Cancers and COVID-19 Risk: A Mendelian Randomization Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.3. Selection of Instrumental Variables
2.4. Statistical Analysis
3. Results
3.1. Cancers and COVID-19 Severity
3.2. Cancers and COVID-19 Hospitalization
3.3. Cancers and COVID-19 Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Elkrief, A.; Wu, J.T.; Jani, C.; Enriquez, K.T.; Glover, M.; Shah, M.R.; Shaikh, H.G.; Beeghly-Fadiel, A.; French, B.; Jhawar, S.R.; et al. Learning through a Pandemic: The Current State of Knowledge on COVID-19 and Cancer. Cancer Discov. 2022, 12, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.K.; Riches, J.C. The Impact of the COVID-19 Pandemic on Oncology Care and Clinical Trials. Cancers 2021, 13, 5924. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Cancer, C.; Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2021, 8, 420–444. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kong, X.; Qi, Y.; Huang, J.; Zhao, Y.; Zhan, Y.; Qin, X.; Qi, Z.; Atanda, A.J.; Zhang, L.; Wang, J.; et al. Epidemiological and clinical characteristics of cancer patients with COVID-19: A systematic review and meta-analysis of global data. Cancer Lett. 2021, 508, 30–46. [Google Scholar] [CrossRef]
- Zhang, H.; Han, H.; He, T.; Labbe, K.E.; Hernandez, A.V.; Chen, H.; Velcheti, V.; Stebbing, J.; Wong, K.K. Clinical Characteristics and Outcomes of COVID-19-Infected Cancer Patients: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2021, 113, 371–380. [Google Scholar] [CrossRef]
- Seth, G.; Sethi, S.; Bhattarai, S.; Saini, G.; Singh, C.B.; Aneja, R. SARS-CoV-2 Infection in Cancer Patients: Effects on Disease Outcomes and Patient Prognosis. Cancers 2020, 12, 3266. [Google Scholar] [CrossRef] [PubMed]
- Chadeau-Hyam, M.; Bodinier, B.; Elliott, J.; Whitaker, M.D.; Tzoulaki, I.; Vermeulen, R.; Kelly-Irving, M.; Delpierre, C.; Elliott, P. Risk factors for positive and negative COVID-19 tests: A cautious and in-depth analysis of UK biobank data. Int. J. Epidemiol. 2020, 49, 1454–1467. [Google Scholar] [CrossRef] [PubMed]
- Peron, J.; Dagonneau, T.; Conrad, A.; Pineau, F.; Calattini, S.; Freyer, G.; Perol, D.; Sajous, C.; Heiblig, M. COVID-19 Presentation and Outcomes among Cancer Patients: A Matched Case-Control Study. Cancers 2021, 13, 5283. [Google Scholar] [CrossRef]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Boef, A.G.; Dekkers, O.M.; le Cessie, S. Mendelian randomization studies: A review of the approaches used and the quality of reporting. Int. J. Epidemiol. 2015, 44, 496–511. [Google Scholar] [CrossRef]
- Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Wang, M.; Jin, X.; Wei, X. Genetically Predicted Higher Educational Attainment Decreases the Risk of COVID-19 Susceptibility and Severity: A Mendelian Randomization Study. Front Public Health 2021, 9, 731–962. [Google Scholar] [CrossRef]
- Li, G.H.; Lam, S.K.; Wong, I.C.; Chu, J.K.; Cheung, C.L. Education Attainment, Intelligence and COVID-19: A Mendelian Randomization Study. J. Clin. Med. 2021, 10, 4870. [Google Scholar] [CrossRef]
- Freuer, D.; Linseisen, J.; Meisinger, C. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable Mendelian randomization study. Metabolism 2021, 118, 154732. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Z.; Poulsen, K.L.; Wu, X.; Miyata, T.; Dasarathy, S.; Rotroff, D.M.; Nagy, L.E. Alcohol Consumption Is Associated with Poor Prognosis in Obese Patients with COVID-19: A Mendelian Randomization Study Using UK Biobank. Nutrients 2021, 13, 1592. [Google Scholar] [CrossRef] [PubMed]
- Rosoff, D.B.; Yoo, J.; Lohoff, F.W. Smoking is significantly associated with increased risk of COVID-19 and other respiratory infections. Commun. Biol. 2021, 4, 1230. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Baranova, A.; Cao, H.; Chen, J.; Zhang, X.; Zhang, F. Genetic mechanisms of COVID-19 and its association with smoking and alcohol consumption. Brief Bioinform 2021, 22, bbab284. [Google Scholar] [CrossRef] [PubMed]
- Initiative, C.-H.G. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Canela-Xandri, O.; Rawlik, K.; Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 2018, 50, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; et al. Corrigendum: Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2017, 49, 651. [Google Scholar] [CrossRef] [Green Version]
- Michailidou, K.; Lindstrom, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemacon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Phelan, C.M.; Kuchenbaecker, K.B.; Tyrer, J.P.; Kar, S.P.; Lawrenson, K.; Winham, S.J.; Dennis, J.; Pirie, A.; Riggan, M.J.; Chornokur, G.; et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017, 49, 680–691. [Google Scholar] [CrossRef] [Green Version]
- O′Mara, T.A.; Glubb, D.M.; Amant, F.; Annibali, D.; Ashton, K.; Attia, J.; Auer, P.L.; Beckmann, M.W.; Black, A.; Bolla, M.K.; et al. Identification of nine new susceptibility loci for endometrial cancer. Nat. Commun. 2018, 9, 3166. [Google Scholar] [CrossRef]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Kohler, A.; Chen, B.; Gemignani, F.; Elisei, R.; Romei, C.; Figlioli, G.; Cipollini, M.; Cristaudo, A.; Bambi, F.; Hoffmann, P.; et al. Genome-wide association study on differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 2013, 98, E1674–E1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linner, R.; et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Nagel, M.; Awasthi, S.; Barr, P.B.; Coleman, J.R.I.; et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 2018, 50, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Scott, R.A.; Timpson, N.J.; Davey Smith, G.; Thompson, S.G.; Consortium, E.-I. Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 2015, 30, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, J.N.; Hull, S.C.; Fedson, S.; Mullen, B.; Goodlin, S.J. Scarce-Resource Allocation and Patient Triage During the COVID-19 Pandemic: JACC Review Topic of the Week. J. Am. Coll Cardiol 2020, 76, 85–92. [Google Scholar] [CrossRef]
- Tian, Y.; Qiu, X.; Wang, C.; Zhao, J.; Jiang, X.; Niu, W.; Huang, J.; Zhang, F. Cancer associates with risk and severe events of COVID-19: A systematic review and meta-analysis. Int. J. Cancer 2021, 148, 363–374. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, W.; Shi, L.; Wang, Y.; Yang, H. Is Cancer an Independent Risk Factor for Fatal Outcomes of Coronavirus Disease 2019 Patients? Arch. Med. Res. 2021, 52, 755–760. [Google Scholar] [CrossRef]
- Benderra, M.A.; Aparicio, A.; Leblanc, J.; Wassermann, D.; Kempf, E.; Galula, G.; Bernaux, M.; Canellas, A.; Moreau, T.; Bellamine, A.; et al. Clinical Characteristics, Care Trajectories and Mortality Rate of SARS-CoV-2 Infected Cancer Patients: A Multicenter Cohort Study. Cancers 2021, 13, 4749. [Google Scholar] [CrossRef]
- Puri, A.; He, L.; Giri, M.; Wu, C.; Zhao, Q. Comparison of comorbidities among severe and non-severe COVID-19 patients in Asian versus non-Asian populations: A systematic review and meta-analysis. Nurs. Open 2022, 9, 733–751. [Google Scholar] [CrossRef]
- Giannakoulis, V.G.; Papoutsi, E.; Siempos, I.I. Effect of Cancer on Clinical Outcomes of Patients With COVID-19: A Meta-Analysis of Patient Data. JCO Glob. Oncol. 2020, 6, 799–808. [Google Scholar] [CrossRef]
- Antikchi, M.H.; Neamatzadeh, H.; Ghelmani, Y.; Jafari-Nedooshan, J.; Dastgheib, S.A.; Kargar, S.; Noorishadkam, M.; Bahrami, R.; Jarahzadeh, M.H. The Risk and Prevalence of COVID-19 Infection in Colorectal Cancer Patients: A Systematic Review and Meta-analysis. J. Gastrointest Cancer 2021, 52, 73–79. [Google Scholar] [CrossRef]
- Han, S.; Zhuang, Q.; Chiang, J.; Tan, S.H.; Chua, G.W.Y.; Xie, C.; Chua, M.L.K.; Soon, Y.Y.; Yang, V.S. Impact of cancer diagnoses on the outcomes of patients with COVID-19: A systematic review and meta-analysis. BMJ Open 2022, 12, e044661. [Google Scholar] [CrossRef] [PubMed]
- Au Yeung, S.L.; Li, A.M.; He, B.; Kwok, K.O.; Schooling, C.M. Association of smoking, lung function, and COPD in COVID-19 risk: A 2 step Mendelian randomization study. Addiction 2022. [Google Scholar] [CrossRef] [PubMed]
- Au Yeung, S.L.; Zhao, J.V.; Schooling, C.M. Evaluation of glycemic traits in susceptibility to COVID-19 risk: A Mendelian randomization study. BMC Med. 2021, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.; Cole, J.B.; Brenner, L.N.; Meigs, J.B.; Florez, J.C.; Mercader, J.M. Cardiometabolic risk factors for COVID-19 susceptibility and severity: A Mendelian randomization analysis. PLoS Med. 2021, 18, e1003553. [Google Scholar] [CrossRef]
- Li, J.; Tian, A.; Zhu, H.; Chen, L.; Wen, J.; Liu, W.; Chen, P. Mendelian Randomization Analysis Reveals No Causal Relationship Between Nonalcoholic Fatty Liver Disease and Severe COVID-19. Clin. Gastroenterol. Hepatol. 2022. [Google Scholar] [CrossRef]
- Bernard, A.; Cottenet, J.; Bonniaud, P.; Piroth, L.; Arveux, P.; Tubert-Bitter, P.; Quantin, C. Comparison of Cancer Patients to Non-Cancer Patients among COVID-19 Inpatients at a National Level. Cancers 2021, 13, 1436. [Google Scholar] [CrossRef]
- Lee, L.Y.; Cazier, J.B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.; Curley, H.M.; Fittall, M.W.; et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, S.; Xie, X. The impact of anti-tumor approaches on the outcomes of cancer patients with COVID-19: A meta-analysis based on 52 cohorts incorporating 9231 participants. BMC Cancer 2022, 22, 241. [Google Scholar] [CrossRef]
- Lo, C.H.; Nguyen, L.H.; Drew, D.A.; Warner, E.T.; Joshi, A.D.; Graham, M.S.; Anyane-Yeboa, A.; Shebl, F.M.; Astley, C.M.; Figueiredo, J.C.; et al. Race, ethnicity, community-level socioeconomic factors, and risk of COVID-19 in the United States and the United Kingdom. EClinicalMedicine 2021, 38, 101029. [Google Scholar] [CrossRef]
- Lee, S.F.; Niksic, M.; Rachet, B.; Sanchez, M.J.; Luque-Fernandez, M.A. Socioeconomic Inequalities and Ethnicity Are Associated with a Positive COVID-19 Test among Cancer Patients in the UK Biobank Cohort. Cancers 2021, 13, 1514. [Google Scholar] [CrossRef]
Variable | Cases | Controls | Sample Size | Year | GWAS ID | |
---|---|---|---|---|---|---|
COVID-19 | COVID-19 susceptibility | 38,984 | 1,644,784 | 1,683,768 | 2021 | - |
COVID-19 hospitalization | 9986 | 1,877,672 | 1,887,658 | 2021 | - | |
COVID-19 severity | 5101 | 1,383,241 | 1,388,342 | 2021 | - | |
Cancer | Overall cancer | 26,576 | 309,696 | 336,272 | 2017 | ukb-a-307 |
Lung cancer | 11,348 | 15,861 | 27,209 | 2014 | ieu-a-966 | |
Squamous cell lung cancer | 3275 | 15,038 | 18,313 | 2014 | ieu-a-967 | |
Breast cancer | 122,977 | 105,974 | 228,951 | 2017 | ieu-a-1126 | |
ER+ Breast cancer | 69,501 | 105,974 | 175,475 | 2017 | ieu-a-1127 | |
ER− Breast cancer | 21,468 | 105,974 | 127,442 | 2017 | ieu-a-1128 | |
Ovarian cancer | 25,509 | 40,941 | 66,450 | 2017 | ieu-a-1120 | |
Endometrial cancer | 12,906 | 108,979 | 121,885 | 2018 | ebi-a-GCST006464 | |
Prostate cancer | 79,148 | 61,106 | 140,254 | 2018 | ieu-b-85 | |
Thyroid cancer | 649 | 431 | 1080 | 2013 | ieu-a-1082 | |
Melanoma | 3751 | 372,016 | 375,767 | 2021 | ieu-b-4969 | |
Small bowel cancer | 156 | 337,003 | 337,159 | 2017 | ukb-a-56 | |
Colorectal cancer | 5657 | 372,016 | 377,673 | 2021 | ieu-b-4965 | |
Oropharyngeal cancer | 494 | 372,016 | 372,510 | 2021 | ieu-b-4968 | |
Lymphoma | 1752 | 359,442 | 361,194 | 2018 | ukb-d-C_LYMPHOMA | |
Cervical cancer | 3175 | 459,835 | 463,010 | 2018 | ukb-b-918 | |
Covariates | BMI | - | - | 681,275 | 2018 | ieu-b-40 |
Educational attainment | - | - | 766,345 | 2018 | ieu-a-1239 | |
Intelligence | - | - | 269,867 | 2018 | ebi-a-GCST006250 | |
Income | - | - | 397,751 | 2018 | ukb-b-7408 | |
Smoking | - | - | 337,334 | 2019 | ieu-b-25 | |
Alcohol consumption | - | - | 335,394 | 2019 | ieu-b-73 |
Cancer Types | No. of SNPs | IVW | MR-Egger | Weighted Median | Weighted Mode | MR-PRESSO | Heterogeneity | Pleiotropy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | p | β | SE | p | β | SE | p | β | SE | p | β | SE | p | p | p | ||
Overall cancer | 4 | −3.44 | 3.61 | 0.34 | 112.35 | 104.87 | 0.40 | −1.63 | 4.25 | 0.70 | 0.77 | 6.26 | 0.91 | −3.44 | 4.11 | 0.46 | 0.27 | 0.33 |
Lung cancer | 5 | 0.03 | 0.07 | 0.60 | 0.16 | 0.25 | 0.57 | 0.06 | 0.08 | 0.45 | 0.08 | 0.08 | 0.38 | 0.03 | 0.06 | 0.59 | 0.53 | 0.58 |
Squamous cell lung cancer | 2 | −0.05 | 0.12 | 0.66 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Breast cancer | 109 | 0.04 | 0.05 | 0.43 | 0.05 | 0.11 | 0.61 | 0.07 | 0.08 | 0.39 | 0.05 | 0.09 | 0.56 | 0.05 | 0.05 | 0.31 | 0.35 | 0.23 |
ER+ Breast cancer | 81 | −0.01 | 0.05 | 0.79 | 0.04 | 0.11 | 0.70 | 0.09 | 0.07 | 0.20 | 0.10 | 0.08 | 0.24 | 0.0001 | 0.05 | 1.00 | 0.13 | 0.10 |
ER− Breast cancer | 27 | 0.03 | 0.06 | 0.66 | −0.20 | 0.17 | 0.25 | −0.03 | 0.09 | 0.73 | −0.07 | 0.11 | 0.56 | 0.03 | 0.06 | 0.63 | 0.29 | 0.35 |
Endometrial cancer | 12 | 0.02 | 0.09 | 0.79 | −0.08 | 0.36 | 0.84 | 0.01 | 0.13 | 0.96 | 0.31 | 0.26 | 0.26 | 0.02 | 0.09 | 0.80 | 0.36 | 0.38 |
Prostate cancer | 91 | −0.02 | 0.04 | 0.54 | −0.15 | 0.09 | 0.11 | −0.02 | 0.07 | 0.74 | −0.07 | 0.07 | 0.30 | −0.02 | 0.04 | 0.60 | 0.07 * | 0.03 $ |
Thyroid cancer | 249 | −0.001 | 0.002 | 0.70 | −0.003 | 0.003 | 0.29 | −0.003 | 0.003 | 0.32 | −0.004 | 0.004 | 0.27 | −0.001 | 0.002 | 0.70 | 0.33 | 0.33 |
Ovarian cancer | 9 | 0.08 | 0.16 | 0.62 | −0.08 | 0.41 | 0.84 | 0.06 | 0.11 | 0.57 | 0.11 | 0.12 | 0.40 | 0.004 | 0.10 | 0.96 | <0.001 * | 0.01 $ |
Melanoma | 6 | −3.45 | 12.83 | 0.79 | −6.56 | 39.71 | 0.88 | −10.76 | 10.13 | 0.29 | −17.50 | 11.33 | 0.18 | −3.45 | 12.83 | 0.80 | 0.01 * | 0.02 $ |
Small bowel cancer | 5 | 84.03 | 48.79 | 0.09 | −11.30 | 156.92 | 0.95 | 43.10 | 61.67 | 0.48 | 40.60 | 79.89 | 0.64 | 84.03 | 31.59 | 0.06 | 0.79 | 0.76 |
Colorectal cancer | 7 | −1.05 | 5.44 | 0.85 | 1.45 | 19.05 | 0.94 | −1.15 | 6.94 | 0.87 | −1.76 | 8.85 | 0.85 | −1.05 | 3.46 | 0.77 | 0.88 | 0.89 |
Oropharyngeal cancer | 2 | −52.19 | 51.79 | 0.31 | - | - | - | - | - | - | - | - | - | - | - | - | 0.95 | - |
Lymphoma | 2 | −15.04 | 22.77 | 0.51 | - | - | - | - | - | - | - | - | - | - | - | - | 0.95 | - |
Cervical cancer | 2 | −28.58 | 24.70 | 0.25 | - | - | - | - | - | - | - | - | - | - | - | - | 0.08 * | - |
Cancer Types | No. of SNPs | IVW | MR-Egger | Weighted Median | Weighted Mode | MR-PRESSO | Heterogeneity | Pleiotropy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | p | β | SE | p | β | SE | p | β | SE | p | β | SE | p | p | p | ||
Overall cancer | 4 | −1.86 | 2.32 | 0.42 | 22.70 | 61.39 | 0.75 | −2.32 | 2.73 | 0.40 | −2.83 | 3.81 | 0.51 | −1.86 | 1.65 | 0.34 | 0.68 | 0.71 |
Lung cancer | 4 | 0.04 | 0.05 | 0.37 | 0.29 | 0.20 | 0.29 | 0.06 | 0.05 | 0.23 | 0.07 | 0.06 | 0.31 | 0.04 | 0.03 | 0.31 | 0.66 | 0.63 |
Squamous cell lung cancer | 2 | −0.04 | 0.08 | 0.66 | - | - | - | - | - | - | - | - | - | - | - | - | 0.99 | - |
Breast cancer | 106 | 0.01 | 0.03 | 0.74 | -0.003 | 0.07 | 0.97 | 0.01 | 0.05 | 0.80 | 0.02 | 0.06 | 0.70 | 0.02 | 0.03 | 0.60 | 0.20 | 0.13 |
ER+ Breast cancer | 79 | −0.02 | 0.03 | 0.51 | 0.04 | 0.07 | 0.56 | −0.02 | 0.05 | 0.71 | 0.02 | 0.05 | 0.77 | −0.01 | 0.03 | 0.70 | 0.36 | 0.22 |
ER− Breast cancer | 25 | −0.004 | 0.04 | 0.93 | 0.03 | 0.12 | 0.83 | −0.03 | 0.06 | 0.63 | −0.05 | 0.09 | 0.59 | -0.005 | 0.04 | 0.90 | 0.58 | 0.60 |
Endometrial cancer | 12 | 0.06 | 0.05 | 0.24 | 0.43 | 0.21 | 0.07 | 0.07 | 0.08 | 0.34 | 0.03 | 0.11 | 0.77 | 0.06 | 0.06 | 0.28 | 0.36 | 0.37 |
Prostate cancer | 90 | 0.04 | 0.03 | 0.17 | −0.01 | 0.06 | 0.85 | 0.06 | 0.04 | 0.15 | 0.05 | 0.05 | 0.28 | 0.04 | 0.03 | 0.16 | 0.12 | 0.07 |
Thyroid cancer | 246 | −0.0003 | 0.001 | 0.80 | −0.004 | 0.002 | 0.04 # | −0.0005 | 0.002 | 0.79 | 0.0002 | 0.002 | 0.94 | 0.0003 | 0.0005 | 0.63 | 0.06 * | 0.08 |
Ovarian cancer | 9 | 0.01 | 0.11 | 0.96 | −0.20 | 0.28 | 0.52 | 0.01 | 0.08 | 0.94 | 0.01 | 0.08 | 0.85 | 0.01 | 0.04 | 0.78 | <0.001 * | <0.001 $ |
Melanoma | 6 | −3.52 | 4.62 | 0.45 | −3.62 | 16.93 | 0.84 | −10.08 | 6.00 | 0.09 | −11.14 | 7.97 | 0.22 | −3.52 | 5.60 | 0.56 | 0.20 | 0.26 |
Small bowel cancer | 2 | 78.90 | 45.54 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | 0.83 | - |
Colorectal cancer | 7 | 0.99 | 3.70 | 0.79 | 7.67 | 13.80 | 0.60 | 2.91 | 4.62 | 0.53 | 4.04 | 5.77 | 0.51 | 0.99 | 2.48 | 0.70 | 0.85 | 0.85 |
Oropharyngeal cancer | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Lymphoma | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cervical cancer | 2 | −19.95 | 20.17 | 0.32 | - | - | - | - | - | - | - | - | - | - | - | - | 0.04 * | - |
Cancer Types | No. of SNPs | IVW | MR-Egger | Weighted Median | Weighted Mode | MR-PRESSO | Heterogeneity | Pleiotropy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | p | β | SE | p | β | SE | p | β | SE | p | β | SE | p | p | p | ||
Overall cancer | 4 | 0.47 | 1.15 | 0.69 | −3.29 | 42.93 | 0.95 | −0.62 | 1.38 | 0.65 | −0.78 | 1.95 | 0.72 | 0.47 | 1.32 | 0.75 | 0.27 | 0.35 |
Lung cancer | 5 | 0.001 | 0.02 | 0.96 | 0.03 | 0.08 | 0.77 | 0.02 | 0.03 | 0.54 | 0.02 | 0.03 | 0.56 | 0.00 | 0.02 | 0.95 | 0.54 | 0.59 |
Squamous cell lung cancer | 2 | −0.07 | 0.04 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | - | 0.77 | - |
Breast cancer | 109 | −0.01 | 0.02 | 0.43 | −0.01 | 0.04 | 0.85 | −0.02 | 0.03 | 0.44 | −0.03 | 0.03 | 0.43 | −0.01 | 0.02 | 0.57 | 0.26 | 0.23 |
ER+ Breast cancer | 81 | −0.02 | 0.02 | 0.30 | 0.01 | 0.04 | 0.78 | −0.02 | 0.02 | 0.38 | −0.03 | 0.03 | 0.36 | −0.01 | 0.02 | 0.50 | 0.02 * | 0.02 $ |
ER− Breast cancer | 27 | −0.03 | 0.02 | 0.18 | −0.08 | 0.06 | 0.19 | −0.03 | 0.03 | 0.27 | −0.05 | 0.04 | 0.24 | −0.03 | 0.02 | 0.22 | 0.39 | 0.46 |
Endometrial cancer | 12 | −0.01 | 0.03 | 0.83 | 0.04 | 0.11 | 0.69 | −0.01 | 0.03 | 0.69 | −0.02 | 0.05 | 0.69 | −0.01 | 0.02 | 0.76 | 0.92 | 0.91 |
Prostate cancer | 91 | −0.01 | 0.01 | 0.58 | −0.04 | 0.03 | 0.16 | −0.03 | 0.02 | 0.16 | −0.03 | 0.02 | 0.17 | −0.01 | 0.01 | 0.67 | 0.06 * | 0.05 |
Thyroid cancer | 248 | 0.001 | 0.0006 | 0.28 | −0.000001 | 0.001 | 1.00 | 0.0001 | 0.0009 | 0.94 | 0.0004 | 0.001 | 0.71 | 0.0006 | 0.0006 | 0.28 | 0.06 * | 0.05 |
Ovarian cancer | 9 | −0.01 | 0.09 | 0.93 | −0.14 | 0.22 | 0.54 | −0.01 | 0.04 | 0.74 | 0.02 | 0.04 | 0.68 | −0.03 | 0.03 | 0.39 | <0.001 * | <0.001 $ |
Melanoma | 6 | 0.76 | 3.28 | 0.82 | 9.84 | 8.38 | 0.31 | −1.10 | 2.97 | 0.71 | −1.11 | 3.78 | 0.78 | 0.76 | 3.28 | 0.83 | 0.05 * | 0.05 |
Small bowel cancer | 4 | 23.09 | 17.71 | 0.19 | 148.10 | 80.98 | 0.21 | 5.85 | 20.89 | 0.78 | −2.59 | 29.45 | 0.94 | 23.09 | 19.36 | 0.32 | 0.31 | 0.37 |
Colorectal cancer | 7 | 1.96 | 1.88 | 0.30 | 8.71 | 8.86 | 0.37 | 1.85 | 2.64 | 0.48 | 6.56 | 6.09 | 0.32 | 1.96 | 2.31 | 0.43 | 0.17 | 0.16 |
Oropharyngeal cancer | 2 | −3.82 | 15.14 | 0.80 | - | - | - | - | - | - | - | - | - | - | - | - | 0.77 | - |
Lymphoma | 2 | −6.05 | 6.79 | 0.37 | - | - | - | - | - | - | - | - | - | - | - | - | 0.47 | - |
Cervical cancer | 2 | −7.01 | 17.21 | 0.68 | - | - | - | - | - | - | - | - | - | - | - | - | <0.001 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wei, Y.; Zhu, G.; Wang, M.; Zhang, L. Cancers and COVID-19 Risk: A Mendelian Randomization Study. Cancers 2022, 14, 2086. https://doi.org/10.3390/cancers14092086
Li Z, Wei Y, Zhu G, Wang M, Zhang L. Cancers and COVID-19 Risk: A Mendelian Randomization Study. Cancers. 2022; 14(9):2086. https://doi.org/10.3390/cancers14092086
Chicago/Turabian StyleLi, Zengbin, Yudong Wei, Guixian Zhu, Mengjie Wang, and Lei Zhang. 2022. "Cancers and COVID-19 Risk: A Mendelian Randomization Study" Cancers 14, no. 9: 2086. https://doi.org/10.3390/cancers14092086
APA StyleLi, Z., Wei, Y., Zhu, G., Wang, M., & Zhang, L. (2022). Cancers and COVID-19 Risk: A Mendelian Randomization Study. Cancers, 14(9), 2086. https://doi.org/10.3390/cancers14092086