Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Internal Standards
2.2. Ethics Statement
2.3. Study Population
2.4. Sample Preparation and UPLC-MS/MS Conditions
2.5. Gene Expression Analysis and SNP Analysis
2.6. Experimental Data Analysis and Statistics
3. Results
3.1. Clinical Characteristics
3.2. Identification of Altered PUFAs and Oxylipins in Healthy Donor and Breast Cancer Patients
3.3. Stage, Molecular Subtype, Higher Body Mass Index (BMI) and Blood Biochemical Marker Correlation with Oxylipin Concentrations
3.4. Pathway Integration of Oxylipin Mediator with Gene Expression
3.4.1. DEGs in Tissue Datasets BC vs. HC
3.4.2. DEGs in Blood Datasets BC vs. HC
3.5. Gene-Disease Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Arachidonic acid |
AEA | Anandamide |
COX | Cyclooxygenase |
CYP450 | Cytochrome P450 monooxygenase |
DHA | Docosahexaenoic acid |
DiHOME | Dihydroxyoctadecamonoenoic acid |
HC | Healthy control |
HDoHE | Hydroxydocosahexaenoic acid |
HETE | Hydroxyeicosatetraenoic acid |
HODE | Hydroxyoctadecadienoic acid |
LA | Linoleic acid |
LOX | Lipoxygenase |
PG | Prostaglandin |
PUFAs | Polyunsaturated fatty acids |
BC | Breast cancer |
UPLC-MS/MS | Ultra-performance liquid chromatography-tandem mass spectrometry |
LumA | Luminal A |
LumB | Luminal B |
HER2+ | human epidermal growth factor receptor 2 (HER2) positive breast cancer, |
TN | triple-negative breast cancer |
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczynski, M.W.; Dumlao, D.S.; Dennis, E.A. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 2009, 50, 1015–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Chistyakov, D.V.; Astakhova, A.A.; Sergeeva, M.G. Resolution of inflammation and mood disorders. Exp. Mol. Pathol. 2018, 105, 190–201. [Google Scholar] [CrossRef]
- Johnson, A.M.; Kleczko, E.K.; Nemenoff, R.A. Eicosanoids in Cancer: New Roles in Immunoregulation. Front. Pharmacol. 2020, 11, 1756. [Google Scholar] [CrossRef]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Markosyan, N.; Chen, E.P.; Smyth, E.M. Targeting COX-2 abrogates mammary tumorigenesis: Breaking cancer-associated suppression of immunosurveillance. Oncoimmunology 2014, 3, e29287. [Google Scholar] [CrossRef] [Green Version]
- Chistyakov, D.V.; Grabeklis, S.; Goriainov, S.V.; Chistyakov, V.V.; Sergeeva, M.G.; Reiser, G. Astrocytes synthesize primary and cyclopentenone prostaglandins that are negative regulators of their proliferation. Biochem. Biophys. Res. Commun. 2018, 500, 204–210. [Google Scholar] [CrossRef]
- Azbukina, N.V.; Chistyakov, D.V.; Goriainov, S.V.; Kotelin, V.I.; Fedoseeva, E.V.; Petrov, S.Y.; Sergeeva, M.G.; Iomdina, E.N.; Zernii, E.Y. Targeted lipidomic analysis of aqueous humor reveals signaling lipid-mediated pathways in primary open-angle glaucoma. Biology 2021, 10, 658. [Google Scholar] [CrossRef]
- Azbukina, N.V.; Lopachev, A.V.; Chistyakov, D.V.; Goriainov, S.V.; Astakhova, A.A.; Poleshuk, V.V.; Kazanskaya, R.B.; Fedorova, T.N.; Sergeeva, M.G. Oxylipin profiles in plasma of patients with wilson’s disease. Metabolites 2020, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Buckner, T.; Vanderlinden, L.A.; DeFelice, B.C.; Carry, P.M.; Kechris, K.; Dong, F.; Fiehn, O.; Frohnert, B.I.; Clare-Salzler, M.; Rewers, M.; et al. The oxylipin profile is associated with development of type 1 diabetes: The Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 2021, 64, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Chocholoušková, M.; Jirásko, R.; Vrána, D.; Gatěk, J.; Melichar, B.; Holčapek, M. Reversed phase UHPLC/ESI-MS determination of oxylipins in human plasma: A case study of female breast cancer. Anal. Bioanal. Chem. 2019, 411, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Apaya, M.K.; Shiau, J.Y.; Liao, G.S.; Liang, Y.J.; Chen, C.W.; Yang, H.C.; Chu, C.H.; Yu, J.C.; Shyur, L.F. Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. J. Exp. Clin. Cancer Res. 2019, 38, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 3786–3788. [Google Scholar] [CrossRef] [Green Version]
- De Silva, S.; Tennekoon, K.H.; Karunanayake, E.H. Overview of the genetic basis toward early detection of breast cancer. Breast Cancer Targ. Ther. 2019, 11, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sager, M.; Yeat, N.C.; Pajaro-Van Der Stadt, S.; Lin, C.; Ren, Q.; Lin, J. Transcriptomics in cancer diagnostics: Developments in technology, clinical research and commercialization. Expert Rev. Mol. Diagn. 2015, 15, 1589–1603. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Cai, H.; Wang, S.; Shen, Y.; Ke, C. Application of metabolomics in the diagnosis of breast cancer: A systematic review. J. Cancer 2020, 11, 2540–2551. [Google Scholar] [CrossRef]
- O’Flaherty, J.T.; Wooten, R.E.; Samuel, M.P.; Thomas, M.J.; Levine, E.A.; Case, L.D.; Akman, S.A.; Edwards, I.J. Fatty Acid Metabolites in Rapidly Proliferating Breast Cancer. PLoS ONE 2013, 8, e63076. [Google Scholar] [CrossRef]
- Azrad, M.; Turgeon, C.; Demark-Wahnefried, W. Current evidence linking polyunsaturated Fatty acids with cancer risk and progression. Front. Oncol. 2013, 3, 224. [Google Scholar] [CrossRef] [Green Version]
- Siezen, C.L.E.; Bueno-De-Mesquita, H.B.; Peeters, P.H.M.; Kram, N.R.; Van Doeselaar, M.; Van Kranen, H.J. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer. Int. J. Cancer 2006, 119, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenihan-Geels, G.; Bishop, K.S.; Ferguson, L.R. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J. Clin. Med. 2016, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinstein, S.E.; Heath, L.; Makar, K.W.; Poole, E.M.; Seufert, B.L.; Slattery, M.L.; Xiao, L.; Duggan, D.J.; Hsu, L.; Curtin, K.; et al. Genetic variation in the lipoxygenase pathway and risk of colorectal neoplasia. Genes Chromosomes Cancer 2013, 52, 437–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth Nanda, C.; Venkateswaran, S.V.; Patani, N.; Yuneva, M. Defining a metabolic landscape of tumours: Genome meets metabolism. Br. J. Cancer 2020, 122, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Al-Sakkaf, K.; Shait Mohammed, M.R.; Dallol, A.; Al-Maghrabi, J.; Aldahlawi, A.; Ashoor, S.; Maamra, M.; Ragoussis, J.; Wu, W.; et al. Integration of Transcriptome and Metabolome Provides Unique Insights to Pathways Associated With Obese Breast Cancer Patients. Front. Oncol. 2020, 10, 804. [Google Scholar] [CrossRef]
- Hajeyah, A.A.; Griffiths, W.J.; Wang, Y.; Finch, A.J.; O’Donnell, V.B. The Biosynthesis of Enzymatically Oxidized Lipids. Front. Endocrinol. 2020, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- Hester, A.G.; Murphy, R.C.; Uhlson, C.J.; Ivester, P.; Lee, T.C.; Sergeant, S.; Miller, L.R.; Howard, T.D.; Mathias, R.A.; Chilton, F.H. Relationship between a common variant in the fatty acid desaturase (FADS) cluster and eicosanoid generation in humans. J. Biol. Chem. 2014, 289, 22482–22489. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, A.I.; Greupner, T.; Kutzner, L.; Hartung, N.M.; Hahn, A.; Schuchardt, J.P.; Schebb, N.H. Intra-individual variance of the human plasma oxylipin pattern: Low inter-day variability in fasting blood samples: Versus high variability during the day. Anal. Methods 2018, 10, 4935–4944. [Google Scholar] [CrossRef] [Green Version]
- Gavrish, G.E.; Chistyakov, D.V.; Sergeeva, M.G. ARGEOS: A new bioinformatic tool for detailed systematics search in GEO and arrayexpress. Biology 2021, 10, 1026. [Google Scholar] [CrossRef]
- Piñero, J.; Bravo, Á.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef]
- Wu, C.C.; Gupta, T.; Garcia, V.; Ding, Y.; Schwartzman, M.L. 20-HETE and blood pressure regulation: Clinical implications. Cardiol. Rev. 2014, 22, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guryleva, M.V.; Chistyakov, D.V.; Lopachev, A.V.; Goriainov, S.V.; Astakhova, A.A.; Timoshina, Y.A.; Khutorova, A.V.; Fedorova, T.N.; Sergeeva, M.G. Modulation of the Primary Astrocyte-Enriched Cultures’ Oxylipin Profiles Reduces Neurotoxicity. Metabolites 2021, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Hawley, M.; Holinstat, M. The expansive role of oxylipins on platelet biology. J. Mol. Med. 2017, 95, 575–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, A.M.; Taskén, K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front. Immunol. 2013, 4, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.J.; Penglis, P.S.; Caughey, G.E.; Demasi, M.; Cleland, L.G. Eicosanoid production by human monocytes: Does COX-2 contribute to a self-limiting inflammatory response? Inflamm. Res. 2001, 50, 249–253. [Google Scholar] [CrossRef]
- Bogatcheva, N.V.; Sergeeva, M.G.; Dudek, S.M.; Verin, A.D. Arachidonic acid cascade in endothelial pathobiology. Microvasc. Res. 2005, 69, 107–127. [Google Scholar] [CrossRef]
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [Google Scholar] [CrossRef]
- Hada, M.; Edin, M.L.; Hartge, P.; Lih, F.B.; Wentzensen, N.; Zeldin, D.C.; Trabert, B. Prediagnostic Serum Levels of Fatty Acid Metabolites and Risk of Ovarian Cancer in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Cancer Epidemiol. Biomark. Prev. 2019, 28, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mazzone, P.J.; Cata, J.P.; Kurz, A.; Bauer, M.; Mascha, E.J.; Sessler, D.I. Serum Free Fatty Acid Biomarkers of Lung Cancer. Chest 2014, 146, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Blanco, G.; Burgers, P.C.; Dekker, L.J.M.; Ijzermans, J.J.N.; Wildhagen, M.F.; Schenk-Braat, E.A.M.; Bangma, C.H.; Jenster, G.; Luider, T.M. Serum levels of arachidonic acid metabolites change during prostate cancer progression. Prostate 2014, 74, 618–627. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, B.; Zhang, J.; Li, J.; Yang, Q.; Zhong, Q.; Zhan, S.; Liu, H.; Cai, C. Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer. Prostaglandins Leukot. Essent. Fat. Acids 2017, 120, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Malachi, T.; Chaimoff, C.; Feller, N.; Halbrecht, I. Prostaglandin E2 and cyclic AMP in tumor and plasma of breast cancer patients. J. Cancer Res. Clin. Oncol. 1981, 102, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef] [PubMed]
- Sailler, S.; Schmitz, K.; Jäger, E.; Ferreiros, N.; Wicker, S.; Zschiebsch, K.; Pickert, G.; Geisslinger, G.; Walter, C.; Tegeder, I.; et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans. Oncoscience 2014, 1, 272. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.C.; Wold, L.E.; Krebsbach, R.J.; Berdyshev, E.V.; Schmid, H.H.O. Anandamide and other N-acylethanolamines in human tumors. Lipids 2002, 37, 907–912. [Google Scholar] [CrossRef]
- Basu, S.; Nachat-Kappes, R.; Caldefie-Chézet, F.; Vasson, M.P. Eicosanoids and Adipokines in Breast Cancer: From Molecular Mechanisms to Clinical Considerations. Antioxid. Redox Signal. 2012, 18, 323–360. [Google Scholar] [CrossRef]
- Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab. 2021, 9, 2. [Google Scholar] [CrossRef]
- Schneider, C.; Pozzi, A. Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev. 2011, 30, 277–294. [Google Scholar] [CrossRef] [Green Version]
Breast Cancer Patients (n = 169) | ||
---|---|---|
Mean | SD | |
Age [yrs] | 54.5 | 12.6 |
Body mass index (BMI) | 26.8 | 5.8 |
n | ||
Clinical cancer stage | 0 | 12 |
I | 118 | |
IIA | 31 | |
IIB | 8 | |
Molecular subtype | LumA | 53 |
LumB | 82 | |
LumB, Her2+ | 5 | |
Her2+ | 4 | |
TN | 10 | |
- | 15 | |
Healthy Controls (n = 152) | ||
Mean | SD | |
Age [yrs] | 49.8 | 10.1 |
Body mass index (BMI) | 27.3 | 5.2 |
Metabolite | log2FC | Source | p-Value |
---|---|---|---|
AA | −2.2 | AA | 2.893548 × 10−52 |
5-HETE | 5.1 | AA | 7.575180 × 10−39 |
15-HETrE | 6.0 | DGLA | 1.448791×10−35 |
AEA | 0.8 | AA | 1.387907 × 10−24 |
11-HDoHE | 5.2 | DHA | 1.940721 × 10−18 |
9,10-EpOME | 4.2 | LA | 7.414864 × 10−17 |
12,13-EpOME | 4.2 | LA | 1.554750 × 10−16 |
PGA2+PGJ2 | −2.0 | AA | 4.461561 × 10−16 |
9-HODE | −0.6 | LA | 1.883501 × 10−10 |
12-HETE | −2.5 | AA | 3.520998 × 10−10 |
11-HETE | −1.2 | AA | 4.466121 × 10−8 |
LXA5 (15-HEPE) | −6.15 | EPA | 8.651793 × 10−6 |
20-carboxy-AA | 0.6 | AA | 1.564957 × 10−5 |
13,14-dihydro-15-keto-PGF2a (PGFM) | −5.4 | AA | 2.201848 × 10−4 |
PGE2 | −3.0 | AA | 4.969367 × 10−4 |
Resolvin-D1 | 1.1 | DHA | 2.209084 × 10−3 |
16-HDoHE | −0.7 | DHA | 8.448198 × 10−3 |
20-HDoHE | −0.7 | DHA | 2.689864 × 10−2 |
Name | 11-HDoHE * | 5-HETE * | 15-HETrE * | AEA * | AA * |
---|---|---|---|---|---|
VIP scores | 1.518144 | 2.068291 | 2.007403 | 1.621081 | 2.309511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chistyakov, D.V.; Guryleva, M.V.; Stepanova, E.S.; Makarenkova, L.M.; Ptitsyna, E.V.; Goriainov, S.V.; Nikolskaya, A.I.; Astakhova, A.A.; Klimenko, A.S.; Bezborodova, O.A.; et al. Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer. Cancers 2022, 14, 2041. https://doi.org/10.3390/cancers14082041
Chistyakov DV, Guryleva MV, Stepanova ES, Makarenkova LM, Ptitsyna EV, Goriainov SV, Nikolskaya AI, Astakhova AA, Klimenko AS, Bezborodova OA, et al. Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer. Cancers. 2022; 14(8):2041. https://doi.org/10.3390/cancers14082041
Chicago/Turabian StyleChistyakov, Dmitry V., Mariia V. Guryleva, Elena S. Stepanova, Lyubov M. Makarenkova, Elena V. Ptitsyna, Sergei V. Goriainov, Arina I. Nikolskaya, Alina A. Astakhova, Anna S. Klimenko, Olga A. Bezborodova, and et al. 2022. "Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer" Cancers 14, no. 8: 2041. https://doi.org/10.3390/cancers14082041
APA StyleChistyakov, D. V., Guryleva, M. V., Stepanova, E. S., Makarenkova, L. M., Ptitsyna, E. V., Goriainov, S. V., Nikolskaya, A. I., Astakhova, A. A., Klimenko, A. S., Bezborodova, O. A., Rasskazova, E. A., Potanina, O. G., Abramovich, R. A., Nemtsova, E. R., & Sergeeva, M. G. (2022). Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer. Cancers, 14(8), 2041. https://doi.org/10.3390/cancers14082041