Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Ethics Approval
2.3. Exposure Assessment
2.3.1. Multidimensional Fatigue Inventory-20
2.3.2. Hospital Anxiety and Depression Scale (HADS)
2.3.3. Hand Grip Strength (HGS) Measurement
2.4. Intervention
APA Program
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Evaluation at 3 Months (M3)
3.2.1. Patient Characteristics
3.2.2. Feasibility and Impact
3.3. Evaluation at 6 Months (M6)
3.3.1. Patient Characteristics
3.3.2. Feasibility and Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Rolland, Y.; Czerwinski, S.; van Kan, G.A.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its Assessment, Etiology, Pathogenesis, Consequences and Future Perspectives. J. Nutr. Health Aging 2008, 12, 433–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botsen, D.; Ordan, M.-A.; Barbe, C.; Mazza, C.; Perrier, M.; Moreau, J.; Brasseur, M.; Renard, Y.; Taillière, B.; Slimano, F.; et al. Dynapenia Could Predict Chemotherapy-Induced Dose-Limiting Neurotoxicity in Digestive Cancer Patients. BMC Cancer 2018, 18, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barret, M.; Antoun, S.; Dalban, C.; Malka, D.; Mansourbakht, T.; Zaanan, A.; Latko, E.; Taieb, J. Sarcopenia Is Linked to Treatment Toxicity in Patients with Metastatic Colorectal Cancer. Nutr. Cancer 2014, 66, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-W.; Kim, J.W.; Kim, J.-Y.; Kim, S.-W.; Yang, H.K.; Lee, J.W.; Lee, K.-W.; Kim, D.-W.; Kang, S.-B.; Kim, K.-I.; et al. Effect of Muscle Mass on Toxicity and Survival in Patients with Colon Cancer Undergoing Adjuvant Chemotherapy. Support. Care Cancer 2015, 23, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Sakurai, K.; Nambara, M.; Miki, Y.; Toyokawa, T.; Kubo, N.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Ohira, M. Adverse Effects of Preoperative Sarcopenia on Postoperative Complications of Patients With Gastric Cancer. Anticancer Res. 2019, 39, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Rier, H.N.; Jager, A.; Sleijfer, S.; Maier, A.B.; Levin, M.-D. The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. Oncologist 2016, 21, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, K.; Narita, Y.; Mitani, S.; Honda, K.; Masuishi, T.; Taniguchi, H.; Kadowaki, S.; Ura, T.; Ando, M.; Tajika, M.; et al. Baseline Sarcopenia and Skeletal Muscle Loss During Chemotherapy Affect Survival Outcomes in Metastatic Gastric Cancer. Anticancer Res. 2018, 38, 5859–5866. [Google Scholar] [CrossRef]
- Anjanappa, M.; Corden, M.; Green, A.; Roberts, D.; Hoskin, P.; McWilliam, A.; Choudhury, A. Sarcopenia in Cancer: Risking More than Muscle Loss. Tech. Innov. Patient Support Radiat. Oncol. 2020, 16, 50–57. [Google Scholar] [CrossRef]
- Berger, A.M.; Mooney, K.; Alvarez-Perez, A.; Breitbart, W.S.; Carpenter, K.M.; Cella, D.; Cleeland, C.; Dotan, E.; Eisenberger, M.A.; Escalante, C.P.; et al. Cancer-Related Fatigue, Version 2.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 1012–1039. [Google Scholar] [CrossRef]
- Mustian, K.M.; Palesh, O.; Heckler, C.E.; Roscoe, J.A.; Morrow, G.R.; Jacobs, A.; Issell, B.; Schwartzenberger, P.O. Cancer-Related Fatigue Interferes with Activities of Daily Living among 753 Patients Receiving Chemotherapy: A URCC CCOP Study. JCO 2008, 26, 9500. [Google Scholar] [CrossRef]
- McTiernan, A.; Friedenreich, C.M.; Katzmarzyk, P.T.; Powell, K.E.; Macko, R.; Buchner, D.; Pescatello, L.S.; Bloodgood, B.; Tennant, B.; Vaux-Bjerke, A.; et al. Physical Activity in Cancer Prevention and Survival: A Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.N.; Garcia, D.O.; Harris, R.B.; Oren, E.; Roe, D.J.; Jacobs, E.T. Adherence to Diet and Physical Activity Cancer Prevention Guidelines and Cancer Outcomes: A Systematic Review. Cancer Epidemiol. Prev. Biomark. 2016, 25, 1018–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desnoyers, A.; Riesco, E.; Fülöp, T.; Pavic, M. Physical activity and cancer: Update and literature review. Rev. Med. Interne 2016, 37, 399–405. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Neilson, H.K.; Farris, M.S.; Courneya, K.S. Physical Activity and Cancer Outcomes: A Precision Medicine Approach. Clin. Cancer Res. 2016, 22, 4766–4775. [Google Scholar] [CrossRef] [Green Version]
- Schmid, D.; Leitzmann, M.F. Television Viewing and Time Spent Sedentary in Relation to Cancer Risk: A Meta-Analysis. J. Natl. Cancer Inst. 2014, 106, dju098. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Sleight, A.G.; Gerber, L.H.; Marshall, T.F.; Livinski, A.; Alfano, C.M.; Harrington, S.; Flores, A.M.; Virani, A.; Hu, X.; Mitchell, S.A.; et al. A Systematic Review of Functional Outcomes in Cancer Rehabilitation Research. Arch. Phys. Med. Rehabil. 2022. [Google Scholar] [CrossRef]
- Salam, A.; Woodman, A.; Chu, A.; Al-Jamea, L.H.; Islam, M.; Sagher, M.; Sager, M.; Akhtar, M. Effect of Post-Diagnosis Exercise on Depression Symptoms, Physical Functioning and Mortality in Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Randomized Control Trials. Cancer Epidemiol. 2022, 77, 102111. [Google Scholar] [CrossRef]
- Eyl, R.E.; Xie, K.; Koch-Gallenkamp, L.; Brenner, H.; Arndt, V. Quality of Life and Physical Activity in Long-Term (≥5 Years Post-Diagnosis) Colorectal Cancer Survivors—Systematic Review. Health Qual. Life Outcomes 2018, 16, 112. [Google Scholar] [CrossRef]
- Ho, M.; Ho, J.W.C.; Fong, D.Y.T.; Lee, C.F.; Macfarlane, D.J.; Cerin, E.; Lee, A.M.; Leung, S.; Chan, W.Y.Y.; Leung, I.P.F.; et al. Effects of Dietary and Physical Activity Interventions on Generic and Cancer-Specific Health-Related Quality of Life, Anxiety, and Depression in Colorectal Cancer Survivors: A Randomized Controlled Trial. J. Cancer Surviv. 2020, 14, 424–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.; Van Loon, K.; Kenfield, S.A.; Chan, J.M.; Mitchell, E.; Zhang, L.; Paciorek, A.; Joseph, G.; Laffan, A.; Atreya, C.; et al. Quality of Life of Colorectal Cancer Survivors Participating in a Pilot Randomized Controlled Trial of Physical Activity Trackers and Daily Text Messages. Support. Care Cancer 2022, 30, 4557–4564. [Google Scholar] [CrossRef] [PubMed]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.-E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroyama, Y.; Geshi, E. Preoperative Physical Inactivity Affects the Postoperative Course of Surgical Patients with Lung Cancer. Phys. Ther. Res. 2021, 24, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-C.; Lai, I.-L.; Huang, S.-H.; Tsai, W.-S.; Hsieh, P.-S.; Yeh, C.-Y.; Chiang, S.-F.; Hung, H.-Y.; You, J.-F. Association of Preoperative Physical Activity with Short- and Long-Term Outcomes in Patients Undergoing Palliative Resection for Metastatic Colorectal Cancer: An Inverse Probability of Treatment Weighting Analysis. Cancers 2022, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Kogure, E.; Iijima, S.; Fukawa, Y.; Kubo, A.; Kakuda, W. Preoperative Walking Capacity Indirectly Relates to Decreased Postoperative Complications in Patients with Gastrointestinal Cancer. Prog. Rehabil. Med. 2022, 7, 20220002. [Google Scholar] [CrossRef]
- Zylstra, J.; Whyte, G.P.; Beckmann, K.; Pate, J.; Santaolalla, A.; Gervais-Andre, L.; Russell, B.; Maisey, N.; Waters, J.; Tham, G.; et al. Exercise Prehabilitation during Neoadjuvant Chemotherapy May Enhance Tumour Regression in Oesophageal Cancer: Results from a Prospective Non-Randomised Trial. Br. J. Sports Med. 2022, 56, 402–409. [Google Scholar] [CrossRef]
- Witlox, L.; Hiensch, A.E.; Velthuis, M.J.; Steins Bisschop, C.N.; Los, M.; Erdkamp, F.L.G.; Bloemendal, H.J.; Verhaar, M.; Ten Bokkel Huinink, D.; van der Wall, E.; et al. Four-Year Effects of Exercise on Fatigue and Physical Activity in Patients with Cancer. BMC Med. 2018, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Shaver, A.L.; Sharma, S.; Nikita, N.; Lefler, D.S.; Basu-Mallick, A.; Johnson, J.M.; Butryn, M.; Lu-Yao, G. The Effects of Physical Activity on Cancer Patients Undergoing Treatment with Immune Checkpoint Inhibitors: A Scoping Review. Cancers 2021, 13, 6364. [Google Scholar] [CrossRef]
- Kleckner, I.R.; Kamen, C.; Gewandter, J.S.; Mohile, N.A.; Heckler, C.E.; Culakova, E.; Fung, C.; Janelsins, M.C.; Asare, M.; Lin, P.-J.; et al. Effects of Exercise during Chemotherapy on Chemotherapy-Induced Peripheral Neuropathy: A Multicenter, Randomized Controlled Trial. Support. Care Cancer 2018, 26, 1019–1028. [Google Scholar] [CrossRef]
- Guo, S.; Han, W.; Wang, P.; Wang, X.; Fang, X. Effects of Exercise on Chemotherapy-Induced Peripheral Neuropathy in Cancer Patients: A Systematic Review and Meta-Analysis. J. Cancer Surviv. 2022, 43, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ninot, G.; Flori, N.; Huteau, M.-E.; Stoebner-Delbarre, A.; Senesse, P. Exercise and cancer: Evidence of efficacy during and after treatments. Bull. Cancer 2020, 107, 474–489. [Google Scholar] [CrossRef] [PubMed]
- Medeiros Torres, D.; Jorge Koifman, R.; da Silva Santos, S. Impact on Fatigue of Different Types of Physical Exercise during Adjuvant Chemotherapy and Radiotherapy in Breast Cancer: Systematic Review and Meta-Analysis. Support. Care Cancer 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Toohey, K.; Chapman, M.; Rushby, A.-M.; Urban, K.; Ingham, G.; Singh, B. The Effects of Physical Exercise in the Palliative Care Phase for People with Advanced Cancer: A Systematic Review with Meta-Analysis. J. Cancer Surviv. 2022, 1–17. [Google Scholar] [CrossRef]
- Demark-Wahnefried, W.; Schmitz, K.H.; Alfano, C.M.; Bail, J.R.; Goodwin, P.J.; Thomson, C.A.; Bradley, D.W.; Courneya, K.S.; Befort, C.A.; Denlinger, C.S.; et al. Weight Management and Physical Activity throughout the Cancer Care Continuum. CA Cancer J. Clin. 2018, 68, 64–89. [Google Scholar] [CrossRef]
- Smets, E.M.; Garssen, B.; Bonke, B.; De Haes, J.C. The Multidimensional Fatigue Inventory (MFI) Psychometric Qualities of an Instrument to Assess Fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Gentile, S.; Delarozière, J.C.; Favre, F.; Sambuc, R.; San Marco, J.L. Validation of the French “multidimensional Fatigue Inventory (MFI 20). Eur. J. Cancer Care 2003, 12, 58–64. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The Validity of the Hospital Anxiety and Depression Scale. An Updated Literature Review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Ordan, M.-A.; Mazza, C.; Barbe, C.; Perrier, M.; Botsen, D.; Renard, Y.; Moreau, J.; Brasseur, M.; Taillière, B.; Bertin, É.; et al. Feasibility of Systematic Handgrip Strength Testing in Digestive Cancer Patients Treated with Chemotherapy: The FIGHTDIGO Study. Cancer 2018, 124, 1501–1506. [Google Scholar] [CrossRef]
- Perrier, M.; Ordan, M.-A.; Barbe, C.; Mazza, C.; Botsen, D.; Moreau, J.; Renard, Y.; Brasseur, M.; Tailliere, B.; Regnault, P.; et al. Dynapenia in Digestive Cancer Outpatients: Association with Markers of Functional and Nutritional Status (the FIGHTDIGO Study). Support. Care Cancer 2021, 30, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piringer, G.; Fridrik, M.; Fridrik, A.; Leiherer, A.; Zabernigg, A.; Greil, R.; Eisterer, W.; Tschmelitsch, J.; Lang, A.; Frantal, S.; et al. A Prospective, Multicenter Pilot Study to Investigate the Feasibility and Safety of a 1-Year Controlled Exercise Training after Adjuvant Chemotherapy in Colorectal Cancer Patients. Support. Care Cancer 2018, 26, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Foucaut, A.-M.; Morelle, M.; Kempf-Lépine, A.-S.; Baudinet, C.; Meyrand, R.; Guillemaut, S.; Metzger, S.; Bourne-Branchu, V.; Grinand, E.; Chabaud, S.; et al. Feasibility of an Exercise and Nutritional Intervention for Weight Management during Adjuvant Treatment for Localized Breast Cancer: The PASAPAS Randomized Controlled Trial. Support. Care Cancer 2019, 27, 3449–3461. [Google Scholar] [CrossRef] [PubMed]
- Courneya, K.S.; Segal, R.J.; Gelmon, K.; Mackey, J.R.; Friedenreich, C.M.; Yasui, Y.; Reid, R.D.; Proulx, C.; Trinh, L.; Dolan, L.B.; et al. Predictors of Adherence to Different Types and Doses of Supervised Exercise during Breast Cancer Chemotherapy. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Van Blarigan, E.L.; Meyerhardt, J.A. Role of Physical Activity and Diet after Colorectal Cancer Diagnosis. J. Clin. Oncol. 2015, 33, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Crespel, C.; Brami, C.; de Boissieu, P.; Mazza, C.; Chauvet, K.; Lemoine, A.; Gavlak, B.; Léandri, C.; Brasseur, M.; Bertin, E.; et al. Evaluation of the feasibility of a program of adapted physical activity in day hospital of digestive oncology: From the point of view of patients. Bull. Cancer 2018, 105, 228–233. [Google Scholar] [CrossRef]
- Backman, M.; Wengström, Y.; Johansson, B.; Sköldengen, I.; Börjesson, S.; Tärnbro, S.; Berglund, Å. A Randomized Pilot Study with Daily Walking during Adjuvant Chemotherapy for Patients with Breast and Colorectal Cancer. Acta Oncol. 2014, 53, 510–520. [Google Scholar] [CrossRef]
- Yun, Y.H.; Kim, Y.A.; Lee, M.K.; Sim, J.A.; Nam, B.-H.; Kim, S.; Lee, E.S.; Noh, D.-Y.; Lim, J.-Y.; Kim, S.; et al. A Randomized Controlled Trial of Physical Activity, Dietary Habit, and Distress Management with the Leadership and Coaching for Health (LEACH) Program for Disease-Free Cancer Survivors. BMC Cancer 2017, 17, 298. [Google Scholar] [CrossRef]
- Quist, M.; Adamsen, L.; Rørth, M.; Laursen, J.H.; Christensen, K.B.; Langer, S.W. The Impact of a Multidimensional Exercise Intervention on Physical and Functional Capacity, Anxiety, and Depression in Patients With Advanced-Stage Lung Cancer Undergoing Chemotherapy. Integr. Cancer Ther. 2015, 14, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Neuzillet, C.; Hammel, P.; Walter, T.; Desrame, J.; Lagasse, J.-P.; Thoreux, P.; Louvet, C.; Terrebonne, E.; Bouché, O.; Schwarz, L.; et al. Adapted Physical Activity in Patients with Resected Pancreatic Cancer (APACaPOp PRODIGE-56 Study): A National Multicenter Randomized Controlled Phase II Trial. 2018. Available online: clinicaltrials.gov/ct2/show/study/NCT03400072 (accessed on 27 March 2022).
- Neuzillet, C.; Vergnault, M.; Bonnetain, F.; Hammel, P. Rationale and Design of the Adapted Physical Activity in Advanced Pancreatic Cancer Patients (APACaP) GERCOR (Groupe Coopérateur Multidisciplinaire En Oncologie) Trial: Study Protocol for a Randomized Controlled Trial. Trials 2015, 16, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.J.; Kenfield, S.A.; Jimenez, A. Exercise-Induced Biochemical Changes and Their Potential Influence on Cancer: A Scientific Review. Br. J. Sports Med. 2017, 51, 640–644. [Google Scholar] [CrossRef]
- Zhong, D.; Li, Y.; Huang, Y.; Hong, X.; Li, J.; Jin, R. Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front. Mol. Biosci. 2021, 8, 797902. [Google Scholar] [CrossRef] [PubMed]
- van Waart, H.; Stuiver, M.M.; van Harten, W.H.; Geleijn, E.; Kieffer, J.M.; Buffart, L.M.; de Maaker-Berkhof, M.; Boven, E.; Schrama, J.; Geenen, M.M.; et al. Effect of Low-Intensity Physical Activity and Moderate- to High-Intensity Physical Exercise During Adjuvant Chemotherapy on Physical Fitness, Fatigue, and Chemotherapy Completion Rates: Results of the PACES Randomized Clinical Trial. J. Clin. Oncol. 2015, 33, 1918–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiskemann, J.; Clauss, D.; Tjaden, C.; Hackert, T.; Schneider, L.; Ulrich, C.M.; Steindorf, K. Progressive Resistance Training to Impact Physical Fitness and Body Weight in Pancreatic Cancer Patients: A Randomized Controlled Trial. Pancreas 2019, 48, 257–266. [Google Scholar] [CrossRef]
Characteristics, n (%) | Overall Population n = 163 | Patients Who Agreed to Follow the APA Program n = 139 | Patients Who Refused to Follow the APA Program n = 24 | p Value |
---|---|---|---|---|
Age (mean ± SD), years | 62.5 ± 14.3 | 61.4 ± 14.0 | 68.7 ± 14.2 | 0.03 |
Sex Male Female | 98 (60.1) 65 (39.9) | 81 (58.3) 58 (41.7) | 17 (70.8) 7 (29.2) | 0.25 |
ECOG PS 0 1 2 3 | 50 (30.7) 92 (56.4) 19 (11.7) 2 (1.2) | 49 (35.3) 75 (54.0) 15 (10.8) 0 (0) | 1 (4.2) 17 (70.8) 4 (16.7) 2 (8.3) | 0.0003 0.002 |
Charlson comorbidity index (mean ± SD) | 4.4 ± 2.2 | 4.3 ± 2.3 | 4.9 ± 1.8 | 0.21 |
Study proposer Sport coach Resident Doctor | 154 (94.5) 8 (4.9) 1 (0.6) | 130 (93.5) 8 (5.8) 1 (0.7) | 24 (100) 0 (0) 0 (0) | 0.66 |
Tumor location Digestive Hematological Lung Dermatological | 65 (39.9) 56 (34.4) 26 (16.0) 16 (9.8) | 54 (38.9) 50 (36.0) 20 (14.4) 15 (10.8) | 11 (45.8) 6 (25.0) 6 (25.0) 1 (4.2) | 0.39 |
Tumor stage 1 Localized Locally advanced Metastatic | 23 (21.7) 19 (17.9) 64 (60.4) | 20 (22.7) 15 (17.1) 53 (60.2) | 3 (16.7) 4 (22.2) 11 (61.1) | 0.82 |
Chemotherapy Yes No | 143 (87.7) 20 (12.3) | 121 (87.0) 18 (13.0) | 22 (91.7) 2 (8.3) | 0.74 |
Targeting therapy Yes No | 54 (33.1) 109 (66.9) | 51 (36.7) 88 (63.3) | 3 (12.5) 21 (87.5) | 0.02 |
Characteristics of Patients, n (%) | Patients Who Agreed to Perform the APA Program n = 139 |
---|---|
Comorbidities Yes No | 53 (38.1) 86 (61.9) |
Type of comorbidity Stroke Neuropathy Arterial hypertension Coronaropathy Obstructive pneumopathy disease | 1 (0.7) 0 (0) 47 (33.8) 4 (2.9) 9 (6.5) |
Nutritional status Body Mass Index (mean ± SD, kg/m²) Albumin (mean ± SD, g/L) 1 CRP (mean ± SD, g/L) 2 Malnutrition 3 | 25.7 ± 5.2 38.8 ± 5.3 26.2 ± 47.9 9 (6.5) |
Tumor location Digestive Hematological Lung Dermatological | 54 (38.9) 50 (36.0) 20 (14.4) 15 (10.8) |
Tumor stage 4 Localized Locally advanced Metastatic | 20 (22.7) 15 (17.1) 53 (60.2) |
Previous cancer surgery Yes No | 42 (30.2) 97 (69.8) |
Treatment received Chemotherapy alone Targeting therapy alone Chemotherapy and biotherapy | 88 (63.3) 18 (13.0) 33 (23.7) |
Chemotherapy protocol Mono-chemotherapy 5 Bi-chemotherapy 6 Tri-chemotherapy or more 7 | 34 (28.1) 50 (41.3) 37 (30.6) |
Targeted therapy protocol Bevacizumab Rituximab Immunotherapy 8 Bortezomib Others 9 | 7 (13.7) 18 (35.3) 16 (31.4) 5 (9.8) 5 (9.8) |
Indication of treatment 10 Adjuvant Neo adjuvant Palliative | 17 (17.9) 9 (9.5) 69 (72.6) |
Muscle strength (mean ± SD), kg | 32 ± 11.7 |
Dynapenia 11 Yes No | 32 (23.0) 107 (77.0) |
MFI-20 score (mean ± SD) General fatigue Physical fatigue Mental fatigue Reduced activity Reduced motivation | 13.1 ± 4.1 10.7 ± 2.9 16.2 ± 3.9 12.2 ± 4.1 14.5 ± 4 |
HADS score (mean ± SD) Anxiety Depression | 7.1 ± 4 4.7 ± 3.6 |
Physical Activity (PA) | Patients Who Agreed to Perform the APA Program n = 139 |
---|---|
PA before cancer diagnosis Yes No | 130 (93.5) 9 (6.5) |
Intensity of PA before cancer diagnosis >7 METs >5 METs <3 METs | 21 (16.2) 101 (77.7) 8 (6.2) |
PA since cancer diagnosis Yes No | 87 (62.6) 52 (37.4) |
Intensity of PA since cancer diagnosis 1 >7 METs >5 METs <3 METs | 13 (14.9) 69 (79.3) 5 (5.8) |
Chosen place for APA program Hospital Outside hospital with a sports coach Outside hospital without a sports coach | 19 (13.7) 25 (18.0) 95 (68.4) |
Chosen intensity for APA program >7 METs >5 METs <3 METs | 40 (28.8) 96 (69.1) 3 (2.2) |
Characteristics of Patients (Mean ± SD) | At Baseline (n = 139) | M3 (n = 106) | M6 (n = 100) |
---|---|---|---|
Muscle strength, kg | 32.0 ± 11.7 | 31.9 ± 11.7 * | 31.2 ± 12.2 |
MFI-20 score | |||
General fatigue | 13.1 ± 4.1 | 12.5 ± 3.9 | 12.2 ± 4.5 |
Physical fatigue | 10.7 ± 2.9 | 11.1 ± 2.8 | 11.1 ± 3.0 |
Mental fatigue | 16.2 ± 3.9 | 16.3 ± 3.5 | 15.3 ± 4.1 |
Reduced activity | 12.2 ± 4.1 | 13.0 ± 3.6 | 12.5 ± 4.3 |
Reduced motivation | 14.5 ± 4 | 14.8 ± 3.4 | 14.4 ± 4.1 |
HADS score | |||
Anxiety | 7.1 ± 4.0 | 5.9 ± 3.7 * | 5.7 ± 3.2 * |
Depression | 4.7 ± 3.6 | 4.6 ± 3.4 | 5.1 ± 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemoine, A.; Perrier, M.; Mazza, C.; Quinquenel, A.; Brasseur, M.; Delmer, A.; Vallerand, H.; Dewolf, M.; Bertin, E.; Barbe, C.; et al. Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study. Cancers 2022, 14, 1993. https://doi.org/10.3390/cancers14081993
Lemoine A, Perrier M, Mazza C, Quinquenel A, Brasseur M, Delmer A, Vallerand H, Dewolf M, Bertin E, Barbe C, et al. Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study. Cancers. 2022; 14(8):1993. https://doi.org/10.3390/cancers14081993
Chicago/Turabian StyleLemoine, Amélie, Marine Perrier, Camille Mazza, Anne Quinquenel, Mathilde Brasseur, Alain Delmer, Hervé Vallerand, Maxime Dewolf, Eric Bertin, Coralie Barbe, and et al. 2022. "Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study" Cancers 14, no. 8: 1993. https://doi.org/10.3390/cancers14081993
APA StyleLemoine, A., Perrier, M., Mazza, C., Quinquenel, A., Brasseur, M., Delmer, A., Vallerand, H., Dewolf, M., Bertin, E., Barbe, C., Botsen, D., & Bouché, O. (2022). Feasibility and Impact of Adapted Physical Activity (APA) in Cancer Outpatients Beginning Medical Anti-Tumoral Treatment: The UMA-CHAPA Study. Cancers, 14(8), 1993. https://doi.org/10.3390/cancers14081993