Male Breast Cancer: From Molecular Genetics to Clinical Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Epidemiology
4. Risk Factors
4.1. Genetic Risk Factors
4.1.1. Germline Pathogenetic Variants in High-Penetrance Genes
4.1.2. Low-Penetrance Alleles and Polygenic Risk Scores
4.1.3. Somatic Variants
4.1.4. Epigenetic Factors
4.2. Other Risk Factors
5. Management
5.1. Imaging
5.2. Histopathology
5.3. Treatments
6. Cancer Genetic Counseling
6.1. Risk Assessment
6.2. Genetic Testing
6.3. Management of Male Carriers of BRCA1/2 Pathogenetic Variants
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Korde, L.A.; Zujewski, J.A.; Kamin, L.; Giordano, S.; Domchek, S.; Anderson, W.F.; Bartlett, J.M.; Gelmon, K.; Nahleh, Z.; Bergh, J.; et al. Multidisciplinary meeting on male breast cancer: Summary and research recommendations. J. Clin. Oncol. 2010, 28, 1114–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, D.; Forman, D.; Ferlay, J.; Brinton, L.A.; Cook, M.B. An international comparison of male and female breast cancer incidence rates. Int. J. Cancer 2013, 132, 1918–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, W.F.; Jatoi, I.; Tse, J.; Rosenberg, P.S. Male breast cancer: A population-based comparison with female breast cancer. J. Clin. Oncol. 2010, 28, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Verkooijen, H.M.; Chia, K.S.; Bouchardy, C.; Pukkala, E.; Larønningen, S.; Mellemkjær, L.; Czene, K.; Hartman, M. Incidence and outcome of male breast cancer: An international population-based study. J. Clin. Oncol. 2011, 29, 4381–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, P.; Pensabene, M.; Milano, M.; Arpino, G.; Giuliano, M.; Forestieri, V.; Condello, C.; Lauria, R.; De Placido, S. Long-term survival and BRCA status in male breast cancer: A retrospective single-center analysis. BMC Cancer 2016, 16, 375. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Do, H.; Byrne, D.; Jene, N.; kConFab, I.; Dobrovic, A.; Fox, S.B. PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer. Breast Cancer Res. 2013, 15, R69. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Jene, N.; Fox, S.B. Genotypic and phenotypic analysis of familial male breast cancer shows under representation of the HER2 and basal subtypes in BRCA-associated carcinomas. BMC Cancer 2012, 12, 510. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Johansson, I.; Byrne, D.; Nilsson, C.; Investigators, K.; Constable, L.; Fjallskog, M.L.; Dobrovic, A.; Hedenfalk, I.; Fox, S.B. Nuclear HIF1A expression is strongly prognostic in sporadic but not familial male breast cancer. Mod. Pathol. 2014, 27, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- Brinton, L.A.; Richesson, D.A.; Gierach, G.L.; Lacey, J.V., Jr.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A. Prospective evaluation of risk factors for male breast cancer. J. Natl. Cancer Inst. 2008, 100, 1477–1481. [Google Scholar] [CrossRef] [Green Version]
- Lecarpentier, J.; Silvestri, V.; Kuchenbaecker, K.B.; Barrowdale, D.; Dennis, J.; McGuffog, L.; Soucy, P.; Leslie, G.; Rizzolo, P.; Navazio, A.S.; et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J. Clin. Oncol. 2017, 35, 1240–2250. [Google Scholar] [CrossRef]
- Evans, D.G.; Susnerwala, I.; Dawson, J.; Woodward, E.; Maher, E.R.; Lalloo, F. Risk of breast cancer in male BRCA2 carriers. J. Med. Genet. 2010, 47, 110–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.C.; Steele, L.; Kuan, C.J.; Greilac, S.; Neuhausen, S.L. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res. Treat. 2011, 126, 171–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad HB and Apffelstaedt, J.P. Counseling for male BRCA mutation carriers: A review. Breast 2008, 17, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Tischkowitz, M.; Capanu, M.; Sabbaghian, N.; Li, L.; Liang, X.; Vallée, M.P.; Tavtigian, S.V.; Concannon, P.; Foulkes, W.D.; Bernstein, L.; et al. Rare germline mutations in PALB2 and breast cancer risk: A population-based study. Hum. Mutat. 2012, 33, 174–680. [Google Scholar] [CrossRef] [Green Version]
- Adank, M.A.; van Mil, S.E.; Gille, J.J.; Waisfisz, Q.; Meijers-Heijboer, H. PALB2 analysis in BRCA2-like families. Breast Cancer Res. Treat. 2011, 127, 157–362. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, V.; Rizzolo, P.; Zanna, I.; Falchetti, M.; Masala, G.; Bianchi, S.; Papi, L.; Giannini, G.; Palli, D.; Ottini, L. PALB2 mutations in male breast cancer: A population-based study in Central Italy. Breast Cancer Res. Treat. 2010, 122, 299–301. [Google Scholar] [CrossRef]
- Vietri, M.T.; Caliendo, G.; Casamassimi, A.; Cioffi, M.; De Paola, M.L.; Napoli, C.; Molinari, A.M. A novel PALB2 truncating mutation in an Italian family with male breast cancer. Oncol. Rep. 2015, 33, 1243–1247. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.W.; Varley, J.M.; Szydlo, T.E.; Kang, D.H.; Wahrer, D.C.; Shannon, K.E.; Lubratovich, M.; Verselis, S.J.; Isselbacher, K.J.; Fraumeni, J.F.; et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999, 286, 1528–2531. [Google Scholar] [CrossRef]
- Weischer, M.; Bojesen, S.E.; Ellervik, C.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. CHEK2*1100delC Genotyping for Clinical Assessment of Breast Cancer Risk: Meta-Analyses of 26, 100 Patient Cases and 27, 100 Controls. J. Clin. Oncol. 2008, 26, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, P.; Fostira, F.; Papamentzelopoulou, M.; Michelli, M.; Panopoulos, C.; Fountzilas, G.; Konstantopoulou, I.; Voutsinas, G.E.; Yannoukakos, D. CHEK2 c.1100delC allele is rarely identified in Greek breast cancer cases. Cancer Genet. 2015, 208, 129–134. [Google Scholar] [CrossRef]
- Ottini, L.; Silvestri, V.; Saieva, C.; Rizzolo, P.; Zanna, I.; Falchetti, M.; Masala, G.; Navazio, A.S.; Graziano, V.; Bianchi, S.; et al. Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: Results from a multicenter study in Italy. Breast Cancer Res. Treat. 2013, 138, 861–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, S.; Perraki, E.; Tomczyk, K.; Jones, M.E.; Fletcher, O.; Pugh, M.; Winter, T.; Thompson, K.; Cooke, R.; Consortium, K.; et al. Common Susceptibility Loci for Male Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 153–461. [Google Scholar] [CrossRef] [PubMed]
- Lobaccaro, J.M.; Lumbroso, S.; Belon, C.; Galtier-Dereure, F.; Bringer, J.; Lesimple, T.; Namer, M.; Cutuli, B.F.; Pujol, H.; Sultan, C. Androgen receptor gene mutation in male breast cancer. Hum. Mol. Genet. 1993, 2, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.N.; Geng, J.S.; Liu, T.; Zhong, Z.B.; Liu, Y.; Xia, B.S.; Ji, H.F.; Li, X.M.; Zhang, G.Q.; Ren, Y.L.; et al. Long CAG repeat sequence and protein expression of androgen receptor considered as prognostic indicators in male breast carcinoma. PLoS ONE 2012, 7, e52271. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Wong, S.Q.; Li, J.; Do, H.; Weiss, J.; Byrne, D.; Chakrabarti, A.; Bosma, T.; kConFab Investigators; Fellowes, A.; et al. Mutational profiling of familial male breast cancers reveals similarities with luminal A female breast cancer with rare TP53 mutations. Br. J. Cancer 2014, 111, 1351–1360. [Google Scholar] [CrossRef] [Green Version]
- Rizzolo, P.; Navazio, A.S.; Silvestri, V.; Valentini, V.; Zelli, V.; Zanna, I.; Masala, G.; Bianchi, S.; Scarnò, M.; Tommasi, S.; et al. Somatic alterations of targetable oncogenes are frequently observed in BRCA1/2 mutation negative male breast cancers. Oncotarget 2016, 7, 14097–74106. [Google Scholar] [CrossRef] [Green Version]
- Kornegoor, R.; Moelans, C.B.; Verschuur-Maes, A.H.; Hogenes, M.; de Bruin, P.C.; Oudejans, J.J.; van Diest, P.J. Promoter hypermethylation in male breast cancer: Analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res. 2012, 14, R101. [Google Scholar] [CrossRef] [Green Version]
- Easton, D.F.; Lesueur, F.; Decker, B.; Michailidou, K.; Li, J.; Allen, J.; Luccarini, C.; Pooley, K.A.; Shah, M.; Bolla, M.K.; et al. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: Implications for gene panel testing. J. Med. Genet. 2016, 53, 198–309. [Google Scholar] [CrossRef] [Green Version]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113, 100 Women. N. Engl. J. Med. 2021, 384, 128–439. [Google Scholar] [CrossRef]
- Cantor, S.B.; Bell, D.W.; Ganesan, S.; Kass, E.M.; Drapkin, R.; Grossman, S.; Wahrer, D.C.; Sgroi, D.C.; Lane, W.S.; Haber, D.A.; et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001, 105, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Seal, S.; Thompson, D.; Renwick, A.; Elliott, A.; Kelly, P.; Barfoot, R.; Chagtai, T.; Jayatilake, H.; Ahmed, M.; Spanova, K.; et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet. 2006, 38, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, V.; Rizzolo, P.; Falchetti, M.; Zanna, I.; Masala, G.; Bianchi, S.; Palli, D.; Ottini, L. Mutation analysis of BRIP1 in male breast cancer cases: A population-based study in Central Italy. Breast Cancer Res. Treat. 2011, 126, 139–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biesma, H.D.; Schouten, P.C.; Lacle, M.M.; Sanders, J.; Brugman, W.; Kerkhoven, R.; Mandjes, I.; van der Groep, P.; van Diest, P.J.; Linn, S.C. Copy number profiling by array comparative genomic hybridization identifies frequently occurring BRCA2-like male breast cancer. Genes Chromosomes Cancer 2015, 54, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; Lauss, M.; Holm, K.; Staaf, J.; Nilsson, C.; Fjallskog, M.L.; Ringner, M.; Hedenfalk, I. Genome methylation patterns in male breast cancer—Identification of an epitype with hypermethylation of polycomb target genes. Mol. Oncol. 2015, 9, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Pilato, B.; Ottini, L.; Lambo, R.; Simone, G.; Paradiso, A.; Tommasi, S. Different methylation and microRNA expression pattern in male and female familial breast cancer. J. Cell. Physiol. 2013, 228, 1264–1269. [Google Scholar] [CrossRef]
- Deb, S.; Gorringe, K.L.; Pang, J.B.; Byrne, D.J.; Takano, E.A.; Investigators, K.; Dobrovic, A.; Fox, S.B. BRCA2 carriers with male breast cancer show elevated tumour methylation. BMC Cancer 2017, 17, 14. [Google Scholar] [CrossRef] [Green Version]
- Fentiman, I.S.; Fourquet, A.; Hortobagyi, G.N. Male breast cancer. Lancet 2006, 367, 595–604. [Google Scholar] [CrossRef]
- Johansen Taber, K.A.; Morisy, L.R.; Osbahr AJ 3rd Dickinson, B.D. Male breast cancer: Risk factors, diagnosis, and management (Review). Oncol. Rep. 2010, 24, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Hultborn, R.; Hanson, C.; Köpf, I.; Verbiené, I.; Warnhammar, E.; Weimarck, A. Prevalence of Klinefelter’s syndrome in male breast cancer patients. Anticancer Res. 1997, 17, 4293–4297. [Google Scholar]
- Henderson, T.O.; Amsterdam, A.; Bhatia, S.; Hudson, M.M.; Meadows, A.T.; Neglia, J.P.; Diller, L.R.; Constine, L.S.; Smith, R.A.; Mahoney, M.C.; et al. Systematic review: Surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann. Intern. Med. 2010, 152, W144–W154. [Google Scholar] [CrossRef]
- Doyle, S.; Steel, J.; Porter, G. Imaging male breast cancer. Clin. Radiol. 2011, 66, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Cutuli, B.; Le-Nir, C.C.; Serin, D.; Kirova, Y.; Gaci, Z.; Lemanski, C.; De Lafontan, B.; Zoubir, M.; Maingon, P.; Mignotte, H.; et al. Male breast cancer. Evolution of treatment and prognostic factors. Analysis of 489 cases. Crit. Rev. Oncol. Hematol. 2010, 73, 146–254. [Google Scholar] [CrossRef] [PubMed]
- Chavez-MacGregor, M.; Clarke, C.A.; Lichtensztajn, D.; Hortobagyi, G.N.; Giordano, S.H. Male Breast Cancer According to Tumor Subtype and Race: A population-based study. Cancer 2013, 119, 1611–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, F.; Bartlett, J.M.S.; Slaets, L.; van Deurzen, C.H.M.; van Leeuwen-Stok, E.; Porter, P.; Linderholm, B.; Hedenfalk, I.; Schröder, C.; Martens, J.; et al. Characterization of male breast cancer: Results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Ann. Oncol. 2017, 29, 405–417. [Google Scholar] [CrossRef]
- Humphries, M.P.; Sundara Rajan, S.; Honarpisheh, H.; Cserni, G.; Dent, J.; Fulford, L.; Jordan, L.B.; Jones, J.L.; Kanthan, R.; Litwiniuk, M.; et al. Characterisation of male breast cancer: A descriptive biomarker study from a large patient series. Sci. Rep. 2017, 7, 45293. [Google Scholar] [CrossRef]
- Kornegoor, R.; Verschuur-Maes, A.H.; Buerger, H.; Hogenes, M.C.; de Bruin, P.C.; Oudejans, J.J.; Hinrichs, B.; van Diest, P.J. Immunophenotyping of male breast cancer. Histopathology 2012, 61, 1145–1155. [Google Scholar] [CrossRef]
- Ottini, L.; Silvestri, V.; Rizzolo, P.; Falchetti, M.; Zanna, I.; Saieva, C.; Masala, G.; Bianchi, S.; Manoukian, S.; Barile, M.; et al. Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: Results from a collaborative multicenter study in Italy. Breast Cancer Res. Treat. 2012, 134, 411–418. [Google Scholar] [CrossRef]
- Cutuli, B. Strategies in treating male breast cancer. Expert Opin. Pharmacother. 2007, 8, 193–202. [Google Scholar] [CrossRef]
- Sarmiento, S.; McColl, M.; Musavi, L.; Gani, F.; Canner, J.K.; Jacobs, L.; Fu, F.; Siotos, C.; Habibi, M. Male breast cancer: A closer look at patient and tumor characteristics and factors that affect survival using the National Cancer Database. Breast Cancer Res. Treat. 2020, 180, 171–479. [Google Scholar] [CrossRef]
- Yadav, S.; Karam, D.; Bin Riaz, I.; Xie, H.; Durani, U.; Duma, N.; Giridhar, K.V.; Hieken, T.J.; Boughey, J.C.; Mutter, R.W.; et al. Male breast cancer in the United States: Treatment patterns and prognostic factors in the 21st century. Cancer 2020, 126, 16–36. [Google Scholar] [CrossRef] [Green Version]
- Yadav, B.S.; Sharma, S.C.; Singh, R.; Dahiya, D.; Ghoshal, S. Male breast cancer: Outcome with adjuvant treatment. J. Cancer Res. Ther. 2020, 16, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Wernberg, J.A.; Yap, J.; Murekeyisoni, C.; Mashtare, T.; Wilding, G.E.; Kulkarni, S.A. Multiple primary tumors in men with breast cancer diagnoses: A SEER database review. J. Surg. Oncol. 2009, 99, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Gentilini, O.; Chagas, E.; Zurrida, S.; Intra, M.; De Cicco, C.; Gatti, G.; Silva, L.; Renne, G.; Cassano, E.; Veronesi, U. Sentinel lymph node biopsy in male patients with early breast cancer. Oncologist 2007, 12, 112–515. [Google Scholar] [CrossRef] [PubMed]
- Flynn, L.W.; Park, J.; Patil, S.M.; Cody, H.S., 3rd; Port, E.R. Sentinel lymph node biopsy is successful and accurate in male breast carcinoma. J. Am. Coll. Surg. 2008, 206, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Suzuki, H.; Younus, J.; Elfiki, T.; Stitt, L.; Yau, G.; Vujovic, O.; Perera, F.; Lock, M.; Tai, P. The impact of post-mastectomy radiation therapy on male breast cancer patients—A case series. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 196–700. [Google Scholar] [CrossRef]
- Giordano, S.H.; Perkins, G.H.; Broglio, K.; Garcia, S.G.; Middleton, L.P.; Buzdar, A.U.; Hortobagyi, G.N. Adjuvant systemic therapy for male breast carcinoma. Cancer 2005, 104, 2359–2364. [Google Scholar] [CrossRef]
- Volm, M.D. Male breast cancer. Curr. Treat. Options Oncol. 2003, 4, 159–164. [Google Scholar] [CrossRef]
- Harlan, L.C.; Zujewski, J.A.; Goodman MT Stevens, J.L. Breast cancer in men in the United States: A population-based study of diagnosis, treatment, and survival. Cancer 2010, 116, 3558–3568. [Google Scholar] [CrossRef]
- Eggemann, H.; Ignatov, A.; Smith, B.J.; Altmann, U.; von Minckwitz, G.; Röhl, F.W.; Jahn, M.; Costa, S.D. Adjuvant therapy with tamoxifen compared to aromatase inhibitors for 257 male breast cancer patients. Breast Cancer Res. Treat. 2013, 137, 465–470. [Google Scholar] [CrossRef]
- Hayashi, H.; Kimura, M.; Yoshimoto, N.; Tsuzuki, M.; Tsunoda, N.; Fujita, T.; Yamashita, T.; Iwata, H. A case of HER2-positive male breast cancer with lung metastases showing a good response to trastuzumab and paclitaxel treatment. Breast Cancer 2009, 16, 136–140. [Google Scholar] [CrossRef]
- Eggemann, H.; Altmann, U.; Costa, S.D.; Ignatov, A. Survival benefit of tamoxifen and aromatase inhibitor in male and female breast cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 137–341. [Google Scholar] [CrossRef] [PubMed]
- Doyen, J.; Italiano, A.; Largillier, R.; Ferrero, J.M.; Fontana, X.; Thyss, A. Aromatase inhibition in male breast cancer patients: Biological and clinical implications. Ann. Oncol. 2010, 21, 1243–1245. [Google Scholar] [CrossRef] [PubMed]
- Zagouri, F.; Sergentanis, T.N.; Koutoulidis, V.; Sparber, C.; Steger, G.G.; Dubsky, P.; Zografos, G.C.; Psaltopoulou, T.; Gnant, M.; Dimopoulos, M.A.; et al. Aromatase inhibitors with or without gonadotropin-releasing hormone analogue in metastatic male breast cancer: A case series. Br. J. Cancer 2013, 108, 1259–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemmaraju, N.; Munsell, M.F.; Hortobagyi, G.N.; Giordano, S.H. Retrospective review of male breast cancer patients: Analysis of tamoxifen-related side-effects. Ann. Oncol. 2012, 23, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Visram, H.; Kanji, F.; Dent, S.F. Endocrine therapy for male breast cancer: Rate of toxicity and adherence. Curr. Oncol. 2010, 17, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.; Lauro, L.; Papaldo, P.; Lazzaro, B. Chemotherapy in metastatic male breast cancer. Oncology 1985, 42, 205–209. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 123–533, Erratum in N. Engl. J. Med. 2017, 377, 1700. [Google Scholar] [CrossRef]
- Trepanier, A.; Ahrens, M.; McKinnon, W.; Peters, J.; Stopfer, J.; Grumet, S.C.; Manley, S.; Culver, J.O.; Acton, R.; Larsen-Haidle, J.; et al. Genetic cancer risk assessment and counseling: Recommendations of the national society of genetic counselors. J. Genet. Couns. 2004, 13, 13–114. [Google Scholar] [CrossRef]
- Contegiacomo, A.; Pensabene, M.; Capuano, I.; Tauchmanova, L.; Federico, M.; Turchetti, D.; Cortesi, L.; Marchetti, P.; Ricevuto, E.; Cianci, G.; et al. An oncologist-based model of cancer genetic counselling for hereditary breast and ovarian cancer. Ann. Oncol. 2004, 15, 726–732. [Google Scholar] [CrossRef]
- Daly, M.B.; Pilarski, R.; Yurgelun, M.B.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Garber, J.E.; et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020. J. Natl. Compr. Cancer Netw. 2020, 18, 180–391. [Google Scholar] [CrossRef]
- Berry, D.A.; Parmigiani, G.; Sanchez, J.; Schildkraut, J.; Winer, E. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J. Natl. Cancer Inst. 1997, 89, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmigiani, G.; Berry, D.; Aguilar, O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am. J. Hum. Genet. 1998, 62, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marroni, F.; Aretini, P.; D’Andrea, E.; Caligo, M.A.; Cortesi, L.; Viel, A.; Ricevuto, E.; Montagna, M.; Cipollini, G.; Federico, M.; et al. Penetrance of breast and ovarian cancer in a large series of families tested for BRCA1/2 mutations. Eur. J. Hum. Genet. 2004, 12, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Euhus, D.M.; Smith, K.C.; Robinson, L.; Stucky, A.; Olopade, O.I.; Cummings, S.; Garber, J.E.; Chittenden, A.; Mills, G.B.; Rieger, P.; et al. Pretest prediction of BRCA1 or BRCA2 mutation by risk counselors and the computer model BRCAPRO. J. Natl. Cancer Inst. 2002, 94, 144–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanna, I.; Rizzolo, P.; Sera, F.; Falchetti, M.; Aretini, P.; Giannini, G.; Masala, G.; Gulino, A.; Palli, D.; Ottini, L. The BRCAPRO 5.0 model is a useful tool in genetic counseling and clinical management of male breast cancer cases. Eur. J. Hum. Genet. 2010, 18, 156–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitri, Z.I.; Jackson, M.; Garby, C.; Song, J.; Giordano, S.H.; Hortobágyi, G.N.; Singletary, C.N.; Hashmi, S.S.; Arun, B.K.; Litton, J.K. BRCAPRO 6.0 Model Validation in Male Patients Presenting for BRCA Testing. Oncologist 2015, 20, 193–597. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, A.C.; Pharoah, P.P.; Smith, P.; Easton, D.F. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 2004, 191, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, A.C.; Cunningham, A.P.; Peto, J.; Evans, D.G.; Lalloo, F.; Narod, S.A.; Risch, H.A.; Eyfjord, J.E.; Hopper, J.L.; Southey, M.C.; et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: Updates and extensions. Br. J. Cancer 2008, 98, 1457–1466. [Google Scholar] [CrossRef]
- Basham, V.M.; Lipscombe, J.M.; Ward, J.M.; Gayther, S.A.; Ponder, B.A.; Easton, D.F.; Pharoah, P.D. BRCA1 and BRCA2 mutations in a population-based study of male breast cancer. Breast Cancer Res. 2002, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.M.; Ennis, M.; Canon, S.; Bordeleau, L.J. Selecting a BRCA risk assessment model for use in a familial cancer clinic. BMC Med. Genet. 2008, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Kwong, A.; Wong, C.H.; Suen DT Co, M.; Kurian, A.W.; West, D.W.; Ford, J.M. Accuracy of BRCA1/2 mutation prediction models for different ethnicities and genders: Experience in a southern Chinese cohort. World J. Surg. 2012, 36, 702–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadasi, S.; Grundeken, V.; Janssen, L.A.M.; Dijkstra, N.H.; Rodríguez-Girondo, M.; van Zelst-Stams, W.A.G.; Oosterwijk, J.C.; Ausems, M.G.E.M.; Oldenburg, R.A.; Adank, M.A.; et al. Performance of BRCA1/2 mutation prediction models in male breast cancer patients. Clin. Genet. 2018, 93, 12–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, B.D.; Culver, J.O.; Skrzynia, C.; Senter, L.A.; Peters, J.A.; Costalas, J.W.; Callif-Daley, F.; Grumet, S.C.; Hunt, K.S.; Nagy, R.S.; et al. Essential elements of genetic cancer risk assessment, counseling, and testing: Updated recommendations of the National Society of Genetic Counselors. J. Genet. Couns. 2012, 21, 151–161. [Google Scholar] [CrossRef] [PubMed]
- American Society of Clinical Oncology (ASCO). ASCO policy statement update: Genetic testing for cancer susceptibility. J. Clin. Oncol. 2003, 21, 1397–2406. [Google Scholar]
- Reid, S.; Schindler, D.; Hanenberg, H.; Barker, K.; Hanks, S.; Kalb, R.; Neveling, K.; Kelly, P.; Seal, S.; Freund, M.; et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Gen. 2007, 39, 162–164. [Google Scholar] [CrossRef]
- Alter, B.P.; Rosenberg, P.S.; Brody, L.C. Clinical features associated with biallelic mutations in FANCD1/BRCA2. J. Med. Genet. 2007, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Hruban, R.H.; Kamiyama, M.; Borges, M.; Zhang, X.; Williams Parsons, D.; Cheng-Ho Lin, J.; Palmisano, E.; Brune, K.; Jaffee, E.M.; et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009, 324, 21778. [Google Scholar] [CrossRef] [Green Version]
- Burke, W.; Daly, M.; Garber, J.; Botkin, J.; Kahn, M.J.; Lynch, P.; McTiernan, A.; Offit, K.; Perlman, J.; Petersen, G.; et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 1997, 277, 197–1003. [Google Scholar] [CrossRef]
- Strahm, B.; Malkin, D. Hereditary cancer predisposition in children: Genetic basis and clinical implications. Int. J. Cancer 2006, 19, 2001–2006. [Google Scholar] [CrossRef]
- Offit, K.; Levran, O.; Mullaney, B.; Mah, K.; Nafa, K.; Batish, S.D.; Diotti, R.; Schneider, H.; Deffenbaugh, A.; Scholl, T.; et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J. Natl. Cancer Inst. 2003, 95, 1548–1551. [Google Scholar] [CrossRef] [Green Version]
- Nicolosi, P.; Ledet, E.; Yang, S.; Michalski, S.; Freschi, B.; O’Leary, E.; Esplin, E.D.; Nussbaum, R.L.; Sarto, O. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol. 2019, 5, 123–528. [Google Scholar] [CrossRef] [Green Version]
- Giri, V.N.; Hegarty, S.E.; Hyatt, C.; O’Leary, E.; Garcia, J.; Knudsen, K.E.; Kelly, W.K.; Gomella, L.G. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate 2019, 79, 133–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 2018, 319, 1401–2409. [Google Scholar] [CrossRef]
- van Asperen, C.J.; Brohet, R.M.; Meijers-Heijboer, E.J.; Hoogerbrugge, N.; Verhoef, S.; Vasen, H.F.A.; Ausems, M.G.E.M.; Menko, F.H.; Garcia, E.B.G.; Klijn, J.G.M.; et al. Cancer risks in BRCA2 families: Estimates for sites other than breast and ovary. J. Med. Genet. 2005, 42, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.; O’Hara, C.; Khan, S.; Shack, L.; Woodward, E.; Maher, E.R.; Lalloo, F.; Evans, D.G.R. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 2012, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, V.; Leslie, G.; Barnes, D.R.; CIMBA Group; Agnarsson, B.A.; Aittomäki, K.; Alducci, E.; Andrulis, I.L.; Barkardottir, R.B.; Barroso, A.; et al. Characterization of the Cancer Spectrum in Men with Germline BRCA1 and BRCA2 Pathogenic Variants: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). JAMA Oncol. 2020, 6, 1218–1230, Erratum in JAMA Oncol. 2020, 6, 1815. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Silvestri, V.; Leslie, G.; Rebbeck, T.R.; Neuhausen, S.L.; Hopper, J.L.; Nielsen, H.R.; Lee, A.; Yang, X.; McGuffog, L.; et al. Cancer Risks Associated with BRCA1 and BRCA2 Pathogenic Variants. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.R.; Silvestri, V.; Leslie, G.; McGuffog, L.; Dennis, J.; Yang, X.; Adlard, J.; Agnarsson, B.A.; Ahmed, M.; Aittomäki, K.; et al. Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores. J. Natl. Cancer Inst. 2022, 114, 109–122. [Google Scholar] [CrossRef]
- Daly, M.B.; Axilbund, J.E.; Buys, S.; Crawford, B.; Farrell, C.D.; Friedman, S.; Garber, J.E.; Goorha, S.; Gruber, S.B.; Hampel, H.; et al. Genetic/familial high risk assessment: Breast and ovarian. J. Natl. Compr. Cancer Netw. 2010, 8, 162–594. [Google Scholar] [CrossRef]
- Freedman, B.C.; Keto, J.; Rosenbaum Smith, S.M. Screening mammography in men with BRCA mutations: Is there a role? Breast J. 2012, 18, 13–75. [Google Scholar] [CrossRef]
Gene | Chromosome | Trasmission | Syndrome | FBC Risk * (%) | MBC Risk (%) | Cancer Spectrum | Contribution to Hereditary Breast Cancer Syndrome |
---|---|---|---|---|---|---|---|
High penetrance | |||||||
BRCA1 | 17q21 | AD | HBOC | 39–87 | 1–5% | ovary, prostate, colon, pancreas | 20–40% |
BRCA2 | 13q12-13 | AD | HBOC | 26–91 | 5–10% | ovary, prostate, pancreas, ductal-gall tract, melanoma | 10–30% |
TP53 | 17p13 | AD | Li-Fraumeni | 56–90 | NA | Soft-tissue sarcoma, osteosarcoma leukemia, brain, adrenocortical gland, colon | <1% |
PTEN | 10q23 | AD | Cowden | 25–50 | NA | thyroid, endometrium, genital-urinary tract | <1% |
STK11 | 19 | AD | Peutz-Jeghers | 45–54 | NA | colon-rectum, small bowel, pancreas, uterus, testis, ovary | - |
Moderate-low penetrance | |||||||
ATM | 11q22-23 | AR | Atassia-Teleangectasia | NA | NA | leukemia, lymphoma | - |
CHEK2 | 22q11 | AD | Li-Fraumeni variant | 24 | 10-fold | prostate, colon | - |
PALB2 | 16p22 | AD AR | HBOC syndrome Fanconi | 33–55 | NA | Ovary, pancreas, medulloblastoma, Wilms tumor | - |
HBOC syndrome: for carriers of BRCA1/2 pathogenetic variants, for not tested subjects or for subjects belonging to family with an identified BRCA1/2 pathogenetic variant |
|
Li-Fraumeni syndrome: for TP53 mutation carriers, for not tested subjects or for subjects belonging to family with an identified TP53 pathogenetic variants |
|
Cowden syndrome: for carriers of PTEN pathogenetic variants, for not tested subjects or for subjects belonging to family with an identified PTEN pathogenetic variant |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pensabene, M.; Von Arx, C.; De Laurentiis, M. Male Breast Cancer: From Molecular Genetics to Clinical Management. Cancers 2022, 14, 2006. https://doi.org/10.3390/cancers14082006
Pensabene M, Von Arx C, De Laurentiis M. Male Breast Cancer: From Molecular Genetics to Clinical Management. Cancers. 2022; 14(8):2006. https://doi.org/10.3390/cancers14082006
Chicago/Turabian StylePensabene, Matilde, Claudia Von Arx, and Michelino De Laurentiis. 2022. "Male Breast Cancer: From Molecular Genetics to Clinical Management" Cancers 14, no. 8: 2006. https://doi.org/10.3390/cancers14082006
APA StylePensabene, M., Von Arx, C., & De Laurentiis, M. (2022). Male Breast Cancer: From Molecular Genetics to Clinical Management. Cancers, 14(8), 2006. https://doi.org/10.3390/cancers14082006