebanck, A.; Hoelzer, D.; et al. Imatinib Compared with Chemotherapy as Front-Line Treatment of Elderly Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ALL). Cancer 2007, 109, 2068–2076. [Google Scholar] [CrossRef] [PubMed]
- Chalandon, Y.; Thomas, X.; Hayette, S.; Cayuela, J.-M.; Abbal, C.; Huguet, F.; Raffoux, E.; Leguay, T.; Rousselot, P.; Lepretre, S.; et al. Randomized Study of Reduced-Intensity Chemotherapy Combined with Imatinib in Adults with Ph-Positive Acute Lymphoblastic Leukemia. Blood 2015, 125, 3711–3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassan, R.; Rossi, G.; Pogliani, E.M.; Di Bona, E.; Angelucci, E.; Cavattoni, I.; Lambertenghi-Deliliers, G.; Mannelli, F.; Levis, A.; Ciceri, F.; et al. Chemotherapy-Phased Imatinib Pulses Improve Long-Term Outcome of Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Northern Italy Leukemia Group Protocol 09/00. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 3644–3652. [Google Scholar] [CrossRef]
- Tanguy-Schmidt, A.; Rousselot, P.; Chalandon, Y.; Cayuela, J.-M.; Hayette, S.; Vekemans, M.-C.; Escoffre, M.; Huguet, F.; Réa, D.; Delannoy, A.; et al. Long-Term Follow-up of the Imatinib GRAAPH-2003 Study in Newly Diagnosed Patients with de Novo Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A GRAALL Study. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2013, 19, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Daver, N.; Thomas, D.; Ravandi, F.; Cortes, J.; Garris, R.; Jabbour, E.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Rytting, M.; et al. Final Report of a Phase II Study of Imatinib Mesylate with Hyper-CVAD for the Front-Line Treatment of Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Haematologica 2015, 100, 653–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, S.; Mizuta, S.; Akiyama, H.; Ueda, Y.; Aoyama, Y.; Hatta, Y.; Kakihana, K.; Dobashi, N.; Sugiura, I.; Onishi, Y.; et al. Phase II Study of Imatinib-Based Chemotherapy for Newly Diagnosed BCR-ABL-Positive Acute Lymphoblastic Leukemia. Am. J. Hematol. 2017, 92, 367–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatta, Y.; Mizuta, S.; Matsuo, K.; Ohtake, S.; Iwanaga, M.; Sugiura, I.; Doki, N.; Kanamori, H.; Ueda, Y.; Yoshida, C.; et al. Final Analysis of the JALSG Ph+ALL202 Study: Tyrosine Kinase Inhibitor-Combined Chemotherapy for Ph+ALL. Ann. Hematol. 2018, 97, 1535–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassmann, B.; Pfeifer, H.; Goekbuget, N.; Beelen, D.W.; Beck, J.; Stelljes, M.; Bornhäuser, M.; Reichle, A.; Perz, J.; Haas, R.; et al. Alternating versus Concurrent Schedules of Imatinib and Chemotherapy as Front-Line Therapy for Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ALL). Blood 2006, 108, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- de Labarthe, A.; Rousselot, P.; Huguet-Rigal, F.; Delabesse, E.; Witz, F.; Maury, S.; Réa, D.; Cayuela, J.-M.; Vekemans, M.-C.; Reman, O.; et al. Imatinib Combined with Induction or Consolidation Chemotherapy in Patients with de Novo Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Results of the GRAAPH-2003 Study. Blood 2007, 109, 1408–1413. [Google Scholar] [CrossRef]
- Chiaretti, S.; Vitale, A.; Vignetti, M.; Piciocchi, A.; Fazi, P.; Elia, L.; Falini, B.; Ronco, F.; Ferrara, F.; De Fabritiis, P.; et al. A Sequential Approach with Imatinib, Chemotherapy and Transplant for Adult Ph+ Acute Lymphoblastic Leukemia: Final Results of the GIMEMA LAL 0904 Study. Haematologica 2016, 101, 1544–1552. [Google Scholar] [CrossRef]
- Bachanova, V.; Marks, D.I.; Zhang, M.-J.; Wang, H.; de Lima, M.; Aljurf, M.D.; Arellano, M.; Artz, A.S.; Bacher, U.; Cahn, J.-Y.; et al. Ph+ ALL Patients in First Complete Remission Have Similar Survival after Reduced Intensity and Myeloablative Allogeneic Transplantation: Impact of Tyrosine Kinase Inhibitor and Minimal Residual Disease. Leukemia 2014, 28, 658–665. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S. The Impact of Tyrosine Kinase Inhibitors on Allogeneic Hematopoietic Stem Cell Transplantation for Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Leuk. Res. 2021, 109, 106647. [Google Scholar] [CrossRef]
- Giebel, S.; Boumendil, A.; Labopin, M.; Seesaghur, A.; Baron, F.; Ciceri, F.; Esteve, J.; Gorin, N.-C.; Savani, B.; Schmid, C.; et al. Trends in the Use of Hematopoietic Stem Cell Transplantation for Adults with Acute Lymphoblastic Leukemia in Europe: A Report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Ann. Hematol. 2019, 98, 2389–2398. [Google Scholar] [CrossRef] [Green Version]
- Candoni, A.; Rambaldi, A.; Fanin, R.; Velardi, A.; Arcese, W.; Ciceri, F.; Lazzarotto, D.; Lussana, F.; Olivieri, J.; Grillo, G.; et al. Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in the Era of Tyrosine Kinase Inhibitors: A Registry-Based Study of the Italian Blood and Marrow Transplantation Society (GITMO). Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2019, 25, 2388–2397. [Google Scholar] [CrossRef]
- Ponvilawan, B.; Kungwankiattichai, S.; Charoenngam, N.; Owattanapanich, W. Is Stem Cell Transplantation Still Needed for Adult Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Receiving Tyrosine Kinase Inhibitors Therapy? A Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0253896. [Google Scholar] [CrossRef]
- Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; et al. Characterization of AMN107, a Selective Inhibitor of Native and Mutant Bcr-Abl. Cancer Cell 2005, 7, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, T.; Walters, D.K.; Stoffregen, E.P.; Jia, T.; Manley, P.W.; Mestan, J.; Cowan-Jacob, S.W.; Lee, F.Y.; Heinrich, M.C.; Deininger, M.W.N.; et al. In Vitro Activity of Bcr-Abl Inhibitors AMN107 and BMS-354825 against Clinically Relevant Imatinib-Resistant Abl Kinase Domain Mutants. Cancer Res. 2005, 65, 4500–4505. [Google Scholar] [CrossRef] [Green Version]
- Puttini, M.; Coluccia, A.M.L.; Boschelli, F.; Cleris, L.; Marchesi, E.; Donella-Deana, A.; Ahmed, S.; Redaelli, S.; Piazza, R.; Magistroni, V.; et al. In Vitro and in Vivo Activity of SKI-606, a Novel Src-Abl Inhibitor, against Imatinib-Resistant Bcr-Abl+ Neoplastic Cells. Cancer Res. 2006, 66, 11314–11322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.-S.; Xu, Q.; et al. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell 2009, 16, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.; Shah, N.P.; Hochhaus, A.; Cortes, J.; Shah, S.; Ayala, M.; Moiraghi, B.; Shen, Z.; Mayer, J.; Pasquini, R.; et al. Dasatinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia. N. Engl. J. Med. 2010, 362, 2260–2270. [Google Scholar] [CrossRef] [PubMed]
- Saglio, G.; Kim, D.-W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Lobo, C.; Pasquini, R.; Clark, R.E.; Hochhaus, A.; Hughes, T.P.; et al. Nilotinib versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia. N. Engl. J. Med. 2010, 362, 2251–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoury, H.J.; Cortes, J.E.; Kantarjian, H.M.; Gambacorti-Passerini, C.; Baccarani, M.; Kim, D.-W.; Zaritskey, A.; Countouriotis, A.; Besson, N.; Leip, E.; et al. Bosutinib Is Active in Chronic Phase Chronic Myeloid Leukemia after Imatinib and Dasatinib and/or Nilotinib Therapy Failure. Blood 2012, 119, 3403–3412. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.-W.; Kantarjian, H.M.; Brümmendorf, T.H.; Dyagil, I.; Griskevicius, L.; Malhotra, H.; Powell, C.; Gogat, K.; Countouriotis, A.M.; et al. Bosutinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia: Results from the BELA Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 3486–3492. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.-W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. A Phase 2 Trial of Ponatinib in Philadelphia Chromosome-Positive Leukemias. N. Engl. J. Med. 2013, 369, 1783–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravandi, F.; O’Brien, S.M.; Cortes, J.E.; Thomas, D.M.; Garris, R.; Faderl, S.; Burger, J.A.; Rytting, M.E.; Ferrajoli, A.; Wierda, W.G.; et al. Long-Term Follow-up of a Phase 2 Study of Chemotherapy plus Dasatinib for the Initial Treatment of Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Cancer 2015, 121, 4158–4164. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Othus, M.; O’Brien, S.M.; Forman, S.J.; Ha, C.S.; Wong, J.Y.C.; Tallman, M.S.; Paietta, E.; Racevskis, J.; Uy, G.L.; et al. US Intergroup Study of Chemotherapy Plus Dasatinib and Allogeneic Stem Cell Transplant in Philadelphia Chromosome Positive ALL. Blood Adv. 2016, 1, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Joo, Y.-D.; Lim, S.-N.; Kim, S.-D.; Lee, J.-H.; Lee, J.-H.; Kim, D.H.D.; Kim, K.; Jung, C.W.; Kim, I.; et al. Nilotinib Combined with Multiagent Chemotherapy for Newly Diagnosed Philadelphia-Positive Acute Lymphoblastic Leukemia. Blood 2015, 126, 746–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samra, B.; Jabbour, E.; Ravandi, F.; Kantarjian, H.; Short, N.J. Evolving Therapy of Adult Acute Lymphoblastic Leukemia: State-of-the-Art Treatment and Future Directions. J. Hematol. Oncol. 2020, 13, 70. [Google Scholar] [CrossRef]
- Jabbour, E.; Short, N.J.; Ravandi, F.; Huang, X.; Daver, N.; DiNardo, C.D.; Konopleva, M.; Pemmaraju, N.; Wierda, W.; Garcia-Manero, G.; et al. Combination of Hyper-CVAD with Ponatinib as First-Line Therapy for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia: Long-Term Follow-up of a Single-Centre, Phase 2 Study. Lancet Haematol. 2018, 5, e618–e627. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ravandi, F.; Huang, X.; Daver, N.G.; DiNardo, C.D.; Konopleva, M.Y.; Pemmaraju, N.; Wierda, W.G.; Garcia-Manero, G.; et al. Long-Term Safety and Efficacy of Hyper-CVAD Plus Ponatinib As Frontline Therapy for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2019, 134, 283. [Google Scholar] [CrossRef]
- Brissot, E.; Labopin, M.; Beckers, M.M.; Socié, G.; Rambaldi, A.; Volin, L.; Finke, J.; Lenhoff, S.; Kröger, N.; Ossenkoppele, G.J.; et al. Tyrosine Kinase Inhibitors Improve Long-Term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Adult Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia. Haematologica 2015, 100, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Rousselot, P.; Coudé, M.M.; Gokbuget, N.; Gambacorti Passerini, C.; Hayette, S.; Cayuela, J.-M.; Huguet, F.; Leguay, T.; Chevallier, P.; Salanoubat, C.; et al. Dasatinib and Low-Intensity Chemotherapy in Elderly Patients with Philadelphia Chromosome-Positive ALL. Blood 2016, 128, 774–782. [Google Scholar] [CrossRef]
- Ottmann, O.G.; Pfeifer, H.; Cayuela, J.-M.; Spiekermann, K.; Jung, W.; Beck, J.; Raffoux, E.; Turlure, P.; Himberlin, C.; Huguet, F.; et al. Nilotinib (Tasigna®) and Low Intensity Chemotherapy for First-Line Treatment of Elderly Patients with BCR-ABL1-Positive Acute Lymphoblastic Leukemia: Final Results of a Prospective Multicenter Trial (EWALL-PH02). Blood 2018, 132, 31. [Google Scholar] [CrossRef]
- Goekbuget, N.; Stelljes, M.; Viardot, A.; Nachtkamp, K.; Steffen, B.; Schneller, F.; Alakel, N.; Topp, M.; Böll, B.; Faul, C.; et al. First Results of the Risk-Adapted, MRD-Stratified GMALL Trial 08/2013 in 705 Adults with Newly Diagnosed Acute Lymphoblastic Leukemia/Lymphoma (ALL/LBL). Blood 2021, 138, 362. [Google Scholar] [CrossRef]
- Inc, M.G. NILOTINIB COMBINED WITH LOWER-INTENSITY CHEMOTHERAPY FOR FRONT-LINE… by Yves Chalandon. Available online: https://library.ehaweb.org/eha/2018/stockholm/215254/yves.chalandon.nilotinib.combined.with.lower-intensity.chemotherapy.for.html (accessed on 5 February 2022).
- Rousselot, P.; Chalandon, Y.; Chevret, S.; Cayuela, J.-M.; Huguet, F.; Chevallier, P.; Graux, C.; Thiebaut-Bertrand, A.; Chantepie, S.; Thomas, X.; et al. The Omission of High-Dose Cytarabine during Consolidation Therapy of Ph-Positive ALL Patients Treated with Nilotinib and Low-Intensity Chemotherapy Results in an Increased Risk of Relapses Despite Non-Inferior Levels of Late BCR-ABL1 MRD Response. First Results of the Randomized Graaph-2014 Study. Blood 2021, 138, 512. [Google Scholar] [CrossRef]
- Foà, R.; Vitale, A.; Vignetti, M.; Meloni, G.; Guarini, A.; De Propris, M.S.; Elia, L.; Paoloni, F.; Fazi, P.; Cimino, G.; et al. Dasatinib as First-Line Treatment for Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2011, 118, 6521–6528. [Google Scholar] [CrossRef] [Green Version]
- Chiaretti, S.; Ansuinelli, M.; Vitale, A.; Elia, L.; Matarazzo, M.; Piciocchi, A.; Fazi, P.; Di Raimondo, F.; Santoro, L.; Fabbiano, F.; et al. A Multicenter Total Therapy Strategy for de Novo Adult Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia Patients: Final Results of the GIMEMA LAL1509 Protocol. Haematologica 2021, 106, 1828–1838. [Google Scholar] [CrossRef] [PubMed]
- Wieduwilt, M.J.; Yin, J.; Wetzler, M.; Uy, G.L.; Powell, B.L.; Kolitz, J.E.; Liedtke, M.; Stock, W.; Beumer, J.H.; Mattison, R.J.; et al. Dasatinib and Dexamethasone Followed by Hematopoietic Cell Transplantation for Adults with Ph-Positive ALL. Blood Adv. 2021, 5, 4691–4700. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, I.; Doki, N.; Hata, T.; Cho, R.; Ito, T.; Suehiro, Y.; Tanaka, M.; Kako, S.; Matsuda, M.; Yokoyama, H.; et al. Dasatinib-Based 2-Step Induction for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood Adv. 2022, 6, 624–636. [Google Scholar] [CrossRef]
- Ribera, J.-M.; García, O.; Montesinos, P.; Brunet, S.; Abella, E.; Barrios, M.; González-Campos, J.; Bravo, P.; Amigo, M.-L.; Hernández-Rivas, J.-M. Treatment of Young Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia Using Increased Dose of Imatinib and Deintensified Chemotherapy before Allogeneic Stem Cell Transplantation. Br. J. Haematol. 2012, 159, 78–81. [Google Scholar] [CrossRef]
- Vignetti, M.; Fazi, P.; Cimino, G.; Martinelli, G.; Di Raimondo, F.; Ferrara, F.; Meloni, G.; Ambrosetti, A.; Quarta, G.; Pagano, L.; et al. Imatinib plus Steroids Induces Complete Remissions and Prolonged Survival in Elderly Philadelphia Chromosome-Positive Patients with Acute Lymphoblastic Leukemia without Additional Chemotherapy: Results of the Gruppo Italiano Malattie Ematologiche Dell’Adulto (GIMEMA) LAL0201-B Protocol. Blood 2007, 109, 3676–3678. [Google Scholar] [CrossRef] [Green Version]
- Papayannidis, C.; Piciocchi, A.; Vitale, A.; Iacobucci, I.; Soverini, S.; Di Raimondo, F.; Paolini, S.; Pizzolo, G.; Carella, A.M.; Cazzola, M.; et al. Rate of Complete Hematological Response of Elderly Ph+ Acute Lymphoblastic Leukemia (ALL) Patients by Sequential Use of Nilotinib and Imatinib: A GIMEMA Protocol LAL 1408. J. Clin. Oncol. 2013, 31, 7025. [Google Scholar] [CrossRef]
- Martinelli, G.; Papayannidis, C.; Piciocchi, A.; Robustelli, V.; Soverini, S.; Terragna, C.; Marconi, G.; Lemoli, R.M.; Guolo, F.; Fornaro, A.; et al. INCB84344-201: Ponatinib and Steroids in Frontline Therapy of Unfit Patients with Ph+ Acute Lymphoblastic Leukemia. Blood Adv. 2021, 6, 1742–1753. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of Postreinduction Therapy Consolidation With Blinatumomab vs Chemotherapy on Disease-Free Survival in Children, Adolescents, and Young Adults With First Relapse of B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children with High-Risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.-A.; et al. Blinatumomab for Minimal Residual Disease in Adults with B-Cell Precursor Acute Lymphoblastic Leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, G.; Boissel, N.; Chevallier, P.; Ottmann, O.; Gökbuget, N.; Topp, M.S.; Fielding, A.K.; Rambaldi, A.; Ritchie, E.K.; Papayannidis, C.; et al. Complete Hematologic and Molecular Response in Adult Patients With Relapsed/Refractory Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia Following Treatment With Blinatumomab: Results From a Phase II, Single-Arm, Multicenter Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Inc, M.G. UPDATED RESULTS OF THE GIMEMA LAL2116, D-ALBA TRIAL, FOR NEWLY... by Dr. Sabina Chiaretti. Available online: https://library.ehaweb.org/eha/2021/eha2021-virtual-congress/324520/sabina.chiaretti.updated.results.of.the.gimema.lal2116.d-alba.trial.for.newly.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D1%2Asearch%3Ds112 (accessed on 5 February 2022).
- Foà, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.-C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Advani, A.; Moseley, A.; O’Dwyer, K.; Wood, B.; Park, J.H.; Wieduwilt, M.; Jeyakumar, D.; Yaghmour, G.; Atallah, E.L.; Gerds, A.T.; et al. A Phase 2 Study of Dasatinib, Prednisone, and Blinatumomab for Older Patients with Philadelphia-Chromosome (Ph) Positive or Ph-like Acute Lymphoblastic Leukemia (ALL) (with Dasatinib Sensitive Fusions/ Mutations). Blood 2021, 138, 3397. [Google Scholar] [CrossRef]
- Inc, M.G. INTERIM RESULTS OF A PHASE II STUDY OF BLINATUMOMAB PLUS PONATINIB... by Dr. Nicholas Short. Available online: https://library.ehaweb.org/eha/2021/eha2021-virtual-congress/324521/nicholas.short.interim.results.of.a.phase.ii.study.of.blinatumomab.plus.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D1%2Asearch%3Ds113 (accessed on 5 February 2022).
- Lussana, F.; Intermesoli, T.; Gianni, F.; Boschini, C.; Masciulli, A.; Spinelli, O.; Oldani, E.; Tosi, M.; Grassi, A.; Parolini, M.; et al. Achieving Molecular Remission before Allogeneic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Impact on Relapse and Long-Term Outcome. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2016, 22, 1983–1987. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, S.; Imai, K.; Mizuta, S.; Kanamori, H.; Ohashi, K.; Fukuda, T.; Onishi, Y.; Takahashi, S.; Uchida, N.; Eto, T.; et al. Impact of MRD and TKI on Allogeneic Hematopoietic Cell Transplantation for Ph+ALL: A Study from the Adult ALL WG of the JSHCT. Bone Marrow Transplant. 2016, 51, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Akahoshi, Y.; Arai, Y.; Nishiwaki, S.; Mizuta, S.; Marumo, A.; Uchida, N.; Kanda, Y.; Sakai, H.; Takada, S.; Fukuda, T.; et al. Minimal Residual Disease (MRD) Positivity at Allogeneic Hematopoietic Cell Transplantation, Not the Quantity of MRD, Is a Risk Factor for Relapse of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Int. J. Hematol. 2021, 113, 832–839. [Google Scholar] [CrossRef]
- Lou, Y.; Ma, Y.; Li, C.; Suo, S.; Tong, H.; Qian, W.; Mai, W.; Meng, H.; Yu, W.; Mao, L.; et al. Efficacy and Prognostic Factors of Imatinib plus CALLG2008 Protocol in Adult Patients with Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Front. Med. 2017, 11, 229–238. [Google Scholar] [CrossRef]
- Schultz, K.R.; Carroll, A.; Heerema, N.A.; Bowman, W.P.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Zheng, H.W.; Davies, S.M.; et al. Long-Term Follow-up of Imatinib in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Children’s Oncology Group Study AALL0031. Leukemia 2014, 28, 1467–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.; Xiang, B.; Liu, Z. Comparison of Allogeneic Hematopoietic Stem Cell Transplantation and TKI Combined with Chemotherapy for Adult Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Cancer Med. 2021, 10, 8741–8753. [Google Scholar] [CrossRef] [PubMed]
- Giebel, S.; Marks, D.I.; Boissel, N.; Baron, F.; Chiaretti, S.; Ciceri, F.; Cornelissen, J.J.; Doubek, M.; Esteve, J.; Fielding, A.; et al. Hematopoietic Stem Cell Transplantation for Adults with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia in First Remission: A Position Statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2019, 54, 798–809. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.; Dalle, J.-H.; Locatelli, F.; Poetschger, U.; Sedlacek, P.; Buechner, J.; Shaw, P.J.; Staciuk, R.; Ifversen, M.; Pichler, H.; et al. Total Body Irradiation or Chemotherapy Conditioning in Childhood ALL: A Multinational, Randomized, Noninferiority Phase III Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.I.; Wang, T.; Pérez, W.S.; Antin, J.H.; Copelan, E.; Gale, R.P.; George, B.; Gupta, V.; Halter, J.; Khoury, H.J.; et al. The Outcome of Full-Intensity and Reduced-Intensity Conditioning Matched Sibling or Unrelated Donor Transplantation in Adults with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia in First and Second Complete Remission. Blood 2010, 116, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Mohty, M.; Labopin, M.; Volin, L.; Gratwohl, A.; Socié, G.; Esteve, J.; Tabrizi, R.; Nagler, A.; Rocha, V. Acute Leukemia Working Party of EBMT Reduced-Intensity versus Conventional Myeloablative Conditioning Allogeneic Stem Cell Transplantation for Patients with Acute Lymphoblastic Leukemia: A Retrospective Study from the European Group for Blood and Marrow Transplantation. Blood 2010, 116, 4439–4443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, K.-S.; Shin, S.-H.; Yoon, J.-H.; Yahng, S.-A.; Lee, S.-E.; Cho, B.-S.; Kim, Y.-J.; Kim, H.-J.; Min, C.-K.; Kim, D.-W.; et al. Comparable Long-Term Outcomes after Reduced-Intensity Conditioning versus Myeloablative Conditioning Allogeneic Stem Cell Transplantation for Adult High-Risk Acute Lymphoblastic Leukemia in Complete Remission. Am. J. Hematol. 2013, 88, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Ram, R.; Storb, R.; Sandmaier, B.M.; Maloney, D.G.; Woolfrey, A.; Flowers, M.E.D.; Maris, M.B.; Laport, G.G.; Chauncey, T.R.; Lange, T.; et al. Non-Myeloablative Conditioning with Allogeneic Hematopoietic Cell Transplantation for the Treatment of High-Risk Acute Lymphoblastic Leukemia. Haematologica 2011, 96, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-H.; Min, G.J.; Park, S.-S.; Jeon, Y.-W.; Lee, S.-E.; Cho, B.-S.; Eom, K.-S.; Kim, Y.-J.; Kim, H.-J.; Min, C.-K.; et al. Minimal Residual Disease-Based Long-Term Efficacy of Reduced-Intensity Conditioning versus Myeloablative Conditioning for Adult Philadelphia-Positive Acute Lymphoblastic Leukemia. Cancer 2019, 125, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Akahoshi, Y.; Nishiwaki, S.; Arai, Y.; Harada, K.; Najima, Y.; Kanda, Y.; Shono, K.; Ota, S.; Fukuda, T.; Uchida, N.; et al. Reduced-Intensity Conditioning Is a Reasonable Alternative for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia among Elderly Patients Who Have Achieved Negative Minimal Residual Disease: A Report from the Adult Acute Lymphoblastic Leukemia Working Group of the JSHCT. Bone Marrow Transplant. 2020, 55, 1317–1325. [Google Scholar] [CrossRef]
- Takashima, S.; Miyamoto, T.; Kamimura, T.; Yoshimoto, G.; Yoshida, S.; Henzan, H.; Takase, K.; Kato, K.; Ito, Y.; Ohno, Y.; et al. Effects of Conditioning Intensity in Allogeneic Stem Cell Transplantation for Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia. Int. J. Hematol. 2015, 102, 689–696. [Google Scholar] [CrossRef]
- Burke, M.J.; Trotz, B.; Luo, X.; Baker, K.S.; Weisdorf, D.J.; Wagner, J.E.; Verneris, M.R. Allo-Hematopoietic Cell Transplantation for Ph Chromosome-Positive ALL: Impact of Imatinib on Relapse and Survival. Bone Marrow Transplant. 2009, 43, 107–113. [Google Scholar] [CrossRef]
- Klyuchnikov, E.; Schafhausen, P.; Kröger, N.; Brummendorf, T.H.; Osanmaz, O.; Asenova, S.; Zabelina, T.; Ocheni, S.; Ayuk, F.; Zander, A.R.; et al. Second-Generation Tyrosine Kinase Inhibitors in the Post-Transplant Period in Patients with Chronic Myeloid Leukemia or Philadelphia-Positive Acute Lymphoblastic Leukemia. Acta Haematol. 2009, 122, 6–10. [Google Scholar] [CrossRef]
- Nishiwaki, S.; Miyamura, K.; Kato, C.; Terakura, S.; Ohashi, K.; Sakamaki, H.; Nakao, S.; Harigae, H.; Kodera, Y. Impact of Post-Transplant Imatinib Administration on Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia. Anticancer Res. 2010, 30, 2415–2418. [Google Scholar] [PubMed]
- Kebriaei, P.; Saliba, R.; Rondon, G.; Chiattone, A.; Luthra, R.; Anderlini, P.; Andersson, B.; Shpall, E.; Popat, U.; Jones, R.; et al. Long-Term Follow-up of Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Impact of Tyrosine Kinase Inhibitors on Treatment Outcomes. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2012, 18, 584–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFilipp, Z.; Langston, A.A.; Chen, Z.; Zhang, C.; Arellano, M.L.; El Rassi, F.; Flowers, C.R.; Kota, V.K.; Al-Kadhimi, Z.; Veldman, R.; et al. Does Post-Transplant Maintenance Therapy with Tyrosine Kinase Inhibitors Improve Outcomes of Patients With High-Risk Philadelphia Chromosome-Positive Leukemia? Clin. Lymphoma Myeloma Leuk. 2016, 16, 466–471.e1. [Google Scholar] [CrossRef] [PubMed]
- Nanno, S.; Matsumoto, K.; Nakamae, M.; Okamura, H.; Nishimoto, M.; Hirose, A.; Koh, H.; Nakashima, Y.; Nakane, T.; Morita, K.; et al. Effect of Prophylactic Post-Transplant Ponatinib Administration on Outcomes in Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2020, 20, 813–819.e1. [Google Scholar] [CrossRef]
- Leotta, S.; Markovic, U.; Pirosa, M.C.; Stella, S.; Tringali, S.; Martino, M.; Specchia, G.; Carluccio, P.; Risitano, A.M.; Grimaldi, F.; et al. The Role of Ponatinib in Adult BCR-ABL1 Positive Acute Lymphoblastic Leukemia after Allogeneic Transplantation: A Real-Life Retrospective Multicenter Study. Ann. Hematol. 2021, 100, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Hirschbühl, K.; Labopin, M.; Houhou, M.; Gabellier, L.; Labussière-Wallet, H.; Lioure, B.; Beelen, D.; Cornelissen, J.; Wulf, G.; Jindra, P.; et al. Second- and Third-Generation Tyrosine Kinase Inhibitors for Philadelphia-Positive Adult Acute Lymphoblastic Leukemia Relapsing Post Allogeneic Stem Cell Transplantation-a Registry Study on Behalf of the EBMT Acute Leukemia Working Party. Bone Marrow Transplant. 2021, 56, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, H.; Kako, S.; Mori, T.; Takahashi, S.; Onizuka, M.; Fujiwara, S.-I.; Sakura, T.; Sakaida, E.; Yokota, A.; Aotsuka, N.; et al. Stopping Tyrosine Kinase Inhibitors Started after Allogeneic HCT in Patients with Philadelphia Chromosome-Positive Leukemia. Bone Marrow Transplant. 2021, 56, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Halahleh, K.; Al Rimawi, D.; Abu Ghosh, A.; Muradi, I.; Da’na, W.; Hamadani, M. The Impact of Post-Hematopoietic Stem Cell Transplant Tyrosine Kinase Inhibitors in Philadelphia-Positive Acute Lymphoblastic Leukemia. Hematol. Oncol. Stem Cell Ther. 2021, S1658-3876(21)00063-7. [Google Scholar] [CrossRef] [PubMed]
- Czyz, A.; Lewandowski, K.; Kroll, R.; Komarnicki, M. Dasatinib-Induced Complete Molecular Response after Allogeneic Hematopoietic Stem Cell Transplantation in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Resistant to Prior Imatinib-Containing Regimen: A Case Report and Discussion. Med. Oncol. Northwood Lond. Engl. 2010, 27, 1123–1126. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Rege-Cambrin, G.; Busca, A.; Gottardi, E.; Daraio, F.; Saglio, G. Second-Generation Tyrosine Kinase Inhibitors Can Induce Complete Molecular Response in Ph-Positive Acute Lymphoblastic Leukemia after Allogeneic Stem Cell Transplant. Clin. Lymphoma Myeloma Leuk. 2013, 13 (Suppl. 2), S272–S275. [Google Scholar] [CrossRef] [PubMed]
- Anderlini, P.; Sheth, S.; Hicks, K.; Ippoliti, C.; Giralt, S.; Champlin, R.E. Re: Imatinib Mesylate Administration in the First 100 Days after Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2004, 10, 883–884. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, P.A.; Snyder, D.S.; Flowers, M.E.D.; Sanders, J.E.; Gooley, T.A.; Martin, P.J.; Appelbaum, F.R.; Radich, J.P. Prophylactic Administration of Imatinib after Hematopoietic Cell Transplantation for High-Risk Philadelphia Chromosome-Positive Leukemia. Blood 2007, 109, 2791–2793. [Google Scholar] [CrossRef] [Green Version]
- Ribera, J.-M.; Oriol, A.; González, M.; Vidriales, B.; Brunet, S.; Esteve, J.; Del Potro, E.; Rivas, C.; Moreno, M.-J.; Tormo, M.; et al. Concurrent Intensive Chemotherapy and Imatinib before and after Stem Cell Transplantation in Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Final Results of the CSTIBES02 Trial. Haematologica 2010, 95, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Liu, K.; Xu, L.; Liu, D.; Chen, Y.; Zhao, X.; Han, W.; Zhang, X.; Wang, Y.; Zhang, Y.; et al. Administration of Imatinib after Allogeneic Hematopoietic Stem Cell Transplantation May Improve Disease-Free Survival for Patients with Philadelphia Chromosome-Positive Acute Lymphobla Stic Leukemia. J. Hematol. Oncol. 2012, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Caocci, G.; Vacca, A.; Ledda, A.; Murgia, F.; Piras, E.; Greco, M.; Arras, M.; Atzeni, S.; Littera, R.; La Nasa, G. Prophylactic and Preemptive Therapy with Dasatinib after Hematopoietic Stem Cell Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2012, 18, 652–654. [Google Scholar] [CrossRef] [Green Version]
- Shimoni, A.; Volchek, Y.; Koren-Michowitz, M.; Varda-Bloom, N.; Somech, R.; Shem-Tov, N.; Yerushalmi, R.; Nagler, A. Phase 1/2 Study of Nilotinib Prophylaxis after Allogeneic Stem Cell Transplantation in Patients with Advanced Chronic Myeloid Leukemia or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Cancer 2015, 121, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, P.A.; Johnston, L.; Fernandez, H.F.; Radich, J.P.; Mauro, M.J.; Flowers, M.E.D.; Martin, P.J.; Gooley, T.A. Posttransplant Feasibility Study of Nilotinib Prophylaxis for High-Risk Philadelphia Chromosome Positive Leukemia. Blood 2017, 130, 1170–1172. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, H.; Wassmann, B.; Bethge, W.; Dengler, J.; Bornhäuser, M.; Stadler, M.; Beelen, D.; Vucinic, V.; Burmeister, T.; Stelljes, M.; et al. Randomized Comparison of Prophylactic and Minimal Residual Disease-Triggered Imatinib after Allogeneic Stem Cell Transplantation for BCR-ABL1-Positive Acute Lymphoblastic Leukemia. Leukemia 2013, 27, 1254–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warraich, Z.; Tenneti, P.; Thai, T.; Hubben, A.; Amin, H.; McBride, A.; Warraich, S.; Hannan, A.; Warraich, F.; Majhail, N.; et al. Relapse Prevention with Tyrosine Kinase Inhibitors after Allogeneic Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblast Leukemia: A Systematic Review. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2020, 26, e55–e64. [Google Scholar] [CrossRef] [PubMed]
- Giebel, S.; Czyz, A.; Ottmann, O.; Baron, F.; Brissot, E.; Ciceri, F.; Cornelissen, J.J.; Esteve, J.; Gorin, N.-C.; Savani, B.; et al. Use of Tyrosine Kinase Inhibitors to Prevent Relapse after Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Position Statement of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Cancer 2016, 122, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xuan, L.; Lin, R.; Deng, L.; Fan, Z.; Nie, D.; Li, X.; Liang, X.; Xu, D.; Zhang, Y.; et al. A New Pre-Emptive TKIs Strategy for Preventing Relapse Based on BCR/ABL Monitoring for Ph+ALL Undergoing Allo-HCT: A Prospective Clinical Cohort Study. Leukemia 2021, 35, 2054–2063. [Google Scholar] [CrossRef]
- Akahoshi, Y.; Nishiwaki, S.; Mizuta, S.; Ohashi, K.; Uchida, N.; Tanaka, M.; Fukuda, T.; Ozawa, Y.; Takahashi, S.; Onizuka, M.; et al. Tyrosine Kinase Inhibitor Prophylaxis after Transplant for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Cancer Sci. 2019, 110, 3255–3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.A.; Shah, B.; Advani, A.; Aoun, P.; Boyer, M.W.; Burke, P.W.; DeAngelo, D.J.; Dinner, S.; Fathi, A.T.; Gauthier, J.; et al. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2021, 19, 1079–1109. [Google Scholar] [CrossRef] [PubMed]
- Porkka, K.; Koskenvesa, P.; Lundán, T.; Rimpiläinen, J.; Mustjoki, S.; Smykla, R.; Wild, R.; Luo, R.; Arnan, M.; Brethon, B.; et al. Dasatinib Crosses the Blood-Brain Barrier and Is an Efficient Therapy for Central Nervous System Philadelphia Chromosome-Positive Leukemia. Blood 2008, 112, 1005–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kort, A.; van Hoppe, S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Brain Accumulation of Ponatinib and Its Active Metabolite, N-Desmethyl Ponatinib, Is Limited by P-Glycoprotein (P-GP/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2). Mol. Pharm. 2017, 14, 3258–3268. [Google Scholar] [CrossRef]
- He, J.-B.; Zhang, X.; Guo, Z.-W.; Liu, M.-M.; Xu, N.; Huang, F.; Fan, Z.-P.; Xuan, L.; Deng, L.; Lin, S.-H.; et al. Ponatinib Therapy in Recurrent Philadelphia Chromosome-Positive Central Nervous System Leukemia with T315I Mutation after Allo-HSCT. Int. J. Cancer 2020, 147, 1071–1077. [Google Scholar] [CrossRef]
- Egan, D.N.; Beppu, L.; Radich, J.P. Patients with Philadelphia-Positive Leukemia with BCR-ABL Kinase Mutations before Allogeneic Transplantation Predominantly Relapse with the Same Mutation. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2015, 21, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radich, J.; Gehly, G.; Lee, A.; Avery, R.; Bryant, E.; Edmands, S.; Gooley, T.; Kessler, P.; Kirk, J.; Ladne, P.; et al. Detection of Bcr-Abl Transcripts in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia after Marrow Transplantation. Blood 1997, 89, 2602–2609. [Google Scholar] [CrossRef]
- Wassmann, B.; Pfeifer, H.; Stadler, M.; Bornhaüser, M.; Bug, G.; Scheuring, U.J.; Brück, P.; Stelljes, M.; Schwerdtfeger, R.; Basara, N.; et al. Early Molecular Response to Posttransplantation Imatinib Determines Outcome in MRD+ Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ ALL). Blood 2005, 106, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaballa, M.R.; Banerjee, P.P.; Milton, D.R.; Jiang, X.; Ganesh, C.; Khazal, S.J.; Nandivada, V.; Islam, S.; Kaplan, M.; Daher, M.; et al. Blinatumomab Maintenance After Allogeneic Hematopoietic Cell Transplantation for B-Lineage Acute Lymphoblastic Leukemia. Blood 2021, 139, 1908–1919. [Google Scholar] [CrossRef] [PubMed]
- Dhédin, N.; Dombret, H.; Thomas, X.; Lhéritier, V.; Boiron, J.-M.; Rigal-Huguet, F.; Vey, N.; Kuentz, M.; Reman, O.; Witz, F.; et al. Autologous Stem Cell Transplantation in Adults with Acute Lymphoblastic Leukemia in First Complete Remission: Analysis of the LALA-85, -87 and -94 Trials. Leukemia 2006, 20, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstone, A.H.; Richards, S.M.; Lazarus, H.M.; Tallman, M.S.; Buck, G.; Fielding, A.K.; Burnett, A.K.; Chopra, R.; Wiernik, P.H.; Foroni, L.; et al. In Adults with Standard-Risk Acute Lymphoblastic Leukemia, the Greatest Benefit Is Achieved from a Matched Sibling Allogeneic Transplantation in First Complete Remission, and an Autologous Transplantation Is Less Effective than Conventional Consolidation/Maintenance Chemotherapy in All Patients: Final Results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood 2008, 111, 1827–1833. [Google Scholar] [CrossRef]
- Shin, H.-J.; Chung, J.S.; Cho, G.J. Imatinib Interim Therapy between Chemotherapeutic Cycles and in Vivo Purging Prior to Autologous Stem Cell Transplantation, Followed by Maintenance Therapy Is a Feasible Treatment Strategy in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Bone Marrow Transplant. 2005, 36, 917–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzler, M.; Watson, D.; Stock, W.; Koval, G.; Mulkey, F.A.; Hoke, E.E.; McCarty, J.M.; Blum, W.G.; Powell, B.L.; Marcucci, G.; et al. Autologous Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Achieves Outcomes Similar to Allogeneic Transplantation: Results of CALGB Study 10001 (Alliance). Haematologica 2014, 99, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Giebel, S.; Labopin, M.; Gorin, N.C.; Caillot, D.; Leguay, T.; Schaap, N.; Michallet, M.; Dombret, H.; Mohty, M. Improving Results of Autologous Stem Cell Transplantation for Philadelphia-Positive Acute Lymphoblastic Leukaemia in the Era of Tyrosine Kinase Inhibitors: A Report from the Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation. Eur. J. Cancer Oxf. Engl. 1990 2014, 50, 411–417. [Google Scholar] [CrossRef]
- Lyu, M.; Jiang, E.; He, Y.; Yang, D.; Ma, Q.; Pang, A.; Zhai, W.; Wei, J.; Huang, Y.; Zhang, G.; et al. Comparison of Autologous and Allogeneic Stem Cell Transplantation for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Hematol. Amst. Neth. 2021, 26, 65–74. [Google Scholar] [CrossRef]
- Soverini, S.; Colarossi, S.; Gnani, A.; Rosti, G.; Castagnetti, F.; Poerio, A.; Iacobucci, I.; Amabile, M.; Abruzzese, E.; Orlandi, E.; et al. Contribution of ABL Kinase Domain Mutations to Imatinib Resistance in Different Subsets of Philadelphia-Positive Patients: By the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 7374–7379. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, H.; Wassmann, B.; Pavlova, A.; Wunderle, L.; Oldenburg, J.; Binckebanck, A.; Lange, T.; Hochhaus, A.; Wystub, S.; Brück, P.; et al. Kinase Domain Mutations of BCR-ABL Frequently Precede Imatinib-Based Therapy and Give Rise to Relapse in Patients with de Novo Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ ALL). Blood 2007, 110, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Soverini, S.; De Benedittis, C.; Papayannidis, C.; Paolini, S.; Venturi, C.; Iacobucci, I.; Luppi, M.; Bresciani, P.; Salvucci, M.; Russo, D.; et al. Drug Resistance and BCR-ABL Kinase Domain Mutations in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia from the Imatinib to the Second-Generation Tyrosine Kinase Inhibitor Era: The Main Changes Are in the Type of Mutations, but Not in the Frequency of Mutation Involvement. Cancer 2014, 120, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-S.; Metcalf, C.A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R.M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; et al. Discovery of 3-[2-(Imidazo[1,2-b]Pyridazin-3-Yl)Ethynyl]-4-Methyl-N-{4-[(4-Methylpiperazin-1-Yl)Methyl]-3-(Trifluoromethyl)Phenyl}benzamide (AP24534), a Potent, Orally Active Pan-Inhibitor of Breakpoint Cluster Region-Abelson (BCR-ABL) Kinase Including the T315I Gatekeeper Mutant. J. Med. Chem. 2010, 53, 4701–4719. [Google Scholar] [CrossRef]
- Fielding, A.K.; Richards, S.M.; Chopra, R.; Lazarus, H.M.; Litzow, M.R.; Buck, G.; Durrant, I.J.; Luger, S.M.; Marks, D.I.; Franklin, I.M.; et al. Outcome of 609 Adults after Relapse of Acute Lymphoblastic Leukemia (ALL); an MRC UKALL12/ECOG 2993 Study. Blood 2007, 109, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavernier, E.; Boiron, J.-M.; Huguet, F.; Bradstock, K.; Vey, N.; Kovacsovics, T.; Delannoy, A.; Fegueux, N.; Fenaux, P.; Stamatoullas, A.; et al. Outcome of Treatment after First Relapse in Adults with Acute Lymphoblastic Leukemia Initially Treated by the LALA-94 Trial. Leukemia 2007, 21, 1907–1914. [Google Scholar] [CrossRef]
- Tojo, A.; Kyo, T.; Yamamoto, K.; Nakamae, H.; Takahashi, N.; Kobayashi, Y.; Tauchi, T.; Okamoto, S.; Miyamura, K.; Hatake, K.; et al. Ponatinib in Japanese Patients with Philadelphia Chromosome-Positive Leukemia, a Phase 1/2 Study. Int. J. Hematol. 2017, 106, 385–397. [Google Scholar] [CrossRef]
- Tavitian, S.; Uzunov, M.; Bérard, E.; Bouscary, D.; Thomas, X.; Raffoux, E.; Leguay, T.; Gallego Hernanz, M.P.; Berceanu, A.; Leprêtre, S.; et al. Ponatinib-Based Therapy in Adults with Relapsed or Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Results of the Real-Life OPAL Study. Leuk. Lymphoma 2020, 61, 2161–2167. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and Activity of Blinatumomab for Adult Patients with Relapsed or Refractory B-Precursor Acute Lymphoblastic Leukaemia: A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Martinelli, G.; Boissel, N.; Chevallier, P.; Ottmann, O.; Gökbuget, N.; Rambaldi, A.; Ritchie, E.K.; Papayannidis, C.; Tuglus, C.A.; Morris, J.D.; et al. Long-Term Follow-up of Blinatumomab in Patients with Relapsed/Refractory Philadelphia Chromosome-Positive B-Cell Precursor Acute Lymphoblastic Leukaemia: Final Analysis of ALCANTARA Study. Eur. J. Cancer Oxf. Engl. 1990 2021, 146, 107–114. [Google Scholar] [CrossRef]
- Rambaldi, A.; Ribera, J.-M.; Kantarjian, H.M.; Dombret, H.; Ottmann, O.G.; Stein, A.S.; Tuglus, C.A.; Zhao, X.; Kim, C.; Martinelli, G. Blinatumomab Compared with Standard of Care for the Treatment of Adult Patients with Relapsed/Refractory Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia. Cancer 2020, 126, 304–310. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Martinelli, G.; Stelljes, M.; DeAngelo, D.J.; Gökbuget, N.; Advani, A.S.; O’Brien, S.; Liedtke, M.; Merchant, A.A.; Cassaday, R.D.; et al. Efficacy of Inotuzumab Ozogamicin in Patients with Philadelphia Chromosome-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia. Cancer 2021, 127, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Corbacioglu, S.; Jabbour, E.J.; Mohty, M. Risk Factors for Development of and Progression of Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2019, 25, 1271–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebriaei, P.; Cutler, C.; de Lima, M.; Giralt, S.; Lee, S.J.; Marks, D.; Merchant, A.; Stock, W.; van Besien, K.; Stelljes, M. Management of Important Adverse Events Associated with Inotuzumab Ozogamicin: Expert Panel Review. Bone Marrow Transplant. 2018, 53, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Short, N.J.; Kantarjian, H.; Konopleva, M.; Desikan, S.P.P.; Jain, N.; Ravandi, F.; Huang, X.; Wierda, W.G.; Borthakur, G.; Sasaki, K.; et al. Updated Results of a Phase II Study of Ponatinib and Blinatumomab for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2021, 138, 2298. [Google Scholar] [CrossRef]
- Couturier, M.-A.; Thomas, X.; Raffoux, E.; Huguet, F.; Berthon, C.; Simand, C.; Gallego-Hernanz, M.-P.; Hicheri, Y.; Hunault Berger, M.; Saillard, C.; et al. Blinatumomab + Ponatinib for Relapsed/Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Leuk. Lymphoma 2021, 62, 620–629. [Google Scholar] [CrossRef]
- Assi, R.; Kantarjian, H.; Short, N.J.; Daver, N.; Takahashi, K.; Garcia-Manero, G.; DiNardo, C.; Burger, J.; Cortes, J.; Jain, N.; et al. Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-Positive Leukemia. Clin. Lymphoma Myeloma Leuk. 2017, 17, 897–901. [Google Scholar] [CrossRef]
- King, A.C.; Pappacena, J.J.; Tallman, M.S.; Park, J.H.; Geyer, M.B. Blinatumomab Administered Concurrently with Oral Tyrosine Kinase Inhibitor Therapy Is a Well-Tolerated Consolidation Strategy and Eradicates Measurable Residual Disease in Adults with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia. Leuk. Res. 2019, 79, 27–33. [Google Scholar] [CrossRef]
- Sokolov, A.N.; Parovichnikova, E.N.; Troitskaya, V.V.; Galtseva, I.V.; Davidova, J.O.; Kapranov, N.M.; Obukhova, T.N.; Savchenko, V.G. Blinatumomab + Tyrosine Kinase Inhibitors in the Treatment of Relapsed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia Patients—Clinical Efficacy and Peripheral Blood Lymphocytes Subpopulations Kinetics. Blood 2016, 128, 4024. [Google Scholar] [CrossRef]
- Goff, D.J.; Court Recart, A.; Sadarangani, A.; Chun, H.-J.; Barrett, C.L.; Krajewska, M.; Leu, H.; Low-Marchelli, J.; Ma, W.; Shih, A.Y.; et al. A Pan-BCL2 Inhibitor Renders Bone-Marrow-Resident Human Leukemia Stem Cells Sensitive to Tyrosine Kinase Inhibition. Cell Stem Cell 2013, 12, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Scherr, M.; Elder, A.; Battmer, K.; Barzan, D.; Bomken, S.; Ricke-Hoch, M.; Schröder, A.; Venturini, L.; Blair, H.J.; Vormoor, J.; et al. Differential Expression of MiR-17~92 Identifies BCL2 as a Therapeutic Target in BCR-ABL-Positive B-Lineage Acute Lymphoblastic Leukemia. Leukemia 2014, 28, 554–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massimino, M.; Vigneri, P.; Stella, S.; Tirrò, E.; Pennisi, M.S.; Parrinello, L.N.; Vetro, C.; Manzella, L.; Stagno, F.; Di Raimondo, F. Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells. J. Clin. Med. 2021, 10, 5606. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Konopleva, M.; Kadia, T.; Kebriaei, P.; Daver, N.; Huang, X.; Masarova, L.; Cook, R.; Jain, N.; Jabbour, E.; et al. An Effective Chemotherapy-Free Regimen of Ponatinib plus Venetoclax for Relapsed/Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Am. J. Hematol. 2021, 96, E229–E232. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Yang, C.; Zhang, Y.; Wang, Y.; Shi, T.; HU, Y.; Mao, L.; Ye, X.; Liu, F.; et al. Venetoclax-Ponatinib for T315I/Compound-Mutated Ph+Acute Lymphoblastic Leukemia. Blood 2021, 138, 3395. [Google Scholar] [CrossRef]
- Jain, N.; Maiti, A.; Ravandi, F.; Konopleva, M.; Daver, N.; Kadia, T.; Pemmaraju, N.; Short, N.; Kebriaei, P.; Ning, J.; et al. Inotuzumab Ozogamicin with Bosutinib for Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia or Lymphoid Blast Phase of Chronic Myeloid Leukemia. Am. J. Hematol. 2021, 96, 1000–1007. [Google Scholar] [CrossRef]
- Réa, D.; Mauro, M.J.; Boquimpani, C.; Minami, Y.; Lomaia, E.; Voloshin, S.; Turkina, A.; Kim, D.-W.; Apperley, J.F.; Abdo, A.; et al. A Phase 3, Open-Label, Randomized Study of Asciminib, a STAMP Inhibitor, vs Bosutinib in CML after 2 or More Prior TKIs. Blood 2021, 138, 2031–2041. [Google Scholar] [CrossRef]
- Cortes, J.E.; Hughes, T.P.; Mauro, M.J.; Hochhaus, A.; Rea, D.; Goh, Y.T.; Janssen, J.; Steegmann, J.L.; Heinrich, M.C.; Talpaz, M.; et al. Asciminib, a First-in-Class STAMP Inhibitor, Provides Durable Molecular Response in Patients (Pts) with Chronic Myeloid Leukemia (CML) Harboring the T315I Mutation: Primary Efficacy and Safety Results from a Phase 1 Trial. Blood 2020, 136, 47–50. [Google Scholar] [CrossRef]
- Deeks, E.D. Asciminib: First Approval. Drugs 2022, 82, 219–226. [Google Scholar] [CrossRef]
- Luskin, M.R.; Stevenson, K.E.; Mendez, L.M.; Wang, E.S.; Wadleigh, M.; Garcia, J.S.; Stone, R.M.; An, H.H.; Hagopian, E.; Galinsky, I.; et al. A Phase I Study of Asciminib (ABL001) in Combination with Dasatinib and Prednisone for BCR-ABL1-Positive ALL in Adults. Blood 2021, 138, 2305. [Google Scholar] [CrossRef]
- Eide, C.A.; Zabriskie, M.S.; Savage Stevens, S.L.; Antelope, O.; Vellore, N.A.; Than, H.; Schultz, A.R.; Clair, P.; Bowler, A.D.; Pomicter, A.D.; et al. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell 2019, 36, 431–443.e5. [Google Scholar] [CrossRef]
- Zerbit, J.; Tamburini, J.; Goldwirt, L.; Decroocq, J.; Cayuela, J.M.; Chapuis, N.; Contejean, A.; Batista, R.; Bouscary, D.; Willems, L. Asciminib and Ponatinib Combination in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2021, 62, 3558–3560. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Rosenberg, S.A. Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nat. Rev. Clin. Oncol. 2013, 10, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T Cell Engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadelain, M.; Brentjens, R.; Rivière, I. The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discov. 2013, 3, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for Relapsed or Refractory Adult B-Cell Acute Lymphoblastic Leukaemia: Phase 2 Results of the Single-Arm, Open-Label, Multicentre ZUMA-3 Study. Lancet Lond. Engl. 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Amrolia, P.J.; Wynn, R.; Hough, R.E.; Vora, A.; Bonney, D.; Veys, P.; Chiesa, R.; Rao, K.; Clark, L.; Al-Hajj, M.; et al. Phase I Study of AUTO3, a Bicistronic Chimeric Antigen Receptor (CAR) T-Cell Therapy Targeting CD19 and CD22, in Pediatric Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia (r/r B-ALL): Amelia Study. Blood 2019, 134, 2620. [Google Scholar] [CrossRef]
- Schultz, L.M.; Muffly, L.S.; Spiegel, J.Y.; Ramakrishna, S.; Hossain, N.; Baggott, C.; Sahaf, B.; Patel, S.; Craig, J.; Yoon, J.; et al. Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood 2019, 134, 744. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Shi, B.-Y.; Zhang, X.; Zhou, S.-Y.; Chu, J.-H.; Wu, X.-J.; Fu, C.-C.; Qiu, H.-Y.; Han, Y.; Chen, S.-N.; et al. Allogeneic Haematopoietic Stem Cell Transplantation Improves Outcome of Adults with Relapsed/Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Entering Remission Following CD19 Chimeric Antigen Receptor T Cells. Bone Marrow Transplant. 2021, 56, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Igwe, I.J.; Yang, D.; Merchant, A.; Merin, N.; Yaghmour, G.; Kelly, K.; Ramsingh, G. The Presence of Philadelphia Chromosome Does Not Confer Poor Prognosis in Adult Pre-B Acute Lymphoblastic Leukaemia in the Tyrosine Kinase Inhibitor Era—A Surveillance, Epidemiology, and End Results Database Analysis. Br. J. Haematol. 2017, 179, 618–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of Dasatinib vs Imatinib in the Treatment of Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Jabbour, E.J.; Ravandi, F.; Short, N.J.; Thomas, D.A.; Garcia-Manero, G.; Daver, N.G.; Kadia, T.M.; Konopleva, M.Y.; Jain, N.; et al. Hyper-CVAD plus Ponatinib versus Hyper-CVAD plus Dasatinib as Frontline Therapy for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Propensity Score Analysis. Cancer 2016, 122, 3650–3656. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Kantarjian, H.M.; Short, N.J.; Samra, B.; Khoury, J.D.; Kanagal Shamanna, R.; Konopleva, M.; Jain, N.; DiNardo, C.D.; Khouri, R.; et al. Prognostic Factors for Progression in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Complete Molecular Response within 3 Months of Therapy with Tyrosine Kinase Inhibitors. Cancer 2021, 127, 2648–2656. [Google Scholar] [CrossRef]
- Cayuela, J.-M.; Lay, F.; Chalandon, Y.; Rousselot, P.; Thomas, X.; Havelange, V.; Huguet, F.; Chevallier, P.; Thiebaut-Bertrand, A.; Chantepie, S.; et al. Sensitive Monitoring of BCR-ABL1 Kinase Domain Mutations By Next Generation Sequencing for Optimizing Clinical Decisions in Philadelphia-Positive Acute Lymphoblastic Leukemia in the Graaph-2014 Trial. Blood 2019, 134, 1295. [Google Scholar] [CrossRef]
- Saussele, S.; Haverkamp, W.; Lang, F.; Koschmieder, S.; Kiani, A.; Jentsch-Ullrich, K.; Stegelmann, F.; Pfeifer, H.; La Rosée, P.; Goekbuget, N.; et al. Ponatinib in the Treatment of Chronic Myeloid Leukemia and Philadelphia Chromosome-Positive Acute Leukemia: Recommendations of a German Expert Consensus Panel with Focus on Cardiovascular Management. Acta Haematol. 2020, 143, 217–231. [Google Scholar] [CrossRef]
- Boissel, N.; Huguet, F.; Graux, C.; Hicheri, Y.; Chevallier, P.; KIM, R.; Balsat, M.; Leguay, T.; Hunault, M.; Maury, S.; et al. Frontline Consolidation with Blinatumomab for High-Risk Philadelphia-Negative Acute Lymphoblastic Adult Patients. Early Results from the Graall-2014-QUEST Phase 2. Blood 2021, 138, 1232. [Google Scholar] [CrossRef]
- Short, N.J.; Jabbour, E.; Sasaki, K.; Patel, K.; O’Brien, S.M.; Cortes, J.E.; Garris, R.; Issa, G.C.; Garcia-Manero, G.; Luthra, R.; et al. Impact of Complete Molecular Response on Survival in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2016, 128, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Nagel, I.; Bartels, M.; Duell, J.; Oberg, H.-H.; Ussat, S.; Bruckmueller, H.; Ottmann, O.; Pfeifer, H.; Trautmann, H.; Gökbuget, N.; et al. Hematopoietic Stem Cell Involvement in BCR-ABL1-Positive ALL as a Potential Mechanism of Resistance to Blinatumomab Therapy. Blood 2017, 130, 2027–2031. [Google Scholar] [CrossRef]
- Hovorkova, L.; Zaliova, M.; Venn, N.C.; Bleckmann, K.; Trkova, M.; Potuckova, E.; Vaskova, M.; Linhartova, J.; Machova Polakova, K.; Fronkova, E.; et al. Monitoring of Childhood ALL Using BCR-ABL1 Genomic Breakpoints Identifies a Subgroup with CML-like Biology. Blood 2017, 129, 2771–2781. [Google Scholar] [CrossRef]
- KIM, R.; Rousselot, P.; Cayuela, J.-M.; Chalandon, Y.; Passet, M.; Thomas, X.; Straetmans, N.; Chevallier, P.; Huguet, F.; Berthon, C.; et al. Frequency and Outcome of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia with BCR-ABL1 Clonal Hematopoiesis after Blast Clearance: Results from the Graaph-2014 Trial. Blood 2021, 138, 3478. [Google Scholar] [CrossRef]
- Nishiwaki, S.; Kim, J.H.; Ito, M.; Maeda, M.; Okuno, Y.; Koyama, D.; Ozawa, Y.; Gunji, M.; Osaki, M.; Kitamura, K.; et al. Multi-Lineage BCR-ABL Expression in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Is Associated With Improved Prognosis but No Specific Molecular Features. Front. Oncol. 2020, 10, 586567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jang, E. Association of Minimal Residual Disease with Clinical Outcomes in Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia in the Tyrosine Kinase Inhibitor Era: A Systemic Literature Review and Meta-Analysis. PLoS ONE 2021, 16, e0256801. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Kantarjian, H.; Alvarado, Y.; Burger, J.A.; Jain, N.; Konopleva, M.; Ravandi, F.; DiNardo, C.D.; Masarova, L.; Sasaki, K.; et al. A Phase II Study of Inotuzumab Ozogamicin for the Treatment of Measurable Residual Disease-Positive B-Cell Acute Lymphoblastic Leukemia. Blood 2021, 138, 2299. [Google Scholar] [CrossRef]
Reference | TKI | Phase | N | Median Age, yr (Range) | CHR Rate, % | Early Death Rate, % | Overall CMR Rate, % | Allo-HSCT Rate, % | OS Rate,% | DFS Rate, % | CIR Rate, % | NRM Rate, % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intensive Chemotherapy + TKI | ||||||||||||
Fielding, 2014 | I | 3 | 175 | 42 (16–64) | 92 | 5 | NA | 60 | 38 (4 yr) | 50 (4 yr) | NA | NA |
Chalandon, 2015 # | I | 3 | 133 | 45 (21–59) | 91 | 6.7 | 23 * | 65 | 43 (5 yr) | 32 (5 yr) & | 41.3 (5 yr) | 22.6 (5 yr) |
Bassan, 2010 | I | 2 | 59 | 47 (19–66) | 92 | 4 | NA | 63 | 48 (5 yr) | 39 (5 yr) | 47 (5 yr) | NA |
De Labarthe, 2007 Tanguy, 2013 | I | 2 | 45 | 45 (16–59) | 96 | 4.4 | 38 | 51 | 52 (4 yr) | 43 (4 yr) | 24 (4 yr) | 21 (4 yr) |
Daver, 2015 | I | 2 | 45 | 51 (17–84) | 93 | 2 | 45 | 30 | 43 (5 yr) | 43 (5 yr) | NA | NA |
Fujisawa, 2017 | I | 2 | 68 | 49 (18–64) | 95.6 | 4.4 | 58 * | 63 | 62 (3 yr) | 52 (3 yr) & | 12.6 (1 yr) | 17.3 (1 yr) |
Hatta, 2018 | I | 2 | 99 | 45 (15–64) | 97 | 3 | NA | 61 | 50 (5 yr) | 43 (5 yr) | 15 (5 yr) | 33 (5 yr) |
Ravandi, 2015 | D | 2 | 72 | 55 (21–80) | 96 | 4 | 65 | 17 | 46 (5 yr) | 44 (5 yr) | 32 (5 yr) | NA |
Ravandi, 2016 | D | 2 | 94 | 44 (20–60) | 88 | 2 | NA | 43 | 69 (3 yr) | 55 (3 yr) | NA | NA |
Kim, 2015 | N | 2 | 90 | 47 (17–71) | 91 | NA | 86 | 63 | 72 (2 yr) | 72 (2 yr) | 24 (2 yr) | 25 (2 yr) |
Jabbour, 2018 Short, 2019 | P | 2 | 86 | 46 (21–80) | 100 | 0 ~ | 83 | 20 | 73 (5 yr) | 68 (5 yr) & | NA | 10 (5 yr) |
Low intensity chemotherapy + TKI | ||||||||||||
Chalandon, 2015 ## | I | 3 | 136 | 48.6 (18–59) | 98.5 | 0.7 | 29 * | 62 | 43 (5 yr) | 42 (5 yr) & | 32.8 (5 yr) | 23.7 (5 yr) |
Goekbuget, 2021 | I | 3 | 127 | 35 (18–55) | 95 | 3 | NA | NA | 74 (3 yr) | NA | NA | NA |
Rousselot, 2016 | D | 2 | 71 | 69 (59–83) | 96 | 4 | 24 * | 9.8 | 36 (5 yr) | 27 (5 yr) & | 54 (5 yr) | 29 |
Chalandon, 2018 Rousselot, 2021 § | N | 3 | 156 | 47 (18–59.9) | 98 | 1.9 | NA | 58.3 | 86 (3 yr) | 79.6 (3 yr) | 21.3 (3 yr) | NA |
Ottman, 2018 | N | 2 | 72 | 65.5 (55–85) | 94.4 | 0.72 | 58 * | 33 | 47 (4 yr) | 42 (4 yr) & | 34 (4 yr) | 34 |
Steroids + TKI induction followed by chemotherapy | ||||||||||||
Chiaretti, 2016 | I | 2 | 51 | 46 (17–59.7) | 96 | 0 | NA | 42.5 | 48.8 (5 yr) | 45.8 (5 yr) | 36 (5 yr) | NA |
Foa, 2011 | D | 2 | 55 | 53.6 (24–76.5) | 92.5 | 0 | NA | 34 | 69 (20 m) | 51 (20 m) | 57 (20 m) | NA |
Chiaretti, 2021 | D | 2 | 60 | 42 (18.7–59) | 97 | 0 | NA | 43 | 56.3 (5 yr) | 47.2 (5yr) | 29.8 (5yr) | 18 (5 yr) |
Wieduwilt, 2021 | D | 2 | 65 | 60 (22–87) | 95.4 | 0 | NA | 20 | 48 (5 yr) | 37 (5 yr) | 39 (5 yr) | NA |
Sugiura, 2022 | D | 2 | 78 | 44.5 (16–64) | 94.5 | 0 | 58 * | 73.4 | 80.5 (3 yr) | 66 (3 yr) & | 23.1 (3 yr) | 26.1 (3 yr) |
Chemo-free strategy | ||||||||||||
Based on steroids + TKI | ||||||||||||
Vignetti, 2007 | I | 2 | 30 | 69 (61–83) | 100 | 0 | NA | 39 | 74 (1 yr) | 48 (1 yr) | NA | NA |
Papayannidis, 2015 | N/I | 2 | 39 | 66 (28–84) | 95 | 0 | NA | NA | 44 (3 yr) | 28 (2 yr) | NA | NA |
Martinelli, 2021 | P | 2 | 44 | 66.5 (26–85) | 95.5 | 4.5 | 81.8 | NA | NA | NA | 14.3 | NA |
Based on blinatumomab | ||||||||||||
Foa, 2020 Chiaretti, 2021 | D | 2 | 63 | 54 (24–82) | 98 | 1.6 | NA | 50 | 87.8 (2 yr) | 79.8 (2 yr) | 14 (2 yr) | NA |
Advani, 2021 | D | 2 | 25 | 73 (62–87) | 92 | NA | NA | NA | 85 (3 yr) | 80 (3 yr) | NA | NA |
Short, 2021 | P | 2 | 19 | 62 (34–83) | 100 | 0 | 87 | 0 | 100 (1 yr) | 100 (1 yr) & | 0 (1 yr) | 0 (1 yr) |
Trial | Condition | Age (years) | Phase | Regimen | N | Primary Outcome Measures |
---|---|---|---|---|---|---|
NCT03589326 | ND | ≥18 | 3 | Ponatinib + RI CT vs. imatinib + RI CT | 230 | CMR |
NCT04530565 | ND | 18–75 | 3 | TKI + steroids vs. TKI + CT vs. TKI + blinatumomab | 330 | OS |
NCT04722848 | ND | ≥18 | 3 | Ponatinib + blinatumomab vs. imatinib + CT | 236 | EFS |
NCT03624530 | ND | 14–65 | 2/3 | Post allo-HSCT maintenance with TKI | 82 | OS |
NCT04688983 | ND | ≥55 | 2 | Ponatinib + blinatumomab vs ponatinib + CT vs. imatinib + CT | 180 | MRR |
NCT04554459 | ND | 18–65 | 2 | Ponatinib + RI CT | 32 | CMR |
NCT02776605 | ND | 18–55 | 2 | Ponatinib + intensive CT | 30 | ORR, EFS |
NCT04329325 | ND | ≥18 | 2 | Dasatinib + blinatumomab + dexamethasone | 17 | CMR |
NCT04845035 | ND | ≥18 | 2 | Alternating dasatinib and ponatinib + intensive CT (BFM like) | 23 | CMR |
NCT04747912 | ND | ≥18 | 2 | Inotuzumab + dasatinib + dexamethasone | 25 | CR |
NCT03541083 | ND | 18–70 | 2 | Blinatumomab | 71 | CMR |
NCT04375683 | ND | 18–80 | 2 | Flumatinib + CT | 23 | CR, CMR |
NCT04788472 | ND | ≥15 | 1/2 | Sequential CD19 and CD22 CAR-T Therapy | 50 | DLT, AEs |
NCT03114865 | ND | ≥18 | 1/2 | Post allo-HSCT maintenance with blinatumomab | 65 | OS |
NCT05026229 | ND | 18–65 | NA | Dasatinib + RI CT vs. intensive CT (in consolidation) | 60 | CR, CMR |
NCT05024357 | ND | 18–65 | NA | Post allo-HSCT maintenance with dasatinib (6 m vs 1 yr) | 80 | CMR |
NCT03147612 | ND, R/R | ≥18 | 2 | Ponatinib + RI CT followed by ponatinib + blinatumomab | 60 | CMR, ORR |
NCT01371630 | ND, R/R | ≥60 | 1/2 | Inotuzumab + RI CT | 276 | MTD, PFS, ORR, OS |
NCT03263572 | ND, R/R | ≥18 | 2 | Ponatinib + blinatumomab + MTX + cytarabine | 60 | CMR, ORR |
NCT03595917 | ND, R/R | ≥18 | 1 | Dasatinib + asciminib + prednisone | 34 | MTD |
NCT02143414 | ND, R/R | ≥65 | 2 | Blinatumomab + POMP | 58 | OS, DLT |
NCT03610438 | MRD+ ** | ≥18 | 2 | Inotuzumab | 76 | CMR |
NCT02458014 | MRD+ | ≥18 | 2 | Blinatumomab | 40 | RFS |
NCT03982992 | MRD+ * | ≥18 | 2 | Blinatumomab +DLI | 12 | AEs |
NCT03441061 | MRD+ | ≥18 | 2 | Inotuzumab | 40 | RFS |
NCT04475731 | MRD+, R/R | ≥18 | 2 | Ponatinib (+CT if R/R) | 67 | CMR |
NCT03104491 | MRD+, R/R | 16–75 | 1/2 | Post allo-HSCT maintenance with inotuzumab | 44 | MTD, DLT, DFS |
NCT04233346 | R/R, T315I | ≥18 | 2 | Ponatinib | 90 | MHR |
NCT02997761 | R/R | ≥18 | 2 | Blinatumomab + ibrutinib | 20 | CR |
NCT02311998 | R/R | >18 | 1/2 | Bosutinib + inotuzumab | 80 | MTD, MHR, CR/CRi |
NCT03576547 | R/R | ≥18 | 1/2 | Ponatinib + venetoclax + dexamethasone | 38 | MTD, ORR |
NCT03160079 | R/R | ≥18 | 1/2 | Blinatumomab + pembrolizumab | 24 | ORR |
NCT03512405 | R/R | ≥18 | 1/2 | Blinatumomab + pembrolizumab | 36 | AEs, CR/CRi |
NCT03698552 | R/R | ≥18 | 1/2 | ADCT-602 (CD22-targeting monoclonal antibody) | 65 | MTD, RP2D, CR/CRi |
NCT04260022 | R/R | ≥18 | 1b | HQP1351 (Olverembatinib) | 62 | Cmax/AUC |
NCT04872790 | R/R | ≥18 | 1 | Dasatinib + venetoclax + prednisone + rituximab | 20 | MTD, RP2D, AEs |
NCT03991884 | R/R | ≥18 | 1 | Inotuzumab + intensive CT (DA-EPOCH) | 24 | MTD |
NCT02081378 | R/R | ≥18 | 1 | Asciminib alone or + TKI (imatinib, nilotinib, dasatinib) | 326 | MTD, RP2D |
NCT02879695 | R/R | ≥16 | 1 | Blinatumomab + ipilimumab + nivolumab | 30 | AEs, MTD |
NCT01925131 | R/R | ≥18 | 1 | Inotuzumab + CT | 50 | MTD |
NCT05016947 | R/R | ≥18 | 1 | Inotuzumab + venetoclax | 26 | MTD |
Reference | TKI | Phase | N | Median Age, yr (Range) | Allo-HSCT, % | OS | DFS |
---|---|---|---|---|---|---|---|
Chalandon, 2015 | I | 3 | 268 | 47 (18–59) | 63 | p = 0.02 (5 yr) * | p = 0.036 (5 yr) * |
Fielding, 2014 | I | 3 | 175 | 42 (16–64) | 60 | 52% vs. 19% (4 yr) * | 69% vs. 18% (4 yr) * |
Bassan, 2010 | I | 2 | 59 | 47 (19.5–66) | 63 | 42% (5 yr) vs. 29% (3 yr) * | 46% (5 yr) vs. 8% (3 yr) * |
Tanguy, 2013 | I | 2 | 45 | 45 (16–59) | 51 | 76% vs. 33%; p = 0.17 (4 yr) * | 71% vs. 33%; p = 0.26 (4 yr) * |
Daver, 2015 | I | 2 | 45 | 51 (17–84) | 30 | NA | 63% vs. 43%; NS (5 yr) |
Chiaretti, 2016 | I | 2 | 51 | 45.9 (15–60) | 42 | p = 0.03 * | p = 0.06 * |
Lou, 2017 | I | 2 | 153 | 40 (18–68) | 39 | 73% vs. 22%; p < 0.0001 (3 yr) * | 66% vs. 16%; p < 0.0001 * (3 yr) # |
Hatta, 2018 | I | 2 | 99 | 45 (15–64) | 61 | NA | 54% vs. 36%; NS (5 yr) |
Ravandi, 2015 | D | 2 | 72 | 55 (21–80) | 17 | 33% vs. 49% (5 yr, NS) | NA |
Kim, 2015 | N | 2 | 90 | 47.0 (17–71) | 63 | 80% vs. 72%; NS (2 yr) | 78% vs. 49%, p = 0.045 (2 yr) * |
Jabbour 2018 | P | 2 | 65 | 47 (39–61) | 20 | 70% vs. 87%; NS (5 yr) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, K.; Fernandez, A.; Pasquier, F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers 2022, 14, 1805. https://doi.org/10.3390/cancers14071805
Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers. 2022; 14(7):1805. https://doi.org/10.3390/cancers14071805
Chicago/Turabian StyleSaleh, Khalil, Alexis Fernandez, and Florence Pasquier. 2022. "Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults" Cancers 14, no. 7: 1805. https://doi.org/10.3390/cancers14071805
APA StyleSaleh, K., Fernandez, A., & Pasquier, F. (2022). Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers, 14(7), 1805. https://doi.org/10.3390/cancers14071805