The Role of Prehabilitation in Modern Esophagogastric Cancer Surgery: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Search Strategy
3. The Current Concept of Prehabilitation in Esophagogastric Cancer Surgery
3.1. Exercise Interventions in Unimodal and Multimodal Prehabilitation Programs
3.2. Nutritional and Psychological Interventions as Components of Multimodal Prehabilitation
4. Important Questions for the Wider Implementation of Prehabilitation Programs in Modern Esophagogastric Cancer Surgery and Gaps in Current Knowledge
4.1. Question 1: Multimodal or Unimodal Prehabilitation?
4.2. Question 2: Supervised or Home-Based Prehabilitation?
4.3. Question 3: How to Ensure Adherence to Prehabilitation Program?
4.4. Question 4: At Which Stage of Treatment Should Prehabilitation Be Initiated?
4.5. Question 5: What Benefits of Prehabilitation Could Be Expected in Esophagogastric Cancer Patients?
4.5.1. Prehabilitation’s Impact on Postoperative Morbidity
4.5.2. Prehabilitation’s Impact on Adherence to Neoadjuvant Treatment Protocol
4.5.3. Prehabilitation Impact on Quality of Life
4.5.4. Prehabilitation Impact on Long-Term Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.-L.; Yu, S.-J. Esophageal Cancer: Risk Factors, Genetic Association, and Treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef]
- Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiol. Biomark. Prev. 2014, 23, 700–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bausys, A.; Luksta, M.; Kuliavas, J.; Anglickiene, G.; Maneikiene, V.; Gedvilaite, L.; Celutkiene, J.; Jamontaite, I.; Cirtautas, A.; Lenickiene, S.; et al. Personalized Trimodal Prehabilitation for Gastrectomy. Medicine 2020, 99, e20687. [Google Scholar] [CrossRef] [PubMed]
- Stratilatovas, E.; Baušys, A.; Baušys, R.; Sangaila, E. Mortality after Gastrectomy: A 10 Year Single Institution Experience. Acta Chir. Belg. 2015, 115, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.M.; Jones, R.; Kamarajah, S.K.; Navidi, M.; Wahed, S.; Immanuel, A.; Hayes, N.; Phillips, A.W. Evolution of Esophagectomy for Cancer Over 30 Years: Changes in Presentation, Management and Outcomes. Ann. Surg. Oncol. 2020, 28, 3011–3022. [Google Scholar] [CrossRef] [PubMed]
- Bausys, A.; Senina, V.; Luksta, M.; Anglickiene, G.; Molnikaite, G.; Bausys, B.; Rybakovas, A.; Baltruskeviciene, E.; Laurinavicius, A.; Poskus, T.; et al. Histologic Lymph Nodes Regression after Preoperative Chemotherapy as Prognostic Factor in Non-Metastatic Advanced Gastric Adenocarcinoma. J. Cancer 2021, 12, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Bausys, A.; Ümarik, T.; Luksta, M.; Reinsoo, A.; Rackauskas, R.; Anglickiene, G.; Kryzauskas, M.; Tõnismäe, K.; Senina, V.; Seinin, D.; et al. Impact of the Interval Between Neoadjuvant Chemotherapy and Gastrectomy on Short- and Long-Term Outcomes for Patients with Advanced Gastric Cancer. Ann. Surg. Oncol. 2021, 28, 4444–4455. [Google Scholar] [CrossRef]
- Bolger, J.C.; Loughney, L.; Tully, R.; Cunningham, M.; Keogh, S.; McCaffrey, N.; Hickey, W.; Robb, W.B. Perioperative Prehabilitation and Rehabilitation in Esophagogastric Malignancies: A Systematic Review. Dis. Esophagus 2019, 32, doz058. [Google Scholar] [CrossRef]
- Jack, S.; West, M.A.; Raw, D.; Marwood, S.; Ambler, G.; Cope, T.M.; Shrotri, M.; Sturgess, R.P.; Calverley, P.M.A.; Ottensmeier, C.H.; et al. The Effect of Neoadjuvant Chemotherapy on Physical Fitness and Survival in Patients Undergoing Oesophagogastric Cancer Surgery. Eur. J. Surg. Oncol. 2014, 40, 1313–1320. [Google Scholar] [CrossRef]
- Sinclair, R.; Navidi, M.; Griffin, S.M.; Sumpter, K. The Impact of Neoadjuvant Chemotherapy on Cardiopulmonary Physical Fitness in Gastro-Oesophageal Adenocarcinoma. Ann. R. Coll. Surg. Engl. 2016, 98, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Sell, N.M.; Silver, J.K.; Rando, S.; Draviam, A.C.; Mina, D.S.; Qadan, M. Prehabilitation Telemedicine in Neoadjuvant Surgical Oncology Patients During the Novel COVID-19 Coronavirus Pandemic. Ann. Surg. 2020, 272, e81–e83. [Google Scholar] [CrossRef]
- Barberan-Garcia, A.; Ubré, M.; Roca, J.; Lacy, A.M.; Burgos, F.; Risco, R.; Momblán, D.; Balust, J.; Blanco, I.; Martínez-Pallí, G. Personalised Prehabilitation in High-Risk Patients Undergoing Elective Major Abdominal Surgery: A Randomized Blinded Controlled Trial. Ann. Surg. 2018, 267, 50–56. [Google Scholar] [CrossRef]
- Jones, L.W.; Eves, N.D.; Peddle, C.J.; Courneya, K.S.; Haykowsky, M.; Kumar, V.; Winton, T.W.; Reiman, T. Effects of Presurgical Exercise Training on Systemic Inflammatory Markers among Patients with Malignant Lung Lesions. Appl. Physiol. Nutr. Metab. 2009, 34, 197–202. [Google Scholar] [CrossRef]
- Jones, L.W.; Fels, D.R.; West, M.; Allen, J.D.; Broadwater, G.; Barry, W.T.; Wilke, L.G.; Masko, E.; Douglas, P.S.; Dash, R.C.; et al. Modulation of Circulating Angiogenic Factors and Tumor Biology by Aerobic Training in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Cancer Prev. Res. 2013, 6, 925–937. [Google Scholar] [CrossRef] [Green Version]
- West, M.A.; Astin, R.; Moyses, H.E.; Cave, J.; White, D.; Levett, D.Z.H.; Bates, A.; Brown, G.; Grocott, M.P.W.; Jack, S. Exercise Prehabilitation May Lead to Augmented Tumor Regression Following Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Acta Oncol. 2019, 58, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Carli, F.; Bousquet-Dion, G.; Awasthi, R.; Elsherbini, N.; Liberman, S.; Boutros, M.; Stein, B.; Charlebois, P.; Ghitulescu, G.; Morin, N.; et al. Effect of Multimodal Prehabilitation vs Postoperative Rehabilitation on 30-Day Postoperative Complications for Frail Patients Undergoing Resection of Colorectal Cancer: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 233–242. [Google Scholar] [CrossRef]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Ottawa Hospital Research Institute. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 20 February 2022).
- Durrand, J.; Singh, S.J.; Danjoux, G. Prehabilitation. Clin. Med. 2019, 19, 458–464. [Google Scholar] [CrossRef]
- Allen, S.K.; Brown, V.; White, D.; King, D.; Hunt, J.; Wainwright, J.; Emery, A.; Hodge, E.; Kehinde, A.; Prabhu, P.; et al. Multimodal Prehabilitation During Neoadjuvant Therapy Prior to Esophagogastric Cancer Resection: Effect on Cardiopulmonary Exercise Test Performance, Muscle Mass and Quality of Life—A Pilot Randomized Clinical Trial. Ann. Surg. Oncol. 2021, 29, 1839–1850. [Google Scholar] [CrossRef]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.-E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Valkenet, K.; Trappenburg, J.C.A.; Ruurda, J.P.; Guinan, E.M.; Reynolds, J.V.; Nafteux, P.; Fontaine, M.; Rodrigo, H.E.; van der Peet, D.L.; Hania, S.W.; et al. Multicentre Randomized Clinical Trial of Inspiratory Muscle Training versus Usual Care before Surgery for Oesophageal Cancer. Br. J. Surg. 2018, 105, 502–511. [Google Scholar] [CrossRef] [PubMed]
- van Adrichem, E.J.; Meulenbroek, R.L.; Plukker, J.T.M.; Groen, H.; van Weert, E. Comparison of Two Preoperative Inspiratory Muscle Training Programs to Prevent Pulmonary Complications in Patients Undergoing Esophagectomy: A Randomized Controlled Pilot Study. Ann. Surg. Oncol. 2014, 21, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-J.; Cheng, J.C.-H.; Lee, J.-M.; Huang, P.-M.; Huang, G.-H.; Chen, C.C.-H. A Walk-and-Eat Intervention Improves Outcomes for Patients With Esophageal Cancer Undergoing Neoadjuvant Chemoradiotherapy. Oncologist 2015, 20, 1216–1222. [Google Scholar] [CrossRef] [Green Version]
- Yamana, I.; Takeno, S.; Hashimoto, T.; Maki, K.; Shibata, R.; Shiwaku, H.; Shimaoka, H.; Shiota, E.; Yamashita, Y. Randomized Controlled Study to Evaluate the Efficacy of a Preoperative Respiratory Rehabilitation Program to Prevent Postoperative Pulmonary Complications after Esophagectomy. Dig. Surg. 2015, 32, 331–337. [Google Scholar] [CrossRef]
- Christensen, J.F.; Simonsen, C.; Banck-Petersen, A.; Thorsen-Streit, S.; Herrstedt, A.; Djurhuus, S.S.; Egeland, C.; Mortensen, C.E.; Kofoed, S.C.; Kristensen, T.S.; et al. Safety and Feasibility of Preoperative Exercise Training during Neoadjuvant Treatment before Surgery for Adenocarcinoma of the Gastro-Oesophageal Junction. BJS Open 2019, 3, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Dettling, D.S.; van der Schaaf, M.; Blom, R.L.G.M.; Nollet, F.; Busch, O.R.C.; van Berge Henegouwen, M.I. Feasibility and Effectiveness of Pre-Operative Inspiratory Muscle Training in Patients Undergoing Oesophagectomy: A Pilot Study. Physiother. Res. Int 2013, 18, 16–26. [Google Scholar] [CrossRef]
- Argudo, N.; Rodó-Pin, A.; Martínez-Llorens, J.; Marco, E.; Visa, L.; Messaggi-Sartor, M.; Balañá-Corberó, A.; Ramón, J.M.; Rodríguez-Chiaradía, D.A.; Grande, L.; et al. Feasibility, Tolerability, and Effects of Exercise-Based Prehabilitation after Neoadjuvant Therapy in Esophagogastric Cancer Patients Undergoing Surgery: An Interventional Pilot Study. Dis. Esophagus 2020, 34, doaa086. [Google Scholar] [CrossRef] [PubMed]
- Piraux, E.; Caty, G.; Reychler, G.; Forget, P.; Deswysen, Y. Feasibility and Preliminary Effectiveness of a Tele-Prehabilitation Program in Esophagogastric Cancer Patients. J. Clin. Med. 2020, 9, 2176. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nagatsuma, Y.; Fukuda, Y.; Hirao, M.; Nishikawa, K.; Miyamoto, A.; Ikeda, M.; Nakamori, S.; Sekimoto, M.; Fujitani, K.; et al. Effectiveness of a Preoperative Exercise and Nutritional Support Program for Elderly Sarcopenic Patients with Gastric Cancer. Gastric Cancer 2017, 20, 913–918. [Google Scholar] [CrossRef]
- Cho, H.; Yoshikawa, T.; Oba, M.S.; Hirabayashi, N.; Shirai, J.; Aoyama, T.; Hayashi, T.; Yamada, T.; Oba, K.; Morita, S.; et al. Matched Pair Analysis to Examine the Effects of a Planned Preoperative Exercise Program in Early Gastric Cancer Patients with Metabolic Syndrome to Reduce Operative Risk: The Adjuvant Exercise for General Elective Surgery (AEGES) Study Group. Ann. Surg. Oncol. 2014, 21, 2044–2050. [Google Scholar] [CrossRef]
- Debes, C.; Aissou, M.; Beaussier, M. La préhabilitation. Préparer les patients à la chirurgie pour améliorer la récupération fonctionnelle et réduire la morbidité postopératoire. Ann. Françaises D’anesthésie Réanimation 2014, 33, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, C.; Shridhar, R.; Huston, J.; Meredith, K. Esophagectomy from Then to Now. J. Gastrointest. Oncol. 2018, 9, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Schlottmann, F.; Patti, M.G. Prevention of Postoperative Pulmonary Complications after Esophageal Cancer Surgery. J. Thorac. Dis. 2019, 11, S1143–S1144. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kanaji, S.; Matsuda, Y.; Yamamoto, M.; Hasegawa, H.; Yamashita, K.; Oshikiri, T.; Matsuda, T.; Sumi, Y.; Nakamura, T.; et al. Long-Term Impact of Postoperative Pneumonia after Curative Gastrectomy for Elderly Gastric Cancer Patients. Ann. Gastroenterol. Surg. 2018, 2, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.D.; Zheng, H.; Gaissert, H.; Mathisen, D.; Muniappan, A.; Wright, C.; Lanuti, M. Relative Incremental Cost of Postoperative Complications of Esophagectomy. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 290–299. [Google Scholar] [CrossRef]
- Booka, E.; Takeuchi, H.; Nishi, T.; Matsuda, S.; Kaburagi, T.; Fukuda, K.; Nakamura, R.; Takahashi, T.; Wada, N.; Kawakubo, H.; et al. The Impact of Postoperative Complications on Survivals After Esophagectomy for Esophageal Cancer. Medicine 2015, 94, e1369. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, A.F.; West, M.; Jack, S.; Grocott, M.P.W. Preoperative Aerobic Exercise Training in Elective Intra-Cavity Surgery: A Systematic Review. Br. J. Anaesth. 2013, 110, 679–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnella, E.M.; Drummond, K.; Carli, F. The Impact of Prehabilitation on Surgical Outcomes. Ann. Esophagus 2021, 4. [Google Scholar] [CrossRef]
- del Campo Cervantes, J.M.; Macías Cervantes, M.H.; Monroy Torres, R. Effect of a Resistance Training Program on Sarcopenia and Functionality of the Older Adults Living in a Nursing Home. J. Nutr. Health Aging 2019, 23, 829–836. [Google Scholar] [CrossRef]
- Lee, D.U.; Hastie, D.J.; Fan, G.H.; Addonizio, E.A.; Han, J.; Karagozian, R. Clinical Frailty Is a Risk Factor of Adverse Outcomes in Patients with Esophageal Cancer Undergoing Esophagectomy: Analysis of 2011–2017 US Hospitals. Dis. Esophagus 2022, doac002. [Google Scholar] [CrossRef]
- Tanaka, T.; Suda, K.; Inaba, K.; Umeki, Y.; Gotoh, A.; Ishida, Y.; Uyama, I. Impact of Frailty on Postoperative Outcomes for Laparoscopic Gastrectomy in Patients Older than 80 Years. Ann. Surg. Oncol. 2019, 26, 4016–4026. [Google Scholar] [CrossRef]
- Christensen, J.F.; Simonsen, C.; Hojman, P. Exercise Training in Cancer Control and Treatment. Compr. Physiol. 2018, 9, 165–205. [Google Scholar] [CrossRef]
- Reim, D.; Friess, H. Feeding Challenges in Patients with Esophageal and Gastroesophageal Cancers. Gastrointest. Tumors 2016, 2, 166–177. [Google Scholar] [CrossRef]
- Riccardi, D.; Allen, K. Nutritional Management of Patients with Esophageal and Esophagogastric Junction Cancer: Several Strategies Can Be Incorporated to Preserve or Restore Nutritional Status of Malnourished Patients during Management of Esophageal Cancer. Cancer Control. 1999, 6, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.-G.; Kwon, I.G.; Ryu, S.W. Assessment of Nutritional Status in Laparoscopic Gastrectomy for Gastric Cancer. Transl. Gastroenterol. Hepatol. 2017, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Mulazzani, G.E.G.; Corti, F.; Della Valle, S.; Di Bartolomeo, M. Nutritional Support Indications in Gastroesophageal Cancer Patients: From Perioperative to Palliative Systemic Therapy. A Comprehensive Review of the Last Decade. Nutrients 2021, 13, 2766. [Google Scholar] [CrossRef]
- Klute, K.A.; Brouwer, J.; Jhawer, M.; Sachs, H.; Gangadin, A.; Ocean, A.; Popa, E.; Dai, T.; Wu, G.; Christos, P.; et al. Chemotherapy Dose Intensity Predicted by Baseline Nutrition Assessment in Gastrointestinal Malignancies: A Multicentre Analysis. Eur. J. Cancer 2016, 63, 189–200. [Google Scholar] [CrossRef]
- Fujiya, K.; Kawamura, T.; Omae, K.; Makuuchi, R.; Irino, T.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Terashima, M. Impact of Malnutrition After Gastrectomy for Gastric Cancer on Long-Term Survival. Ann. Surg. Oncol. 2018, 25, 974–983. [Google Scholar] [CrossRef]
- Lee, D.U.; Fan, G.H.; Hastie, D.J.; Addonizio, E.A.; Han, J.; Prakasam, V.N.; Karagozian, R. The Clinical Impact of Malnutrition on the Postoperative Outcomes of Patients Undergoing Gastrectomy for Gastric Cancer: Propensity Score Matched Analysis of 2011–2017 Hospital Database. Clin. Nutr. ESPEN 2021, 46, 484–490. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Arends, J. The Causes and Consequences of Cancer-Associated Malnutrition. Eur. J. Oncol. Nurs. 2005, 9, S51–S63. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M. Cancer-Associated Malnutrition. Eur. J. Oncol. Nurs. 2005, 9, S39–S50. [Google Scholar] [CrossRef]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef]
- Filip, B.; Scarpa, M.; Cavallin, F.; Cagol, M.; Alfieri, R.; Saadeh, L.; Ancona, E.; Castoro, C. Postoperative Outcome after Oesophagectomy for Cancer: Nutritional Status Is the Missing Ring in the Current Prognostic Scores. Eur. J. Surg. Oncol. 2015, 41, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Waitzberg, D.L.; Saito, H.; Plank, L.D.; Jamieson, G.G.; Jagannath, P.; Hwang, T.-L.; Mijares, J.M.; Bihari, D. Postsurgical Infections Are Reduced with Specialized Nutrition Support. World J. Surg. 2006, 30, 1592–1604. [Google Scholar] [CrossRef]
- Gianotti, L.; Braga, M.; Nespoli, L.; Radaelli, G.; Beneduce, A.; Di Carlo, V. A Randomized Controlled Trial of Preoperative Oral Supplementation with a Specialized Diet in Patients with Gastrointestinal Cancer. Gastroenterology 2002, 122, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Housman, B.; Flores, R.; Lee, D.-S. Narrative Review of Anxiety and Depression in Patients with Esophageal Cancer: Underappreciated and Undertreated. J. Thorac. Dis. 2021, 13, 3160–3170. [Google Scholar] [CrossRef]
- Hu, L.-Y.; Ku, F.-C.; Wang, Y.-P.; Shen, C.-C.; Hu, Y.-W.; Yeh, C.-M.; Chen, P.-M.; Chiang, H.-L.; Lu, T.; Chen, T.-J.; et al. Anxiety and Depressive Disorders among Patients with Esophageal Cancer in Taiwan: A Nationwide Population-Based Study. Support. Care Cancer 2015, 23, 733–740. [Google Scholar] [CrossRef]
- Hellstadius, Y.; Lagergren, J.; Zylstra, J.; Gossage, J.; Davies, A.; Hultman, C.M.; Lagergren, P.; Wikman, A. Prevalence and Predictors of Anxiety and Depression among Esophageal Cancer Patients Prior to Surgery. Dis. Esophagus 2017, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-Y.; Liu, C.-J.; Yeh, C.-M.; Lu, T.; Hu, Y.-W.; Chen, T.-J.; Chen, P.-M.; Lee, S.-C.; Chang, C.-H. Depressive Disorders among Patients with Gastric Cancer in Taiwan: A Nationwide Population-Based Study. BMC Psychiatry 2018, 18, 272. [Google Scholar] [CrossRef]
- Huang, T.; Zhou, F.; Wang-Johanning, F.; Nan, K.; Wei, Y. Depression Accelerates the Development of Gastric Cancer through Reactive Oxygen Species-activated ABL1 (Review). Oncol. Rep. 2016, 36, 2435–2443. [Google Scholar] [CrossRef] [Green Version]
- Niedzwiedz, C.L.; Knifton, L.; Robb, K.A.; Katikireddi, S.V.; Smith, D.J. Depression and Anxiety among People Living with and beyond Cancer: A Growing Clinical and Research Priority. BMC Cancer 2019, 19, 943. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Fernández, S.; Gurpegui, M.; Díaz-Atienza, F.; Pérez-Costillas, L.; Gerstenberg, M.; Correll, C.U. Oxidative Stress and Antioxidant Parameters in Patients with Major Depressive Disorder Compared to Healthy Controls before and after Antidepressant Treatment: Results from a Meta-Analysis. J. Clin. Psychiatry 2015, 76, 1658–1667. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y.; Molloy, G.J. Psychological Distress and Cancer Mortality. J. Psychosom. Res. 2009, 66, 255–258. [Google Scholar] [CrossRef]
- Tsimopoulou, I.; Pasquali, S.; Howard, R.; Desai, A.; Gourevitch, D.; Tolosa, I.; Vohra, R. Psychological Prehabilitation Before Cancer Surgery: A Systematic Review. Ann. Surg. Oncol. 2015, 22, 4117–4123. [Google Scholar] [CrossRef]
- Silver, J.K.; Baima, J. Cancer Prehabilitation: An Opportunity to Decrease Treatment-Related Morbidity, Increase Cancer Treatment Options, and Improve Physical and Psychological Health Outcomes. Am. J. Phys. Med. Rehabil. 2013, 92, 715–727. [Google Scholar] [CrossRef]
- Reijneveld, E.A.E.; Bor, P.; Dronkers, J.J.; Argudo, N.; Ruurda, J.P.; Veenhof, C. Impact of Curative Treatment on the Physical Fitness of Patients with Esophageal Cancer: A Systematic Review and Meta-Analysis. Eur. J. Surg. Oncol. 2021, 48, 391–402. [Google Scholar] [CrossRef]
- Pinto, E.; Cavallin, F.; Scarpa, M. Psychological Support of Esophageal Cancer Patient? J. Thorac. Dis. 2019, 11, S654–S662. [Google Scholar] [CrossRef]
- Rosania, R.; Chiapponi, C.; Malfertheiner, P.; Venerito, M. Nutrition in Patients with Gastric Cancer: An Update. Gastrointest. Tumors 2016, 2, 178–187. [Google Scholar] [CrossRef]
- Roy, B.L.; Pereira, B.; Bouteloup, C.; Costes, F.; Richard, R.; Selvy, M.; Pétorin, C.; Gagnière, J.; Futier, E.; Slim, K.; et al. Effect of Prehabilitation in Gastro-Oesophageal Adenocarcinoma: Study Protocol of a Multicentric, Randomised, Control Trial—The PREHAB Study. BMJ Open 2016, 6, e012876. [Google Scholar] [CrossRef]
- Allen, S.; Brown, V.; Prabhu, P.; Scott, M.; Rockall, T.; Preston, S.; Sultan, J. A Randomised Controlled Trial to Assess Whether Prehabilitation Improves Fitness in Patients Undergoing Neoadjuvant Treatment Prior to Oesophagogastric Cancer Surgery: Study Protocol. BMJ Open 2018, 8, e023190. [Google Scholar] [CrossRef]
- Matarán-Peñarrocha, G.A.; Lara Palomo, I.C.; Antequera Soler, E.; Gil-Martínez, E.; Fernández-Sánchez, M.; Aguilar-Ferrándiz, M.E.; Castro-Sánchez, A.M. Comparison of Efficacy of a Supervised versus Non-Supervised Physical Therapy Exercise Program on the Pain, Functionality and Quality of Life of Patients with Non-Specific Chronic Low-Back Pain: A Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Fokkenrood, H.J.P.; Bendermacher, B.L.W.; Lauret, G.J.; Willigendael, E.M.; Prins, M.H.; Teijink, J.A.W. Supervised Exercise Therapy versus Non-Supervised Exercise Therapy for Intermittent Claudication. Cochrane Database Syst. Rev. 2013, CD005263. [Google Scholar] [CrossRef] [PubMed]
- Coll-Fernández, R.; Coll, R.; Muñoz-Torrero, J.F.S.; Aguilar, E.; Ramón Álvarez, L.; Sahuquillo, J.C.; Yeste, M.; Jiménez, P.E.; Mujal, A.; Monreal, M.; et al. Supervised versus Non-Supervised Exercise in Patients with Recent Myocardial Infarction: A Propensity Analysis. Eur. J. Prev. Cardiol. 2016, 23, 245–252. [Google Scholar] [CrossRef]
- Przybylak, K.; Sibiński, M.; Domżalski, M.; Kwapisz, A.; Momaya, A.M.; Zielińska, M. Supervised Physiotherapy Leads to a Better Return to Physical Activity after Anterior Cruciate Ligament Reconstruction. J. Sports Med. Phys. Fit. 2019, 59, 1551–1557. [Google Scholar] [CrossRef]
- Hansen, S.; Aaboe, J.; Mechlenburg, I.; Overgaard, S.; Mikkelsen, L.R. Effects of Supervised Exercise Compared to Non-Supervised Exercise Early after Total Hip Replacement on Patient-Reported Function, Pain, Health-Related Quality of Life and Performance-Based Function—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Rehabil. 2019, 33, 13–23. [Google Scholar] [CrossRef]
- Florez-García, M.; García-Pérez, F.; Curbelo, R.; Pérez-Porta, I.; Nishishinya, B.; Rosario Lozano, M.P.; Carmona, L. Efficacy and Safety of Home-Based Exercises versus Individualized Supervised Outpatient Physical Therapy Programs after Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3340–3353. [Google Scholar] [CrossRef]
- Wijk, L.V.; Klaase, J.; Buis, C. Preoperative Home-Based Exercise Prehabilitation in Patients Scheduled for Liver or Pancreatic Resection: The First Results. HPB 2020, 22, S231–S232. [Google Scholar] [CrossRef]
- Ferreira, V.; Agnihotram, R.V.; Bergdahl, A.; van Rooijen, S.J.; Awasthi, R.; Carli, F.; Scheede-Bergdahl, C. Maximizing Patient Adherence to Prehabilitation: What Do the Patients Say? Support. Care Cancer 2018, 26, 2717–2723. [Google Scholar] [CrossRef]
- Beck, A.; Thaysen, H.V.; Soegaard, C.H.; Blaakaer, J.; Seibaek, L. Investigating the Experiences, Thoughts, and Feelings Underlying and Influencing Prehabilitation among Cancer Patients: A Qualitative Perspective on the What, When, Where, Who, and Why. Disabil. Rehabil. 2020, 44, 202–209. [Google Scholar] [CrossRef]
- Grimmett, C.; Bradbury, K.; Dalton, S.O.; Fecher-Jones, I.; Hoedjes, M.; Varkonyi-Sepp, J.; Short, C.E. The Role of Behavioral Science in Personalized Multimodal Prehabilitation in Cancer. Front. Psychol. 2021, 12, 261. [Google Scholar] [CrossRef]
- Santa Mina, D.; van Rooijen, S.J.; Minnella, E.M.; Alibhai, S.M.H.; Brahmbhatt, P.; Dalton, S.O.; Gillis, C.; Grocott, M.P.W.; Howell, D.; Randall, I.M.; et al. Multiphasic Prehabilitation Across the Cancer Continuum: A Narrative Review and Conceptual Framework. Front. Oncol. 2021, 10, 598425. [Google Scholar] [CrossRef]
- Patel, N.; Powell, A.G.; Wheat, J.R.; Brown, C.; Appadurai, I.R.; Davies, R.G.; Bailey, D.M.; Lewis, W.G. Cardiopulmonary Fitness Predicts Postoperative Major Morbidity after Esophagectomy for Patients with Cancer. Physiol. Rep. 2019, 7, e14174. [Google Scholar] [CrossRef] [Green Version]
- Trépanier, M.; Minnella, E.M.; Paradis, T.; Awasthi, R.; Kaneva, P.; Schwartzman, K.; Carli, F.; Fried, G.M.; Feldman, L.S.; Lee, L. Improved Disease-Free Survival After Prehabilitation for Colorectal Cancer Surgery. Ann. Surg. 2019, 270, 493–501. [Google Scholar] [CrossRef]
Author; Year | Design | Description and Number of Participants; (n) | Measured Outcomes | N–O Score | Jadad Score |
---|---|---|---|---|---|
Allen et al. [21]; 2021 | RCT | Esophagogastric cancer patients scheduled for surgery after neoadjuvant chemotherapy; (n = 54) | Primary outcome:
| N/A | 3 |
Minnella et al. [22]; 2018 | RCT | Esophagogastric cancer patients scheduled for surgery ± neoadjuvant treatment; (n = 68) | Primary outcome:
| N/A | 3 |
Valkenet et al. [23]; 2018 | RCT | Esophageal cancer patients scheduled for surgery ± neoadjuvant treatment; (n = 270) | Primary outcome:
| N/A | 3 |
van Adrichem et al. [24]; 2014 | RCT | Esophageal cancer patients scheduled for surgery ± neoadjuvant CRT; (n = 45) | Primary outcome:
| N/A | 3 |
Xu et al. [25]; 2015 | Pilot study (RCT) | Esophageal cancer patients scheduled for neoadjuvant CRT and surgery; (n = 59) | Primary outcomes:
| N/A | 3 |
Yamana et al. [26]; 2015 | RCT | Esophageal cancer patients scheduled for surgery ± neoadjuvant treatment; (n = 63) | Primary outcome:
| N/A | 3 |
Christensen et al. [27]; 2018 | Non-randomized control trial | Patients with GOJ adenocarcinoma scheduled for neoadjuvant treatment and surgery; (n = 50) | Primary outcome:
| 8 | N/A |
Dettling et al. [28]; 2013 | Non-randomized controlled trial | Patients scheduled for esophagectomy ± neoadjuvant treatment; (n = 83) | Primary outcomes:
| 8 | N/A |
Argudo et al. [29]; 2020 | Pilot study (prospective interventional study) | Esophagogastric cancer patients scheduled for neoadjuvant treatment and surgery; (n = 40) |
| 6 | N/A |
Piraux et al. [30]; 2020 | Pilot study (prospective interventional study) | Esophagogastric cancer patients scheduled for surgery ± neoadjuvant treatment; (n = 23) | Primary outcome
| 6 | N/A |
Yamamoto et al. [31]; 2016 | Pilot study (prospective interventional study) | Gastric cancer patients aged ≥ 65 years with a diagnosis of sarcopenia scheduled for gastrectomy; (n = 22) |
| 6 | N/A |
Cho et al. [32]; 2014 | Matched pair analysis | Patients with clinical stage I gastric cancer and metabolic syndrome scheduled for gastrectomy; (n = 72) | Primary outcome:
| 7 | N/A |
Author; Year | Prehabilitation Group | Control Group | ||
---|---|---|---|---|
Type of Prehabilitation (Unimodal vs. Multimodal) | Timing of Prehabilitation | Interventions Used for Prehabilitation | ||
Allen et al. [21]; 2021 | Multimodal | Prehabilitation was initiated for 15 preoperative weeks. |
|
|
Minnella et al. [17]; 2018 | Multimodal | Prehabilitation was initiated before the initial surgery or at the time of neoadjuvant therapy. |
|
|
Valkenet et al. [18]; 2018 | Unimodal | Prehabilitation was initiated for 2 weeks or longer. When neoadjuvant therapy was administered, prehabilitation started afterward. |
|
|
van Adrichem et al. [19]; 2014 | Unimodal | Prehabilitation was initiated for 3 weeks. When neoadjuvant therapy was administered, prehabilitation started afterward. |
|
|
Xu et al. [24]; 2015 | Multimodal | Prehabilitation was initiated for 4–5 weeks during the neoadjuvant chemoradiotherapy. |
|
|
Yamana et al. [20]; 2015 | Unimodal | Prehabilitation was initiated for ≥7 days before the surgery. |
|
|
Christensen et al. [25]; 2018 | Unimodal | Prehabilitation was initiated at the time of neoadjuvant treatment. |
|
|
Dettling et al. [26]; 2013 | Unimodal | Prehabilitation was initiated for 2 weeks or longer. |
|
|
Argudo et al. [21]; 2020 | Multimodal | Prehabilitation was initiated after neoadjuvant chemotherapy for 5 weeks. |
|
|
Piraux et al. [22]; 2020 | Unimodal | Prehabilitation was initiated for 2–4 weeks before the surgery. |
|
|
Yamamoto et al. [23]; 2016 | Multimodal | Prehabilitation was initiated for 3 weeks, although the actual duration differed depending on the surgery date. |
|
|
Cho et al. [27]; 2014 | Unimodal | Prehabilitation was initiated for 4 weeks. |
|
|
Author; Year | Prehabilitation Impact on Physical Status | Prehabilitation Impact on Postoperative Outcomes | Other Effects of Prehabilitation |
---|---|---|---|
Allen et al. [21]; 2021 | Prehabilitation attenuated peak VO2 decrease and skeletal muscle loss following neoadjuvant therapy. Additionally, HGS was better retained in the prehabilitation group, and patients in this group were more physically active by higher weekly step count. | Prehabilitation had no impact on the number and severity of complications, length of hospital stay, 30-day readmission rates, and 3-year cancer-related mortality. | Prehabilitation improved QoL by global health status after 2 cycles of neoadjuvant chemotherapy and at 2 weeks, 6 weeks, and 6 months postoperatively. Additionally, prehabilitation resulted in better BAI and DBI II scores preoperatively and 6 weeks and 6 months postoperatively. A higher proportion of patients in the prehabilitation group received neoadjuvant chemotherapy at full dose. |
Minnella et al. [17]; 2018 | Prehabilitation improved functional capacity before and after surgery by increasing 6MWD. | Prehabilitation had no impact on the number and severity of complications, length of hospital stay, emergency department visits, and readmission rates. | N/A |
Valkenet et al. [18]; 2018 | Prehabilitation resulted in a higher increase in inspiratory muscle strength and endurance. | Prehabilitation did not affect postoperative pneumonia and other postoperative complication rates. | Prehabilitation did not affect the quality of life, fatigue, and physical activity levels. |
van Adrichem et al. [19]; 2014 | The increase in maximal inspiratory pressure was similar between the groups which received preoperative inspiratory muscle training. | The incidence of postoperative pulmonary complications, length of stay, and the number of reintubations were lower in the high-intensity inspiratory muscle training group. | N/A |
Xu et al. [24]; 2015 | Prehabilitation ameliorated decline in 6MWD and hand-grip strength. | N/A | Prehabilitation ameliorated weight and lean muscle mass loss. Additionally, patients in the prehabilitation group had a significantly lower need for intravenous nutritional support and wheelchair use. |
Yamana et al. [20]; 2015 | Prehabilitation did not affect respiratory function representing parameters (FVC, FEV1, FEV1%, and PEF). | Prehabilitation ameliorated the severity of postoperative complications (by lower Clavien–Dindo score) and postoperative pneumonia (by lower Utrecht Pneumonia Scoring System score). | N/A |
Christensen et al. [25]; 2018 | Prehabilitation resulted in improved fitness and muscle strength. | Prehabilitation did not affect the postoperative complication rate. | Prehabilitation resulted in improved quality of life by FACT-E score. |
Dettling et al. [26]; 2013 | Prehabilitation increased inspiratory muscle strength and endurance. | Prehabilitation did not affect postoperative pneumonia and other complication rates. | N/A |
Argudo et al. [21]; 2020 | Prehabilitation improved exercise capacity in terms of VO2 peak and workload and distance improvement in the 6MWD and inspiratory and expiratory muscle strength. | N/A | Prehabilitation resulted in the improvement of some domains of health-related quality of life (social and role functions). |
Piraux et al. [22]; 2020 | N/A | N/A | Prehabilitation improved fatigue, quality of life, physical well-being, emotional well-being, and anxiety. |
Yamamoto et al. [23]; 2016 | Prehabilitation significantly increased handgrip strength. | N/A | Prehabilitation improved nutritional uptake by increasing calorie and protein intake. |
Cho et al. [27]; 2014 | N/A | Prehabilitation decreased hospital stay and the number of severe postoperative complications (anastomotic leakage, pancreatic fistula, intra-abdominal abscess, and other severe abdominal complications). | Prehabilitation significantly decreased BMI, bodyweight, abdominal circumference, and visceral fat. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bausys, A.; Mazeikaite, M.; Bickaite, K.; Bausys, B.; Bausys, R.; Strupas, K. The Role of Prehabilitation in Modern Esophagogastric Cancer Surgery: A Comprehensive Review. Cancers 2022, 14, 2096. https://doi.org/10.3390/cancers14092096
Bausys A, Mazeikaite M, Bickaite K, Bausys B, Bausys R, Strupas K. The Role of Prehabilitation in Modern Esophagogastric Cancer Surgery: A Comprehensive Review. Cancers. 2022; 14(9):2096. https://doi.org/10.3390/cancers14092096
Chicago/Turabian StyleBausys, Augustinas, Morta Mazeikaite, Klaudija Bickaite, Bernardas Bausys, Rimantas Bausys, and Kestutis Strupas. 2022. "The Role of Prehabilitation in Modern Esophagogastric Cancer Surgery: A Comprehensive Review" Cancers 14, no. 9: 2096. https://doi.org/10.3390/cancers14092096
APA StyleBausys, A., Mazeikaite, M., Bickaite, K., Bausys, B., Bausys, R., & Strupas, K. (2022). The Role of Prehabilitation in Modern Esophagogastric Cancer Surgery: A Comprehensive Review. Cancers, 14(9), 2096. https://doi.org/10.3390/cancers14092096