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Simple Summary: Breast cancer is the most prevalent malignancy in women. With the improvement
of medical treatment, breast cancer has become one of the solid tumors with the best curative effect.
However, triple-negative breast cancer is not sensitive to conventional treatment due to its high
invasiveness, resulting in a poorer prognosis than other types. The antibodies of programmed death
receptor 1 and its ligands represent a new option as immunotherapy for patients with triple negative
breast cancer. However, some recent clinical data suggest that a large proportion of patients exhibit
primary or acquired resistance to treatment with programmed death receptor antibodies. In this
review, we discuss the mechanisms that lead to resistance and also summarize potential strategies to
overcome the resistance, improving the therapeutic efficacy of programmed death receptor 1 and its
ligand-based antibodies in triple negative breast cancer.

Abstract: Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis,
insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient
prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death
receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic
options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal
immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor
microenvironment, interplay with other immune checkpoints and aberrant activation of oncological
signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients
are selected based on reliable predictive markers and treated with a combination of ICIs with other
therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-
based therapies. This review discusses the current mechanisms underlying the resistance of TNBC
to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1
immunotherapy and recent advances in the combination therapies to increase response rates, the
depth of remission and the durability of the benefit of TNBC to ICIs.

Keywords: triple-negative breast cancer; immune checkpoint inhibitor; PD-1/PD-L1; resistance;
combination therapy

1. Introduction

According to the latest data from the International Agency for Research on Cancer
of the World Health Organization, breast cancer has replaced lung cancer as the most
prevalent malignancy worldwide [1]. Breast cancer is classified into four molecular types
based on the expression of estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor-2 (HER-2) and Ki-67 in breast cancer. Among them,
triple negative breast cancer (TNBC) is characterized by negative ER, PR and HER-2,
accounting for 10–20% [2]. Compared with other subtypes of breast cancer, TNBC is more
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aggressive, with a higher risk of recurrence and a poorer prognosis. Traditional breast
cancer treatments include chemotherapy, endocrine therapy and targeted therapy. However,
TNBC is unsuitable for endocrine and targeted therapy due to the lack of corresponding
targets [3]. TNBC also has an unsatisfactory response to chemotherapy. Patients with
advanced TNBC experience early onset of drug resistance during chemotherapy, with a
median progression-free survival (PFS) of only 3–6 months and a median overall survival
(OS) of only 10–13 months [4]. In recent years, the emergence of immune checkpoint
inhibitors (ICIs) is radically altering our conceptions of cancer treatment. Targeting the
PD-1/PD-L1 axis with ICIs yields significant anti-tumor activity and may provide long-
term survival benefits, particularly for patients with TNBC [5,6]. For PD-L1-positive
TNBC patients, treatment with atezolizumab in combination with nab-paclitaxel prolonged
median overall survival by 10 months compared to chemotherapy alone [7].

Programmed death receptor 1 (PD-1) is a member of the CD28 superfamily that is
expressed mainly in activated T-lymphocytes and myeloid cells, functioning as a cru-
cial immunosuppressive molecule [8,9]. The PD-1 mainly consists of an extracellular
immunoglobulin variable region (IgV), a hydrophobic transmembrane region and an intra-
cellular region [10]. The tail of the intracellular region has an immunoreceptor tyrosine-
based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM).
PD-1 is an essential immune checkpoint receptor for activated T cells and plays a critical
role in immunosuppression control. Binding to its ligand programmed death ligand-1
(PD-L1) induces the phosphorylation of tyrosine in ITSM of PD-1, which dephosphorylates
downstream protein kinases Syk and PI3K, inhibiting the transcription and translation
of genes and cellular factors required for T cell activation (Figure 1) [11,12]. Tumor cells
can inhibit the killing function of T cells by high expression of PD-L1, thus contributing to
immune escape. Tumor cells upregulate PD-L1 expression mainly through the following
pathways: activation of EGFR, MAPK or PI3K-Akt pathway [13–15]; high expression of
STAT3 and HIF-1 [16] alteration of PD-L1 at the genetic level, for example, the PD-L1 3′

untranslated region (3′ UTR) plays a negative regulatory role in PD-L1 expression, and loss
of this gene fragment due to different structural variants correlates with increased PD-L1
expression in tumor cells [17,18]; and microRNA-based control of PD-L1 expression, for
example, miR-513 overexpression can block IFN-γ-induced PD-L1 expression in bile duct
cells [19,20]. The upregulated PD-L1 binds to PD-1 on the surface of tumor-specific CD8+

T cells, suppressing an anti-tumor immune response. In addition, elevated inflammatory
factors such as IFN-γ in the tumor microenvironment (TME) can also induce PD-L1 and
PD-L2 expression, resulting in “adaptive immune resistance” [21].

Immune checkpoint inhibitors (ICIs) have been developed to boost the immune killing
of tumors by restoring the function of tumor infiltrating CD8+ T cells. ICIs, including
PD-1 monoclonal antibody (pembrolizumab), PD-L1 monoclonal antibody (atezolizumab)
and CTLA-4 monoclonal antibody (durvalumab), are commonly used in clinical [22–24].
These ICIs can restore or improve the patient’s anti-tumor immunity to kill tumor cells
by overcoming tumor cell-mediated immune cell dysfunction. In recent years, ICI-based
immunotherapy has made breakthroughs in treating melanoma and non-small cell lung
cancer. In contrast, breast cancer immunotherapy has remained stagnant because breast
cancer was previously considered an immunologically “cold tumor” with low immuno-
genicity [25,26]. TNBC is the most immunogenic subtype of breast cancer with higher levels
of PD-L1 expression and tumor infiltrating lymphocytes (TILs) than other subtypes, sug-
gesting that it is more likely to benefit from treatment with ICIs [27]. However, the limited
effectiveness of TNBC to ICIs due to heterogeneity and immunosuppressive microenviron-
ment must be overcome [7,28]. Therefore, it is vital to uncover the underlying mechanism
of therapeutic resistance and partial hypo-responsiveness to effectively improve the clinical
response rate of cancer patients to ICI treatment. This review summarizes the mechanisms
of therapeutic resistance to ICIs in TNBC patients. It proposes potential solutions for
overcoming ICI resistance, thereby providing theoretical support for enhancing its clinical
anti-TNBC efficacy.
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Figure 1. PD-1/PD-L1-mediated inhibition of T cell activation. The binding of PD-1 to PD-L1 recruits 

SHP-2, thereby weakening the TCR signaling pathway mediated by LCK and inhibiting the RAS-

MEK-ERK and PI3K-Akt-mTOR pathways. In addition, PD-1 activation induces the expression of 

BTAF, which inhibits the expression of effectors for T cell activation. Collectively, the activation of 

T cells can be inhibited by PD-1/PD-L1-mediated inhibiting of these signaling pathways. Abbrevia-

tions: PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; TCR, T cell 
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Figure 1. PD-1/PD-L1-mediated inhibition of T cell activation. The binding of PD-1 to PD-L1 recruits
SHP-2, thereby weakening the TCR signaling pathway mediated by LCK and inhibiting the RAS-MEK-
ERK and PI3K-Akt-mTOR pathways. In addition, PD-1 activation induces the expression of BTAF,
which inhibits the expression of effectors for T cell activation. Collectively, the activation of T cells can
be inhibited by PD-1/PD-L1-mediated inhibiting of these signaling pathways. Abbreviations: PD-1,
programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; TCR, T cell receptor;
MHC, major histocompatibility complex; APC, antigen-presenting cell; ITIM, immunoreceptor
tyrosine inhibitory motif; ITSM, immunoreceptor tyrosine-based switch motif; P, phosphorylation;
LCK, lymphocyte-specific protein-tyrosine kinase; ZAP70, zeta chain of T cell receptor associated
protein kinase 70; SHP-2, src homology-2 domain-containing protein tyrosine phosphatase; BATF,
basic leucine zipper transcriptional factor ATF-like; RAS, rat sarcoma; MEK, mitogen-activated
extracellular signal-regulated kinase; ERK, extracellular regulated protein kinase; NFAT, nuclear
factor of activated T cell; CK2, casein kinase II; PTEN, phosphatase and tensin homolog; PI3K,
phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; NF-κB,
nuclear factor kappa-B.

2. Resistance Mechanism of PD-1/PD-L1 Inhibit Therapies

Although ICI therapy has a successful anti-tumor effect in some patients, therapeutic
resistance prevents ICIs from being used more widely in the clinical setting. ICI resistance’s
complicated and varied mechanisms fall into the three following categories: primary,
adaptive and acquired [29]. In contrast to primary resistance, in which tumors initially
do not respond to ICIs, acquired resistance occurs after effective ICI treatment, leading to
cancer progression or recurrence. Adaptive resistance refers to a tumor’s ability to evade
immune attack despite the immune system can recognize it [30]. In this section, we discuss
the current mechanisms of ICI resistance from the perspectives of antigen presentation, an
immunosuppressive TME, the interplay of multiple immune checkpoints and the abnormal
signaling pathways in tumors.

2.1. Disturbed Presentation of Tumor-Specific Antigens

The efficacy of ICIs on tumor cells depends on the killing effects of cytotoxic T lympho-
cytes (CTLs), which can target tumor-specific antigens (TSAs). The specific load and expres-
sion pattern of TSAs associated with the TMBs contribute to the different immunogenicity
of tumors. Tumors with low or down-regulated TSAs can escape the immune system



Cancers 2023, 15, 104 4 of 27

surveillance and develop tolerance in the body. Due to the lack of highly immunogenic
TSAs to activate the TILs, low-immunogenic malignancies, like pancreatic cancer, have an
inefficacy response to PD-1/PD-L1 antibodies [21,31]. However, the tumor cells with highly
immunogenic antigens can selectively hide the antigens by reducing gene expression or
deleting mutant alleles to avoid T cell-dependent cancer immunoediting [32–34]. Breast
cancer has a substantially lower median TMB than melanoma and lung cancer, indicating
that it is generally less immunogenic. The immunogenicity also varies between subtypes of
breast cancer. In a study of 762 primary tumors, the mean mutational burden identified in
ER− tumors was more significant than in ER+ ones [35,36]. The whole exome sequencing
(WES) on 3969 patients with primary or metastatic breast cancer revealed that only 5%
(198 cases) had hypermutated genes. These hypermutated tumor subgroups, including
TNBC, exhibited increased neoantigen burden and cytolytic activity [37]. Consistent with
the reported disparities in mutational burden, a higher response rate of anti-PD-1 therapy in
PD-L1-positive tumors is observed in TNBC than in ER+ breast cancer (18.5% vs. 12%) [38].
Although TNBC is the most immunogenic subtype of breast cancer, its response rate to
ICIs remains poor. The immunogenicity may decrease during tumor progression due to
reduced antigen expression and impaired antigen presentation [39].

Tumors can avoid T cell cytotoxicity by downregulating the antigen presentation by
major histocompatibility complex (MHC) molecules [40,41]. In a study of 117 primary
breast cancer tissue sections, more than half of the cases (19/32, 59%) in TNBC exhibited
MHC-I deficiency, allowing tumor cells to evade the cytotoxic T cell-mediated immune
response [42]. H3K27me3 alterations in TNBC reduce MHC-I transcription, which can
be restored by epigenetic modulators, such as chidamide and pharmacological inhibitors
of PRC2 subunits EZH2 or EED [43,44]. Moreover, the elevated MYC and MAL2 in
TNBCs drive immune evasion by reducing MHC-I expression, resulting in resistance to ICI
therapy [45,46]. In addition to MHC-I, short MHC-II antigen presentation contributes to
ICI resistance. MHC-II expression in tumor cells was tightly related to increased TILs and
interferon signaling in TNBC [47]. Compared to MHC-II-negative patients, pembrolizumab-
treated TNBC patients with MHC-II expression had a more excellent pCR and better
prognosis [48]. However, MHC-II on breast cancer cells provides selection pressure for
LAG-3+ and FCRL6+ TILs, which antagonizes MHC-II expression and suppresses the
antigen presentation, promoting adaptive resistance to anti-PD-1 treatment [49]. The
alteration of other tumor antigen processing and presentation molecules, such as LMP and
transporter for antigen presentation (TAP), can also result in ICI resistance [41,50].

Antigen presentation can also be impaired by the immunosuppressive TME, which
results in resistance to ICIs. The aberrant differentiation of myeloid cells caused by the IL-10
released by TNBC reduces the number of dendritic cells (DCs) and increases the expression
of PD-L1. Simultaneously, CD80 and CD86 cannot be activated due to the absence or
low expression of co-stimulatory molecules in peripheral immature DCs, resulting in a
decreased proportion of normal mature DCs and an increased immature DCs in peripheral
blood. After infiltration into tumors, these immature DCs cannot generate an immune
response due to their impaired antigen presentation function and inability to activate T
cells, resulting in immune escape and resistance to ICIs [51–53].

2.2. Immunosuppressive TME

Numerous immune cells, stromal cells and cytokines are present in the TME of TNBC,
which may affect the response of tumor cells to immunotherapy. Tumor-derived cytokines
recruit more immunosuppressive cells into TME, which affect the efficacy of anti-PD-1/PD-
L1 by suppressing T cell activity. Thus, the alteration of TME is a vital mechanism causing
immunotherapy resistance [54].

2.2.1. Immunosuppressive Cells

The function of anti-tumor T cells is suppressed by various immunosuppressive cells
found in the TME, such as Treg cells, marrow-derived suppressor cells (MDSCs), and tumor-
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associated macrophages (TAM) (Figure 2). Treg cells, characterized by the expression of
Foxp3, CD25 and CD4, suppress the immune response of other immune cells, functioning
as the primary controller of self-tolerance [55]. It has been demonstrated that a high
abundance of Treg is significantly associated with a high level of PD-L1 in TNBC and
results in low pCR with ICI treatment [56]. Patients with TNBC who have Treg cells in their
TME have a worse prognosis, lower relapse-free survival rates and worse rates of overall
survival [57,58]. Treg cells inhibit the proliferation of effector T cells by consuming the
IL-2 and secreting immunosuppressive molecules like TGF-β, IL-35 and IL-10 [59,60]. The
CTLA-4 on Treg cells binds to co-stimulatory molecules CD80 and CD86 on APCs to inhibit
the secondary signaling, suppressing antigen presentation [61]. Treg can also directly
destroy effector T cells and APCs by releasing perforin and granzyme [62]. Therefore,
the Treg infiltration in TNBC inhibits T cells’ cell proliferation and function, leading to
therapeutic resistance.
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Figure 2. Immunosuppressive tumor microenvironment in anti-PD-1/PD-L1 therapy. TNBC cells can
directly inhibit the activity of effector T cells by upregulating PD-L1 and releasing TGF-β2 and IL-10.
Additionally, immunosuppressive cells, including TAM, Tregs and MDSCs, are recruited to the tumor
microenvironment, where they can inhibit the anti-tumor of T cells. TAM can also promote tumor
cell proliferation by secreting EGF and PDGF, facilitates tumor invasion and metastasis by releasing
pro-tumor cell metastasis factors such as MMPs, triggers immune escape of tumor cells by producing
IL-10, PGE2, TGF-β and CSF-1, as well as contributes to tumor microvascular growth by expressing
VEGF. Abbreviations: PD-1, Programmed cell death-1; PD-L1, Programmed cell death-ligand-1;
CSF1, colony stimulating factor 1; CCL2, C-C motif ligand 2; CCL22, C-C motif ligand 22; TGF-β,
transforming growth factor-β; IL-6, interleukin-6; IL-10, interleukin-10; IL-35, interleukin-35; NOS,
nitric oxide synthase; EGF, endothelial growth factor; VEGF, vascular endothelial growth factor;
PDGF, platelet derived growth factor; MMPs, matrix metallopeptidase; PGE2, Prostaglandin E2;
MDSC, myeloid-derived suppressor cell; TAM, tumor-associated macrophage.

MDSCs, consisting of early myeloid cells, macrophages, immature granulocytes and
DCs at different stages of differentiation, are a heterogeneous group of immature bone mar-
row cells with the capacity to control local immune responses [63]. In patients with TNBC,
MDSCs may play a significant role as negative modulators of anti-tumor immunity [64].
TNBC patients have higher levels of MDSCs recruited by chemokines and cytokines pro-
duced from tumor cells, including IL-34, CXCL2 and CCL22 [65–67]. The recruitment of
MDSCs at tumors hinders CTL infiltration and challenges the anti-tumor potentials of T
cell-based immunotherapies. MDSCs result in resistance by inhibiting both the innate and
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adaptive immune response [68,69]. Additionally, MDSCs play a nonimmunologic role in
promoting tumor progression by releasing prometastatic factors, including MMP9 and
chitinase 3-like 1 [65]. In PD-1 monoclonal antibody-treated mice, reducing the MDSC
recruitment by PI3K inhibitors achieves a combined inhibitory effect with PD-1 monoclonal
antibody [70,71].

TAMs are differentiated monocytes recruited into the tumors by chemokines like CSF1
and CCL2 [72]. While M1 type macrophages destroy tumor cells and prevent pathogen
infection, M2 type macrophages primarily promote tumor growth, invasion and metasta-
sis [73]. A high density of M2 macrophages in TNBC promotes cancer cell proliferation
and is associated with a greater risk of metastasis and a worse prognosis [73]. TNBC cells
with BRCA1-IRIS-overexpression (IRISOE) can release high quantities of GM-CSF, which
attracts macrophages to tumor cells and polarizes them to protumor M2 TAMs. This inter-
play of IRISOE cells and macrophages results in an immunosuppressive milieu in TNBC
tumors that is conducive to the development of immune-evading TNBC [74]. M2 type
TAM-mediated progression of TNBC can be stopped by blocking MAPK signaling with
MEK inhibitors [75]. Additionally, TAMs have been demonstrated to directly and indirectly
regulate the effect of anti-PD-1/PD-L1 on tumor cells by regulating the PD-1/PD-L1 ex-
pression, reducing the effector function of PD-1+ TILs, promoting PD-1+ Treg development
and activity [76]. CSF-1R inhibitors are available to block macrophage CSF-1R and reduce
the number of M2-type macrophages, ultimately increasing the response of tumor cells to
PD-1 antibodies [77].

2.2.2. Cytokines

Chemokines and cytokines are another class of modulators in immunotherapy resis-
tance via recruiting the immunosuppressive and regulating the expression of PD-1/PDL-1
in the TME. Elevated TGF-β results in the poor prognosis of TNBC by inducing EMT in
tumor cells, recruiting immunosuppressive cells and suppressing CD8+ T cell function [78].
TGF-β has also been found to induce the expression of PD-L1 to promote tumor escape [76].
The TGF-β inhibitor tranilast enhances the anti-tumor effect of immunotherapy by improv-
ing the hypoxic environment [79]. The pro-inflammatory cytokine IL-6 released by TNBC
cells induces the production of CCL5 and VEGF in lymphatic endothelial cells (LEC), pro-
moting TNBC lymph node metastasis and angiogenesis [80–82]. Blocking the IL-6/CCR5 or
VEGF signaling can prevent TNBC from metastasis and enhance the inhibitory effect of ICIs
on TNBC by upregulating PD-L1 [81]. The levels of tumor-derived IL-18 is significantly
correlated with poor survival in TNBC patients. IL-18 in TME of TNBC increases the
number of immunosuppressive NK cells and induces PD-1 expression in NK cell subsets,
resulting in resistance to ICIs [83,84]. Additionally, the increased expression of guanylate
binding protein 5 (GBP5) and deletion of the tumor suppressor transcription factor Elf5
activate the IFN-γ signaling pathway (Figure 3) and promote PD-L1 expression, causing
immunotherapy resistance in TNBC [85,86].
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Figure 3. Disturbed IFN-γ signaling pathway results in resistance to anti-PD-1/PD-L1 therapy. IFN-γ
secreted by T cells binds to IFNγR1/2 on the surface of TNBC cells, activating the JAK1/1-STAT1/2
pathway. The phosphorylated STAT1/2 translocates to the nucleus where it binds to GAS and ISRE,
promoting the expression of MHC-II, PD-L1 and CXCL9/10. After receiving immunotherapy, tumor
cells may downregulate or alter the IFN-γ signaling pathway, such as by reducing JAK1/2 activity to
escape the anti-tumor effects of T cell-derived IFN-γ. Abbreviations: PD-L1, programmed cell death
1 ligand 1; TCR, T cell receptor; MHC-I, major histocompatibility complex class I; IFN-γ, interferon-γ;
IFNγR 1/2, interferon-γ receptor 1/2; JAK 1/2, Janus kinase 1/2; STAT 1/2, signal transducer and
activator of transcription 1/2; GAS, growth arrest-specific protein; ISRE, interferon-sensitive response
element; CXCL9/10, C-X-C motif chemokine 9/10; TNBC, triple negative breast cancer.

2.2.3. T Cell Exhaustion

Additional factors in TME like hypoxia can cause T cell exhaustion and increase the
resistance to immunotherapy (Figure 4). During prolonged exposure to cognate antigens,
the upregulated PD-1 expression on T cell surfaces leads to T cell exhaustion, a phenotype
characterized by loss of proliferation and cytolytic function, followed by deficiencies in
cytokine production. Hypoxia causes dysfunction and terminal exhaustion of human T
cells via the epigenetic suppression of immune effector genes [87,88]. The exhausted CD8+

T cells with intermediate PD-1 expression can be restored to viability by blocking the PD-1
pathway. However, anti-PD-1 therapy cannot reverse the dysfunctional state of T cells with
a high level of PD-1 [89,90]. Reversing the T cell dysfunction using HIF1α/HDAC1/EZH2
inhibitors can overcome the resistance to PD-1 blockade [87].
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Figure 4. T cell exhaustion contributes to therapeutic resistance of TNBC to PD-1/PD-L1 inhibitors.
Continuous exposure of T cells to tumor antigens and suppressive cytokines (IL-10, TGF-β) leads to
T cell exhaustion, which results in a poor response to immunotherapy and therapeutic resistance.
The accumulated ROS, increased HIF-α and activated calcium-calcineurin-NFAT signaling pathway
play a key role in T cell exhaustion, which contributes to therapeutic resistance. Abbreviations: PD-1,
programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; TCR, T cell receptor;
MHC, major histocompatibility complex; APC, antigen-presenting cell; TNBC, triple negative breast
cancer; TIM-3, T cell immunoglobulin domain and mucin domain-3; TGF-β, transforming growth
factor-beta; IL-10, interleukin-10; IL-1, interleukin-1; IFN-γ, interferon-γ; TNF-α, tumor necrosis
factor-α; ROS, reactive oxygen species; NFAT, nuclear factor of activated T cells; HIF-1α, hypoxia
inducible factor-1α; TOX, thymocyte selection associated high mobility group box; BATF, basic leucine
zipper transcriptional factor ATF-like; IFR-4, interferon regulatory factor 4.

2.3. Compensatory Upregulation of Alternative Immune Checkpoints

Along with PD-1, a variety of immune inhibitory checkpoints, including TIM-3,
LAG3, and T cell immune globulin and ITIM structure domain proteins (TIGIT), are
highly expressed and linked to T cell function, which also affect the effectiveness of ICIs
(Figure 5) [91–93].

An immunosuppressive checkpoint protein known as TIM3 (CD366, HAVCR2) is ex-
pressed on the surface of activated T cells, NK cells, and monocytes. TIM-3 inhibits cytotoxic
T cell activity upon binding to ligands including phosphatidylserine, CEACAM-1, galactin-
9, thereby suppressing anti-tumor immunity and promoting tumor escape, and these
ligands are members of the h-galactoside-binding protein family that are overexpressed
by TNBC cells [94–97]. In the presence of TNBC cells (MDA-MB-231 and MDA-MB-468),
the use of anti-PD-1 monoclonal antibodies causes a compensatory increase in TIM-3 on
the surface of CD4+ T cells, resulting in a suppressive signal and leads to effector T cell
depletion [98]. Early clinical trials using anti-TIM-3 have described an overall acceptable
safety profile and initial indications of anticancer activity [99]. Clinical trials are currently
investigating whether inhibitors of TIM-3 combined with anti-PD-1/PD-L1 inhibitors can
improve efficacy while reducing side effects [28].

The LAG-3 (CD223) is expressed after antigenic stimulation of T cells to prevent their
overactivation, maintaining autoimmune tolerance [100]. The persistent LAG-3 expression
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in response to prolonged antigenic stimulation is associated with exhausted CD8+ TILs with
a decrease in cytokine secretion and cytolytic activity [101]. A significant positive correlation
has been found between the expression of LAG-3 and PD-L1 in TNBC patients [102].
Moreover, blocking PD-1 or PD-L1 in TNBC results in compensatory upregulation of
LAG-3 in CD4+ T cells [98,103]. A synergistic blockade of PD-1 and LAG-3 in preclinical
mouse models exhibits good responsiveness [101]. In a clinical trial, the combination of the
anti-LAG-3 antibody leramilimab, the anti-PD-1 antibody spartalizumab and carboplatin
had the best rate of remission in patients with advanced TNBC (ORR 32.4%), albeit with
successively increased side effects [104]. Therefore, dual inhibition of LAG-3 and PD-1 is
feasible for the combination treatment of TNBC in the future.
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Figure 5. Inhibitory immune checkpoints for TNBC. TNBC cells express immune checkpoint ligands,
which mediate resistance to PD-1/PD-L1 inhibitors by inhibiting T cell function. After the PD-1/PD-
L1 signaling pathway is blocked by inhibitors, other immune checkpoints, such as CTLA-4, TIGIT,
TIM-3 and LAG-3, are compensated upregulated. Abbreviations: PD-1, programmed cell death
protein 1; PD-L1, programmed cell death 1 ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated
protein 4; TIGIT, T cell immunoglobulin and ITIM domain; TIM-3, T cell immunoglobulin domain
and mucin domain-3; LAG-3, lymphocyte activation gene-3; TCR, T cell receptor; MHC-II, major
histocompatibility complex class II; TNBC, triple negative breast cancer.

High levels of TIGIT and its ligand PVR (poliovirus receptor, CD155) are signifi-
cantly associated with low overall survival and recurrence-free survival of patients with
breast cancers [105]. TIGIT is a type I transmembrane protein with an Ig-like variable
extracellular structural domain expressed on memory T cells, regulatory T cells and NK
cells [106–108]. After binding to PVR, TIGIT inhibits immune response through its cyto-
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plasmic immunoglobulin tail tyrosine-like (ITT) phosphorylation motif and ITIM, resulting
in resistance in ICI therapy [109]. Dual blocking of TIGIT and PD-1 inhibits tumor growth
in a mouse model of breast cancer [110].

2.4. Abnormal Signaling Transduction in Tumor Cells

Aberrant oncogenic signaling pathways have been found to have a substantial im-
pact on both the stimulation of immunological escape in TNBC cells and the formation
of immunosuppressive TME [111]. The activation of the MAPK signaling pathway in
TNBC induces the production of VEGF and IL-8, which inhibit T cell recruitment and
activity [112,113]. The Ras/MAPK pathway can also suppress antigen presentation by
inhibiting MHC molecule expression, which helps TNBC cells escape the immune sys-
tem. A stronger anti-tumor immune response has also been observed in animal models
of breast cancer when MEK inhibitors are combined with PD-1/PD-L1 antibodies [113].
In TNBC patients treated with anti-PD-1/PD-L1, alterations in PTEN have been found
to be significantly associated with worse ORR and shorter PFS and OS [114]. PTEN gene
deletion is linked to reduced T cell infiltration at the tumor site, reduced T cell expansion
after tumor resection and poorer efficacy of PD-1 inhibitor therapy in patients with ma-
lignant melanoma [115]. Similarly, according to the Cancer Genome Atlas (TCGA) data,
35% of basal-like tumors (mostly TNBC) exhibit PTEN gene deletion, which is associated
with activated PI3K signaling, decreased expression of INF-γ and granzyme B, decreased
infiltration of CD8+ T cell, and also upregulated PD-L1 expression [116–118]. The WNT
signaling pathway is another potential oncogenic pathway that modulates the immune
response. Tumors with high β-catenin expression have low numbers of CD103+ DCs in
the TME, resulting in impaired antigen delivery and presentation, which in turn affects T
cell infiltration and immune response in the microenvironment [119]. TNBC stem cells also
constitutively upregulate PD-L1 through the activated WNT signaling pathway [120].

3. Biomarkers for Predicting the Efficacy of Anti-PD-1/PD-L1 Immunotherapy

PD-1/PD-L1 antibodies could restore pre-existing tumor-specific T cells by reducing
the inhibitory effect of an active PD-1/PD-L1 axis. Therefore, the efficacy of PD-1/PD-L1
therapy is dependent upon the activity of tumor-reactive T lymphocytes in eradicating
tumors, which is associated with the levels of PD-L1 expression, tumor mutational burden
(TMB) and microsatellite instability (MSI), TILs and mismatch repair deficiencies. Using
these indicators, it is critical to select TNBC patients who are more likely to respond to ICIs.

3.1. PD-L1 Expression Level

The PD-L1 expression levels on tumor cells and immune cells are the primary deter-
minant of ICI response. Therefore, it is a significant biomarker for predicting the efficacy of
PD-1/PD-L1 inhibitors in solid tumors, including non-small cell lung cancer (NSCLC), gas-
tric cancer, esophageal cancer, uroepithelial cancer and cervical cancer [121,122]. A study
on 654 different tumor specimens found that TNBC had higher PD-L1 expression than other
breast cancer subtypes. Similarly, TNBC accounted for 59% of breast tumors with high
levels of PD-L1 expression, supporting the feasibility of PD-L1 serving as a biomarker for
predicting the ICI efficacy in TNBC [122–124]. TNBC patients with high PD-L1 expression
are more likely to benefit from PD-1/PD-L1 blockade therapy [125]. Large clinical trials
have confirmed that PD-L1-positive patients benefit from ICI therapy using several criteria,
such as the combined positive score (CPS) in KEYNOTE-355 and the percentage of TILs
in IMpassion130 [126,127]. However, some PD-L1-negative patients still respond to ICIs,
which complicates the issue of PD-L1 as an exclusionary predictive biomarker [128]. This
inconsistency of results can be partially attributed to the PD-L1 expression on non-tumor
cells in the TME, which can promote immune escape of tumors [129]. Additionally, patients
with negative biomarkers respond when intersecting biological pathways are activated
without the presence of a specific biomarker [122]. In summary, although it is not the only
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consideration when deciding whether to administer an ICI, PD-L1 expression is one of the
important predictors of whether patients will benefit from them.

3.2. TILs

TNBC subtype is associated with the highest TILs levels. TILs are the lymphocytes
that aggregate in the tumor tissue or surrounding stroma, which might predict the efficacy
of immunotherapy in epithelial tumors [130,131]. It has been shown that TIL levels were
higher in TNBC (30%) than that in HER2-positive breast cancer (19%) and luminal breast
cancer (13%). Consistently, TNBC usually has greater genetic instability, leading to high
TMB and a robust anti-tumor immune response, implying that this subtype is more im-
munogenic [132]. Rich TILs were highly related to improved survival outcomes in early
TNBC, making them a powerful immunotherapy prognostic factor for this subtype [133].
In the IMassion130 clinical study treating advanced or metastatic TNBC with atezolizumab
and nab-paclitaxel, PFS and OS were significantly higher in patients with both abundant
TILs and high PD-L1 expression [134]. Similarly, high levels of TILs and PD-L1 are also pos-
itively associated with pathologic complete remission and overall remission rates in TNBC
patients receiving pembrolizumab and chemotherapy in the KEYNOTE-173 study [135].
Collectively, the TILs constitute a potential criterion for selecting patients who will benefit
from ICI therapy.

3.3. TMB and MSI

DNA damage is a common phenomenon during biological evolution, which induces
mutations that drive carcinogenesis and cancer recurrence. The total amount of somatic
mutations, termed TMB, is another predictor of the anti-tumor efficacy of ICIs [136]. Tumor
cells with non-synonymous mutations can generate neoantigens that are recognized by
T cells as non-self antigenic epitopes, initiating the immunological clearance of tumor
cells. The increased production of neoantigens due to a higher level of TMB elicits a
stronger tumor-specific immune response [137]. It has been demonstrated that patients
with high levels of TMB in melanoma, lung cancer and colorectal cancer respond better
to ICIs, increasing their chances of survival [21,138–140]. Accordingly, breast cancer pa-
tients with high TMB (≥10 mut/Mb) may benefit from ICIs regardless of the mutational
process [37,141]. A phase II multicenter trial of nivolumab plus ipilimumab for metastatic
HER2-negative breast cancer with high TMB has been conducted to elucidate the impact
of high TMB [114]. The median TMB for TNBC was 2.630 mut/Mb, with a prevalence of
5% mutation. Clinical studies suggest that TNBC patients with a high TMB have a longer
PSF after being treated with ICIs. Therefore, TMB is one feature of TNBC that can predict
response to ICI therapy.

MSI, a unique molecular alteration and hyper-mutable phenotype, is the result of a
dysfunctional DNA mismatch repair (MMR) system in cancers. MSI-high (MSI-H) also
elevates the mutation burden of tumor-associated genes and the generation of neoantigens,
boosting anti-tumor immunity [142–144]. However, according to a study in 12,821 different
tumor samples from The Cancer Genome Atlas, MMR deficiency was less prevalent in
breast cancer with only 1.53% of MSI rates [145]. Furthermore, the expression of the
MMR protein MLH1 in TNBC was negatively correlated with PD-L1 expression in stromal
immune cells [146]. The higher amounts of tumor-specific antigens induced by MMR gene
mutations, which in turn increases the anti-tumor immune response, may account for the
greater therapeutic effect of ICIs in MMR-deficient tumors compared to non-MMR-deficient
cancers [147]. Similar to this, higher TMB levels lead to increased neoantigen production in
TNBC, which may make PD-1/PD-L1 inhibitors more effective [148]. Therefore, MSI might
be combined with TMB as a candidate predictor for ICI treatment in TNBC patients [149].

3.4. Driver Gene Mutation

An increasing number of studies have shown that the gain-of-function of oncogenes
suppressed anti-tumor immune response by regulating the expression of immune check-
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points. TNBCs with aberrant activation of MYC are resistant to ICI therapy [45]. MYC
increases PD-L1 and CD47 expression by directly binding to their promoters [150–152].
Mucin 1 (MUC1) elevates PD-L1 transcription by recruiting MYC and NF-κB to the PD-L1
promoter, contributing to immune escape in TNBC [153]. Nuclear AURKA induces PD-L1
expression via an MYC-dependent pathway to mediate an immune evasion of TNBC, while
the downregulation of AURKA leads to increased CD8+ T cell infiltration and activation
in vivo [154]. Although MYC promotes PD-L1 expression that seems to be a beneficial
factor for ICI treatment, it also plays a key role in the regulation of energy metabolism, inva-
sion and angiogenesis, thereby promoting tumor progression [155]. Moreover, it has been
observed that THZ1, an inhibitor of the CDK7-p38α-MYC axis, can recruit CD8+ T cells to
enhance the anti-PD-1 therapeutic effect in a Lewis murine lung cancer model [156]. There-
fore, the aberrant activation of oncogenic MYC causes a poor response to ICIs, providing a
predictor and target for ICIs in TNBC.

Additionally, mutations in tumor suppressor genes (TSGs) are also related to the im-
mune response of TNBC. A recent genetic study of TNBC patients revealed that those with
mutant TP53 and wild-type PIK3CA have higher levels of immune suppressor cells and
molecules in their TME. It is expected that patients with this genotype will respond better
to immunotherapy [157]. Patients with PD-1 blockade-resistant TNBC have elevated levels
of oncogenic LINK-A, which facilitates the K48-polyubiquitination-mediated degradation
of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and
p53, leading to reduced antigen presentation and tumor-specific immune response [158].
Another study employing next-generation sequencing (NGS) on nine patients with primary
TNBC has found that patients with heterozygous loss of PTEN have higher PD-L1 expres-
sion levels in TILs, suggesting that patients with PTEN mutations may respond better to
ICIs [159]. Additionally, the expression of PPP2R2B, a powerful tumor suppressor that
plays an important role in the anti-tumor immune response, is significantly downregulated
in TNBC tissues compared to normal breast tissues, along with a suppressed T cell receptor
signaling pathway, antigen processing and presentation signaling pathway. The involve-
ment of downregulated PPP2R2B in immune evasion renders it a promising predictor for
predicting immunotherapeutic response and guiding the treatment of TNBC [160].

3.5. TNBC Microenvironment Phenotypes

Each TNBC molecular subtype exhibits distinct TME profiles associated with multi-
ple cell types, including fibroblasts, adipose and immune-inflammatory cells, and blood
and lymphatic vascular networks [161]. The TNBC microenvironment phenotypes were
classified into three heterogeneous clusters, including the “immune-desert” cluster with
low immune cell infiltration, the “innate immune-inactivated” cluster with resting innate
immune cells and nonimmune stromal cells infiltration, and the “immune-inflamed” cluster,
with abundant adaptive and innate immune cells infiltration. These microenvironment
clusters had significant prognostic efficacy [152]. Quiescent cancer cells (QCCs) in TNBC
constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-
suppressive milieu that blocks T cell function. The microenvironment of HIF-α1-expressing
tumor cells was similar to that of QCC, and the TME after knockout was rich in a large
number of killer T cells, suggesting that the hypoxic environment caused by HIF-α1 may
affect the efficacy of immunotherapy treatment results, which must be taken into account
when predicting treatment outcomes [162]. BRCA1-IRIS-overexpressing (IRISOE) TNBC
cells secrete high levels of GM-CSF in a HIF-α1- and NF-κB-dependent manner of recruiting
macrophages to tumors. The recruited tumor-associated macrophages (TAMs) derived
from peripheral blood monocytes in the TNBC microenvironment promote tumor growth
and progression by directly and indirectly modulating PD-1/PD-L1 expression. Accord-
ingly, IRISOE TNBC tumors had significantly few CD8+/PD-1+ cytotoxic T cells and more
CD25+/FOXP3+ regulatory T cells [74,76]. It has also been found that baseline CD4+ levels
in the peripheral blood of TNBC patients correlate significantly with PFS and OS, especially
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in those receiving immunotherapy in combination with chemotherapy. TNBC patients with
higher CD4+/CD8+ ratios have better treatment responses [163].

4. Therapeutic Strategies for Immune Checkpoint PD-1/PD-L1 Inhibitor Resistance

As mentioned above, the effectiveness of PD-1/PD-L1 inhibitors alone is only ob-
served in 10%-30% of tumor patients. The efficacy of the same therapy can vary greatly
across patients, between different tumor sites in the same patient, and even between dif-
ferent regions of the same tumors due to the high heterogeneity of TNBC. Additionally,
immune resistance also contributes to the inadequate response to ICIs. Therefore, it is
necessary to combine anti-PD-1/PD-L1 inhibitors with conventional treatments, including
chemotherapy, radiation and targeted therapy to reduce the resistance and improve the
anti-tumor effect (Figure 6).

Cancers 2023, 15, x  14 of 29 
 

 

 

Figure 6. Combination therapies with anti-PD-1/PD-L1 antibodies. Combination therapies: includ-

ing PD-1/PD-L1 antibodies along with radiotherapy, chemotherapy, other immune checkpoint an-

tibodies, targeted therapy, oncolytic viruses and neoantigen-based immunotherapy are being de-

veloped to treat cancer patients effectively. Abbreviations: PD-1, Programmed cell death-1; PD-L1, 

Programmed cell death-ligand-1; CTLA-4, Cytotoxic T Lymphocyte-Associated Antigen-4; TIGIT, T 

cell immunoglobulin and ITIM domains; ITIM, immunoreceptor tyrosine-based inhibitory motif; 

TIM-3, T cell immunoglobulin domain and mucin domain-3; IDO, indoleamine 2, 3 dioxygenase; 

Siglec-15, Sialic Acid Binding Ig Like Lectin-15; PPAP inhibitors, Poly ADP-ribosepolymerase in-

hibitor; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitors; VEGF antibody, 

vascular endothelial growth factor antibody; CKD4/6 inhibitors, cyclin dependent kinase4/6 inhibi-

tors. 

4.1. Combination with Chemotherapy 

ICIs, along with chemotherapy, are currently the predominant combinatory anti-tu-

mor therapy. Chemotherapeutic drugs can augment systemic tumor-specific immune re-

sponses by enhancing neoantigen release and presentation, stimulating DC production 

and maturation and inducing macrophages to secrete pro-inflammatory cytokines. In ad-

dition, chemotherapy can eliminate immunosuppressive MDSC and Treg, which increases 

the susceptibility of tumor cells to cytotoxic T cells and improves the efficacy of immuno-

therapy [164]. The efficacy of atezolizumab in combination with albumin-bound paclitaxel 

versus albumin-bound paclitaxel alone has been assessed in the IMpassion130 clinical trial 

that enrolled 902 advanced TNBC patients. According to the interim analysis, PFS im-

proved by 1.7 months in the combination treatment group compared to the alone treat-

ment group in the intention-to-treat (ITT) population and by 2.5 months in the PD-L1-

positive subgroup [165,166]. The phase III clinical trial KEYNOTE-355 investigated the 

efficacy of pembrolizumab in combination with chemotherapy (paclitaxel, paclitaxel or 

gemcitabine plus carboplatin) for advanced TNBC. The median PFS was higher in the 

combination therapy group than in the chemotherapy group, including ITT, PD-L1 posi-

tive (CPS ≥ 1) and PD-L1 high expression subgroups (CPS ≥ 10) [167]. Therefore, combin-

ing the PD-L1 inhibitors and chemotherapy may have better efficacy in TNBC. 

  

Figure 6. Combination therapies with anti-PD-1/PD-L1 antibodies. Combination therapies: in-
cluding PD-1/PD-L1 antibodies along with radiotherapy, chemotherapy, other immune checkpoint
antibodies, targeted therapy, oncolytic viruses and neoantigen-based immunotherapy are being
developed to treat cancer patients effectively. Abbreviations: PD-1, Programmed cell death-1; PD-L1,
Programmed cell death-ligand-1; CTLA-4, Cytotoxic T Lymphocyte-Associated Antigen-4; TIGIT, T
cell immunoglobulin and ITIM domains; ITIM, immunoreceptor tyrosine-based inhibitory motif; TIM-
3, T cell immunoglobulin domain and mucin domain-3; IDO, indoleamine 2, 3 dioxygenase; Siglec-15,
Sialic Acid Binding Ig Like Lectin-15; PPAP inhibitors, Poly ADP-ribosepolymerase inhibitor; EGFR-
TKI, epidermal growth factor receptor-tyrosine kinase inhibitors; VEGF antibody, vascular endothelial
growth factor antibody; CKD4/6 inhibitors, cyclin dependent kinase4/6 inhibitors.

4.1. Combination with Chemotherapy

ICIs, along with chemotherapy, are currently the predominant combinatory anti-tumor
therapy. Chemotherapeutic drugs can augment systemic tumor-specific immune responses
by enhancing neoantigen release and presentation, stimulating DC production and mat-
uration and inducing macrophages to secrete pro-inflammatory cytokines. In addition,
chemotherapy can eliminate immunosuppressive MDSC and Treg, which increases the
susceptibility of tumor cells to cytotoxic T cells and improves the efficacy of immunother-
apy [164]. The efficacy of atezolizumab in combination with albumin-bound paclitaxel
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versus albumin-bound paclitaxel alone has been assessed in the IMpassion130 clinical trial
that enrolled 902 advanced TNBC patients. According to the interim analysis, PFS im-
proved by 1.7 months in the combination treatment group compared to the alone treatment
group in the intention-to-treat (ITT) population and by 2.5 months in the PD-L1-positive
subgroup [165,166]. The phase III clinical trial KEYNOTE-355 investigated the efficacy of
pembrolizumab in combination with chemotherapy (paclitaxel, paclitaxel or gemcitabine
plus carboplatin) for advanced TNBC. The median PFS was higher in the combination
therapy group than in the chemotherapy group, including ITT, PD-L1 positive (CPS ≥ 1)
and PD-L1 high expression subgroups (CPS ≥ 10) [167]. Therefore, combining the PD-L1
inhibitors and chemotherapy may have better efficacy in TNBC.

4.2. Combination with Radiotherapy

Radiation can remodel the immunological context of the TME by enhancing neoantigen
expression and release, triggering the release of pro-inflammatory factors and increasing
tumor-infiltrating immune cells [168]. With enhanced tumor-specific antigen release and
elevated antigen presentation by DCs, irradiated tumors provide an ‘in situ tumor vaccine’
for the activation of tumor-specific T cells. In addition, radiotherapy-induced apoptotic
tumor cells are phagocytosed by DCs and other APCs, the antigens of which can be
presented by MHC-I molecules and activate endogenous CD8+ T cells [169]. The ability
of radiation to promote anti-tumor T cell activation is attracting clinical attention as ICI
treatment progresses, and it has been demonstrated that it can overcome ICI resistance
in mouse models [169]. In a study examining the combined effects of radiation and
PD-L1 inhibitors in mouse models of breast and colon cancer, it has been found that
combination therapy can effectively elicit CD8+ T cell responses, optimize the tumor
immune microenvironment and control tumor growth [170]. Radiotherapy stimulates the
release of CXCL16 from mouse breast cancer cells, which recruits CXCR-6-expressing T cells
into TME. In a mouse model inoculated with 4T1 cells, radiotherapy combined with PD-1
antibody delayed tumor growth and inhibited the formation of lung metastases, resulting in
increased survival [171,172]. In phase II clinical trial (TONIC), radiation treatment increased
TIL and CD8+ T cells in the TME of TNBC, making the TME “hotter” and more susceptible
to PD-1 inhibitors [173]. In another phase II clinical trial (Simon 2), an ORR of 33% has
been achieved with pembrolizumab in combination with radiotherapy, compared to an
ORR of 18.5% with monotherapy [174]. Radiotherapy combined with immunotherapy can
enhance and sustain anti-tumor immune responses for both primary and metastatic tumors,
but more research is needed to determine the best radiotherapy dose and fractionated
irradiation modalities for triggering systemic anti-tumor immunity.

4.3. The Synergistic Effect of ICIs

Immune checkpoints, like CTLA-4 and PD-1, exert their functions in distinct ways
and complement each other in the control of adaptive immune responses. PD-1 induces the
exhaustion of peripheral T cells, whereas CTLA-4 mainly inhibits T cell activation in the
early stages. Therefore, anti-CTLA-4 antibodies can enhance the therapeutic effects of anti-
PD-1 antibodies [175,176]. The immunoreceptor TIGIT is a promising new target for cancer
immunotherapy. By binding to CD155 on DCs, TIGIT triggers a signaling cascade response
that decreases production and secretion of IL-12 and IL-10, contributing to the formation of
immune-tolerant DCs [177]. In addition, TIGIT inhibits NK cell degranulation, cytokine
production and NK cell-mediated cytotoxicity in CD155+ tumor cells. Interaction of TIGIT+

NK cells with MDSCs expressing CD155 reduces the phosphorylation of ZAP70/Syk
and ERK1/2, decreasing the cytolytic capacity of NK cells [178]. The TIGIT/CD155 axis
has been shown to mediate resistance to ICI, which may make TIGIT blockers potential
candidates for the treatment of patients with immune resistance [179,180]. Given the
regulatory role of the TIGIT pathway in T cell and NK cell-mediated tumor recognition,
dual blockade of PD-1 and TIGIT effectively increases the expansion of tumor antigen-
specific CD8+ T cells in vitro, promoting tumor rejection in a mouse model [181]. In mice
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injected with EMT6 breast cancer cells, it has been observed that the simultaneous blockade
of TIGIT and PD-1 induces stronger anti-tumor immune effects and achieves a complete
response (CR) [110]. In addition, there are combination therapies with LAG-3 inhibitors
and IDO inhibitors, which are believed to bring new options for patients who are resistant
to PD-1/PD-L1 inhibitors [182,183]. In phase I/II clinical trial (NCT02460224), LAG525 (an
antibody against LAG-3) in combination with spartalizumab (an antibody against PD-1)
has shown durable responses in solid tumors, including TNBC [184]. Combining IDO
inhibitor Navoximod with an anti-PD-L1 monoclonal antibody more effectively activates
CTLs cells in tumors and inhibits tumor growth [185]. A phase Ib clinical trial including 66
patients with different types of malignancies (including TNBC) showed that navoximod
combined with atezolizumab upregulated the expression of IDO and PD-L1 on the surface
of all types of tumor cells leading to partial remission in 9% of patients and stable disease in
17%, while PD-L1+ patients had a slightly higher response rate than PD-L1− patients [186].

4.4. Combination with Targeted Therapy

The TNBC with homologous recombination repair deficiency (HRD) is sensitive to
PARP inhibitors, which leads to the accumulation of DNA single-strand breaks and double-
strand breaks that need to be repaired by homologous recombination enzyme [187–189].
The application of PARP inhibitors in the context of BRCA mutations results in a synthetic
lethal effect on TNBC cells via inhibiting DNA repair [190,191]. Notably, in a BRCA-
mutant basal breast cancer exceptional long-term survivor, a striking tumor eradication
was accompanied by a marked infiltration of immune cells containing CD8+ effector cells
after PARP inhibitors [192]. The PARP inhibitor olaparib induces CD8+ T cell infiltration and
activation by inducing the cGAS/STING-dependent pro-inflammatory cytokine production
in tumor cells, providing a rationale for combining PARP inhibition with immunotherapies
for the treatment of TNBC [193]. A phase I/II clinical trial (MEDIOLA trial) evaluated the
efficacy of the PARP inhibitor Olaparib in combination with Durvalumab for the treatment
of germline BRCA mutated metastatic breast cancer. The results showed that the median
duration of remission was better in the 10 TNBC patients who received ICIs in combination
with targeted therapy than with Olaparib alone [194]. Other clinical trials have evaluated
the efficacy and safety of the PARP inhibitor Niraparib in combination with Pembrolizumab
in patients with advanced TNBC. The combination therapy improved the ORR and DCR
in patients with BRCA mutations compared to wild-type BRCA, resulting in significantly
longer median PFS with tolerable overall adverse effects [195].

It has been found that the cyclin D-CDK4 complex reduces the stability of the PD-L1
protein. There is a consensus that the sensitivity of tumor cells to ICIs is related to the
level of PD-L1 expression, thus, increasing the level and stability of PD-L1 in tumor cells
may improve the therapeutic effect of ICIs. The cyclin D-CDK4/6 increases the level of
transcription factor E2F and phosphorylation of the retinoblastoma (Rb), thereby triggering
the cell cycle from pre-DNA synthesis (G1 phase) to DNA replication (S1 phase) [196].
The normal expression of the Rb gene is key to the effectiveness of CDK4/6 inhibitors in
treating breast cancer. The study confirmed that Rb+ is more common in TNBC patients
lacking BRCA1 mutation and the expression level of androgen receptor (AR) is positively
correlated with the level of Rb expression, therefore, TNBC patients expressing Rb gene or
AR+ TNBC patients may be sensitive to CDK4/6 inhibitors [197]. This might be because the
cancer cells lacking the Rb gene could express PD-L1 at higher levels. The CDK inhibitor
Palbociclib in combination with the PD-1 monoclonal antibody regimen significantly delays
tumor progression and improves OS in TNBC patients [198]. Abemaciclib, a selective
CDK4/6 inhibitor, reduces tumor cell growth primarily through an Rb gene-dependent
mechanism, and clinical trials of abemaciclib in combination with pembrolizumab for
TNBC are ongoing [199].

The receptor tyrosine kinase EGFR is overexpressed in 36%-89% of TNBC patients,
which promotes cell proliferation, differentiation and migration [200–203]. In the early stage
of breast cancer, EGFR overexpression is associated with reduced OS and DFS [204]. The
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EGFR inhibitor gefitinib enhances the efficacy of PD-1 monoclonal antibody by reducing
the interaction between PD-L1 and PD-1, enhancing IL-2 expression in T cells, promoting
the activation of CD8+ TILs and improving T cell-mediated tumor cell killing [205]. Con-
sequently, gefitinib can reduce the survival rate of EGFR overexpressing cancer cells by
reducing PD-L1 expression [206]. The potential of EGFR inhibitors for inducing anti-tumor
immunity offers the feasibility of combining the EGFR-targeting therapies, including TKIs
and CAR-T with ICIs in EGFR-overexpressed TNBC [207,208].

TNBCs with high levels of vascular endothelial growth factor (VEGF), a proangiogenic
molecule produced by the tumors, are associated with a high risk of metastasis [209]). In
the tumor immune microenvironment, VEGF-A can upregulate the expression of PD-1
and other immune checkpoints in CD8+ T cells, resulting in PD-1 inhibitor resistance [210].
While blocking the VEGF pathway can promote antigen-specific T cell migration, enhancing
the effect of PD-L1 inhibitors like Atezolizumab [211]. Although there are few studies on
TNBC, a combination of anti-angiogenic molecules with immunomodulators of inhibitory
checkpoints may be a potential strategy for VEGF- producing TNBC.

4.5. Oncolytic Viruses

Oncolytic viruses are a class of viruses that have the ability of self-replication and can
take advantage of the inactivation or defect of oncogenes in tumor cells, thus replicating
in large numbers in tumor cells and causing lysis and death of tumor cells but normal
cell death [212]. In the mouse in situ TNBC model and secondary transplantation tumor
model, Maraba virus was found to not only have a strong anti-tumor effect on in situ TNBC
but also prevent a recurrence. Systemic intravenous injection of Maraba virus was more
effective than intratumoral injection [213]. Maraba virus not only effectively recruited
immune cells through chemokines but also upregulated PD-L1 expression in breast cancer
cells in 3 TNBC models, including 4T1, EMT6 and E0771 [214]. These results suggest that
the efficacy of PD-1 inhibitors could be enhanced by oncolytic virus therapy.

4.6. Neoantigen-Based Immunotherapy

Recent advances in tumor immunotherapies, particularly neoantigen-based cancer
vaccines and antibody-based therapies, have been widely studied in breast cancer due to
their anti-tumor effects by stimulating an immune response [215]. The combination of ICIs
and tumor vaccines will produce a stronger anti-tumor immune response by accelerating
the initiation and activation of T cells and blocking the immunosuppressive pathway [216].
Currently, the combination of neoantigen-based tumor vaccines and ICIs are being studied
in clinical trials, such as the Durvalumab and PVX-410 vaccine for stage II and III TNBC
patients (NCT02826434) [217], and the Durvalumab and Vigil vaccine for metastatic breast
cancer (NCT02725489) [218]. Bispecific antibodies are artificial antibodies containing two
specific antigen-binding sites, which build a bridge between target cells and functional
molecules to stimulate a directed immune response [219]. Due to their ability to target two
different checkpoint molecules, bispecific antibodies provide a novel approach to delivering
dual-drug ICIs in a single medication. These bispecific antibodies are predicted to be able
to prevent the development of therapeutic resistance to existing immunotherapies [220].
Tebotelimab (MGD013) is such a bispecific tetravalent dual affinity re-targeting molecule
(DART) that is designed to bind PD-1 and LAG-3. Tebotelimab is being tested in solid
tumors and hematologic malignancies in combination with margetuximab, a monoclonal
antibody against the Fc segment of HER2 [219,221]. According to preclinical studies,
margetuximab exposure in the presence of tebotelimab leads to the upregulation of PD-1
and LAG-3, and enhances the lysis activity of immune cells. Early results from the clinical
trial (NCT0321926) showed a tolerable safety profile and encouraging evidence of anti-
tumor activity in patients with advanced HER2-positive cancers, including breast cancer,
and preliminary evidence of clinical viability [222].
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5. Conclusions and Perspective

The appearance of immunotherapy has led to a paradigm shift in the treatment of
numerous tumors, including breast cancer. ICIs, represented by PD-1/PD-L1 inhibitors, can
effectively improve the prognosis of TNBC patients by overcoming the immunosuppressive
TME and restoring the recognition and killing effects of immune cells on cancer cells.
Clinical trials with PD-1/PD-L1 inhibitors in TNBC are currently being conducted, however,
while promising results have been achieved, several pressing issues have also been revealed.
The benefit of ICI monotherapy is limited, with ORRs ranging from 5% to 23%, and
even many PD-L1-positive populations do not respond to it. We discussed the resistance
mechanisms to ICI treatment, including altered expression and presentation of tumor
antigens, synergistic effects of multiple immune checkpoints, the suppressive effect of TME
and aberrant activation of oncogenic signaling in tumor cells.

Additionally, multiple mechanisms intertwine and crosstalk in the population, with
dynamic counterbalances that affect the physiological and pathological regulation of tumors
and immune cells. Therefore, it is not clinically meaningful to find and modulate the
resistance targets merely, and even the resistance can be re-established quickly, which
cannot completely solve the ICI resistance situation. Screening people who can benefit from
ICI therapy based on the predictors, such as PD-L1 expression, TIL assessment and TMB
detection, is also one of the means to address the current drug resistance situation. More
importantly, the combination of chemotherapy, radiotherapy and targeted therapy will
also improve the response rate of TNBC patients to ICIs, but their effectiveness and safety
need to be confirmed. In addition, we need to focus on how to minimize the incidence of
immune-related adverse events, how to maximize the efficacy and safety of ICI, the dose
tolerated by patients and the optimal duration of dosing, all of which need to be addressed
by conducting more clinical trials.
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