Novel Therapeutic Approaches in Neoplastic Meningitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology
3. Pathogenesis
4. Clinical Features
5. Diagnosis
6. Management
6.1. Symptomatic Management
6.2. Radiotherapy
6.3. Intrathecal Chemotherapy
6.4. Systemic Therapy
6.4.1. Chemotherapy
6.4.2. Targeted Therapies
6.4.3. Immunotherapies
6.4.4. Other Novel Therapies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beauchesne, P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010, 11, 871–879. [Google Scholar] [CrossRef]
- Chorti, E.; Kebir, S.; Ahmed, M.S.; Keyvani, K.; Umutlu, L.; Kanaki, T.; Zaremba, A.; Reinboldt-Jockenhoefer, F.; Knispel, S.; Gratsias, E.; et al. Leptomeningeal disease from melanoma-Poor prognosis despite new therapeutic modalities. Eur. J. Cancer 2021, 148, 395–404. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, L.M. Current diagnosis and treatment of leptomeningeal metastasis. J. Neurooncol. 1998, 38, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.L.; Perez, H.R.; Jacks, L.M.; Panageas, K.S.; Deangelis, L.M. Leptomeningeal metastases in the MRI era. Neurology 2010, 74, 1449–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrino, R.; Rudà, R.; Soffietti, R. Brain Metastasis from Unknown Primary Tumour: Moving from Old Retrospective Studies to Clinical Trials on Targeted Agents. Cancers 2020, 12, 3350. [Google Scholar] [CrossRef]
- Li, Y.S.; Jiang, B.Y.; Yang, J.J.; Tu, H.Y.; Zhou, Q.; Guo, W.B.; Yan, H.H.; Wu, Y.L. Leptomeningeal Metastases in Patients with NSCLC with EGFR Mutations. J. Thorac. Oncol. 2016, 11, 1962–1969. [Google Scholar] [CrossRef] [Green Version]
- Altundag, K.; Bondy, M.L.; Mirza, N.Q.; Kau, S.W.; Broglio, K.; Hortobagyi, G.N.; Rivera, E. Clinicopathologic characteristics and prognostic factors in 420 metastatic breast cancer patients with central nervous system metastasis. Cancer 2007, 110, 2640–2647. [Google Scholar] [CrossRef]
- Andersen, B.M.; Miranda, C.; Hatzoglou, V.; DeAngelis, L.M.; Miller, A.M. Leptomeningeal metastases in glioma: The Memorial Sloan Kettering Cancer Center experience. Neurology 2019, 92, e2483–e2491. [Google Scholar] [CrossRef]
- Norris, L.K.; Grossman, S.A.; Olivi, A. Neoplastic meningitis following surgical resection of isolated cerebellar metastasis: A potentially preventable complication. J. Neurooncol. 1997, 32, 215–223. [Google Scholar] [CrossRef]
- Trifiletti, D.M.; Romano, K.D.; Xu, Z.; Reardon, K.A.; Sheehan, J. Leptomeningeal disease following stereotactic radiosurgery for brain metastases from breast cancer. J. Neurooncol. 2015, 124, 421–427. [Google Scholar] [CrossRef]
- Prabhu, R.S.; Turner, B.E.; Asher, A.L.; Marcrom, S.R.; Fiveash, J.B.; Foreman, P.M.; Press, R.H.; Buchwald, Z.S.; Curran, W.J., Jr.; Patel, K.R.; et al. Leptomeningeal disease and neurologic death after surgical resection and radiosurgery for brain metastases: A multi-institutional analysis. Adv. Radiat. Oncol. 2021, 6, 100644. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Lee, S.H.; Kim, S.; Joo, J.; Yoo, H.; Lee, S.H.; Shin, S.H.; Gwak, H.S. Risk for leptomeningeal seeding after resection for brain metastases: Implication of tumor location with mode of resection. J. Neurosurg. 2012, 116, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Lamba, N.; Sinha, S.; Catalano, P.J.; Bi, W.L.; Alexander, B.M.; Aizer, A.A. Association of Neurosurgical Resection With Development of Pachymeningeal Seeding in Patients With Brain Metastases. JAMA Oncol. 2019, 5, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Omuro, A.M.; Kris, M.G.; Miller, V.A.; Franceschi, E.; Shah, N.; Milton, D.T.; Abrey, L.E. High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer 2005, 103, 2344–2348. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, N.J.; Xue, J.X. Leptomeningeal metastases in non-small cell lung cancer: Diagnosis and treatment. Lung Cancer. 2022, 174, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fidler, I.J.; Yano, S.; Zhang, R.D.; Fujimaki, T.; Bucana, C.D. The seed and soil hypothesis: Vascularisation and brain metastases. Lancet Oncol. 2002, 3, 53–57. [Google Scholar] [CrossRef]
- Leal, T.; Chang, J.E.; Mehta, M.; Robins, H.I. Leptomeningeal Metastasis: Challenges in Diagnosis and Treatment. Curr. Cancer Ther. Rev. 2011, 7, 319–327. [Google Scholar] [CrossRef]
- Chang, E.L.; Lo, S. Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 2003, 8, 398–410. [Google Scholar] [CrossRef] [Green Version]
- Grisold, W.; Grisold, A. Cancer around the brain. Neurooncol Pract. 2014, 1, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.G.; DeSouza, T.G.; Farkash, A.; Shafran, B.; Pack, D.; Rehman, F.; Fuks, J.; Portenoy, R. Leptomeningeal metastases: Comparison of clinical features and laboratory data of solid tumors, lymphomas and leukemias. J. Neurooncol. 1990, 9, 225–229. [Google Scholar] [CrossRef]
- Lara-Medina, F.; Crismatt, A.; Villarreal-Garza, C.; Alvarado-Miranda, A.; Flores-Hernández, L.; González-Pinedo, M.; Gamboa-Vignolle, C.; Ruiz-González, J.D.; Arrieta, O. Clinical features and prognostic factors in patients with carcinomatous meningitis secondary to breast cancer. Breast J. 2012, 18, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Laas, R.; Arnold, H. Compression of the outlets of the leptomeningeal veins--the cause of intracranial plateau waves. Acta Neurochir (Wien) 1981, 58, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.L. Leptomeningeal metastasis from systemic cancer. Continuum. (Minneap. Minn.) 2012, 18, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Lossos, A.; Siegal, T. Numb chin syndrome in cancer patients: Etiology, response to treatment, and prognostic significance. Neurology 1992, 42, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Straathof, C.S.; de Bruin, H.G.; Dippel, D.W.; Vecht, C.J. The diagnostic accuracy of magnetic resonance imaging and cerebrospinal fluid cytology in leptomeningeal metastasis. J. Neurol. 1999, 246, 810–814. [Google Scholar] [CrossRef]
- Singh, S.K.; Leeds, N.E.; Ginsberg, L.E. MR imaging of leptomeningeal metastases: Comparison of three sequences. AJNR Am. J. Neuroradiol. 2002, 23, 817–821. [Google Scholar]
- Glantz, M.J.; Cole, B.F.; Glantz, L.K.; Cobb, J.; Mills, P.; Lekos, A.; Walters, B.C.; Recht, L.D. Cerebrospinal fluid cytology in patients with cancer: Minimizing false-negative results. Cancer 1998, 82, 733–739. [Google Scholar] [CrossRef]
- Lossos, A.; Siegal, T. Spinal subarachnoid hemorrhage associated with leptomeningeal metastases. J. Neurooncol. 1992, 12, 167–171. [Google Scholar] [CrossRef]
- Bigner, S.H. Cerebrospinal fluid (CSF) cytology: Current status and diagnostic applications. J. Neuropathol. Exp. Neurol. 1992, 51, 235–245. [Google Scholar] [CrossRef]
- Malkin, M.G.; Posner, J.B. Cerebrospinal fluid tumor markers for the diagnosis and management of leptomeningeal metastases. Eur. J. Cancer Clin. Oncol. 1987, 23, 1–4. [Google Scholar] [CrossRef]
- Boire, A.; Brandsma, D.; Brastianos, P.K.; Le Rhun, E.; Ahluwalia, M.; Junck, L.; Glantz, M.; Groves, M.D.; Lee, E.Q.; Lin, N.; et al. Liquid biopsy in central nervous system metastases: A RANO review and proposals for clinical applications. Neuro Oncol. 2019, 21, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Bromberg, J.E.; Stetler-Stevenson, M.; Steinberg, S.M.; Martin-Martin, L.; Muñiz, C.; Sancho, J.M.; Caballero, M.D.; Davidis, M.A.; Brooimans, R.A.; et al. Detection and outcome of occult leptomeningeal disease in diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica 2014, 99, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kong, D.S.; Seol, H.J.; Nam, D.H.; Lee, J.I. Ventriculoperitoneal shunt for hydrocephalus caused by central nervous system metastasis. J. Neurooncol. 2011, 104, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.Y.; Chung, W.K.; Oh, I.J. The prognostic significance of surgically treated hydrocephalus in leptomeningeal metastases. Clin. Neurol. Neurosurg. 2014, 119, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Lukas, R.V.; Thakkar, J.P.; Cristofanilli, M.; Chandra, S.; Sosman, J.A.; Patel, J.D.; Kumthekar, P.; Stupp, R.; Lesniak, M.S. Leptomeningeal metastases: The future is now. J. Neurooncol. 2022, 156, 443–452. [Google Scholar] [CrossRef]
- Zima, L.A.; Tulpule, S.; Samson, K.; Shonka, N. Seizure prevalence, contributing factors, and prognostic factors in patients with leptomeningeal disease. J. Neurol. Sci. 2019, 403, 19–23. [Google Scholar] [CrossRef]
- Lumniczky, K.; Szatmári, T.; Sáfrány, G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front. Immunol. 2017, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.H.; Bucci, J.; Browne, L. Randomized comparison of whole brain radiotherapy, 20 Gy in four daily fractions versus 40 Gy in 20 twice-daily fractions, for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 648–654. [Google Scholar] [CrossRef]
- Le Rhun, E.; Weller, M.; Brandsma, D.; Van den Bent, M.; de Azambuja, E.; Henriksson, R.; Boulanger, T.; Peters, S.; Watts, C.; Wick, W.; et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. Ann. Oncol. 2017, 28 (Suppl. 4), iv84–iv99. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; van den Bent, M.; Andratschke, N.; Weller, M. How we treat patients with leptomeningeal metastases. ESMO Open 2019, 4 (Suppl. 2), e000507. [Google Scholar] [CrossRef] [Green Version]
- Zhen, J.; Wen, L.; Lai, M.; Zhou, Z.; Shan, C.; Li, S.; Lin, T.; Wu, J.; Wang, W.; Xu, S.; et al. Whole brain radiotherapy (WBRT) for leptomeningeal metastasis from NSCLC in the era of targeted therapy: A retrospective study. Radiat. Oncol. 2020, 15, 185. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.T.; Wijetunga, N.A.; Pentsova, E.; Wolden, S.; Young, R.J.; Correa, D.; Zhang, Z.; Zheng, J.; Steckler, A.; Bucwinska, W.; et al. Randomized Phase II Trial of Proton Craniospinal Irradiation Versus Photon Involved-Field Radiotherapy for Patients With Solid Tumor Leptomeningeal Metastasis. J. Clin. Oncol. 2022, 40, Jco2201148. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Neoplastic meningitis. Neurologist 2006, 12, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Radioisotope CSF flow studies in leptomeningeal metastases. J. Neurooncol. 1998, 38, 135–140. [Google Scholar] [CrossRef]
- Groves, M.D. Leptomeningeal disease. Neurosurg. Clin. N. Am. 2011, 22, 67–78. [Google Scholar] [CrossRef]
- Esteva, F.J.; Soh, L.T.; Holmes, F.A.; Plunkett, W.; Meyers, C.A.; Forman, A.D.; Hortobagyi, G.N. Phase II trial and pharmacokinetic evaluation of cytosine arabinoside for leptomeningeal metastases from breast cancer. Cancer Chemother. Pharmacol. 2000, 46, 382–386. [Google Scholar] [CrossRef]
- Phuphanich, S.; Maria, B.; Braeckman, R.; Chamberlain, M. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J. Neurooncol. 2007, 81, 201–208. [Google Scholar] [CrossRef]
- Le Rhun, E.; Taillibert, S.; Zairi, F.; Kotecki, N.; Devos, P.; Mailliez, A.; Servent, V.; Vanlemmens, L.; Vennin, P.; Boulanger, T.; et al. A retrospective case series of 103 consecutive patients with leptomeningeal metastasis and breast cancer. J. Neurooncol. 2013, 113, 83–92. [Google Scholar] [CrossRef]
- Glantz, M.J.; Jaeckle, K.A.; Chamberlain, M.C.; Phuphanich, S.; Recht, L.; Swinnen, L.J.; Maria, B.; LaFollette, S.; Schumann, G.B.; Cole, B.F.; et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 1999, 5, 3394–3402. [Google Scholar]
- Chamberlain, M.C. Neoplastic meningitis. Oncologist 2008, 13, 967–977. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Kormanik, P.R. Carcinomatous meningitis secondary to breast cancer: Predictors of response to combined modality therapy. J. Neurooncol. 1997, 35, 55–64. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Kormanik, P. Carcinoma meningitis secondary to non-small cell lung cancer: Combined modality therapy. Arch. Neurol. 1998, 55, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Bokstein, F.; Lossos, A.; Siegal, T. Leptomeningeal metastases from solid tumors: A comparison of two prospective series treated with and without intra-cerebrospinal fluid chemotherapy. Cancer 1998, 82, 1756–1763. [Google Scholar] [CrossRef]
- Kumthekar, P.U.; Avram, M.J.; Lassman, A.B.; Lin, N.U.; Lee, E.; Grimm, S.A.; Schwartz, M.; Bell Burdett, K.L.; Lukas, R.V.; Dixit, K.; et al. A Phase I/II Study of Intrathecal Trastuzumab in HER-2 Positive Cancer with Leptomeningeal Metastases: Safety, Efficacy, and Cerebrospinal Fluid Pharmacokinetics. Neuro Oncol. 2022, 1, noac195. [Google Scholar] [CrossRef]
- Glantz, M.J.; Cole, B.F.; Recht, L.; Akerley, W.; Mills, P.; Saris, S.; Hochberg, F.; Calabresi, P.; Egorin, M.J. High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: Is intrathecal chemotherapy necessary? J. Clin. Oncol. 1998, 16, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Morra, E.; Lazzarino, M.; Brusamolino, E.; Pagnucco, G.; Castagnola, C.; Bernasconi, P.; Orlandi, E.; Corso, A.; Santagostino, A.; Bernasconi, C. The role of systemic high-dose cytarabine in the treatment of central nervous system leukemia. Clinical results in 46 patients. Cancer 1993, 72, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.C.; Lee, J.H.; Lin, C.C.; Chen, Y.F.; Chang, C.H.; Ho, C.C.; Shih, J.Y.; Yu, C.J.; Yang, J.C. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Non-Small-Cell Lung Cancer Patients with Leptomeningeal Carcinomatosis. J. Thorac. Oncol. 2015, 10, 1754–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, P.G.; Reiner, A.S.; Szenberg, O.R.; Clarke, J.L.; Panageas, K.S.; Perez, H.R.; Kris, M.G.; Chan, T.A.; DeAngelis, L.M.; Omuro, A.M. Leptomeningeal metastasis from non-small cell lung cancer: Survival and the impact of whole brain radiotherapy. J. Thorac. Oncol. 2012, 7, 382–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochmair, M. Medical Treatment Options for Patients with Epidermal Growth Factor Receptor Mutation-Positive Non-Small Cell Lung Cancer Suffering from Brain Metastases and/or Leptomeningeal Disease. Target. Oncol. 2018, 13, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, M.T.; Kuo, Y.W.; Ho, C.C. Afatinib combined with cetuximab for lung adenocarcinoma with leptomeningeal carcinomatosis. Lung Cancer 2014, 85, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.H.; Kim, S.W.; Kim, D.W.; Lee, J.S.; Cho, B.C.; Ahn, J.S.; Lee, D.H.; Kim, T.M.; Goldman, J.W.; Natale, R.B.; et al. Osimertinib in Patients With Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer and Leptomeningeal Metastases: The BLOOM Study. J. Clin. Oncol. 2020, 38, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Gadgeel, S.M.; Gandhi, L.; Riely, G.J.; Chiappori, A.A.; West, H.L.; Azada, M.C.; Morcos, P.N.; Lee, R.M.; Garcia, L.; Yu, L.; et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): Results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014, 15, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Arrondeau, J.; Ammari, S.; Besse, B.; Soria, J.C. LDK378 compassionate use for treating carcinomatous meningitis in an ALK translocated non-small-cell lung cancer. J. Thorac. Oncol. 2014, 9, e62–e63. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.Q.M.; Barlesi, F.; Bertino, E.M.; van den Bent, M.J.; Wakelee, H.A.; Wen, P.Y.; Chiu, C.H.; Orlov, S.; Chiari, R.; Majem, M.; et al. ASCEND-7: Efficacy and Safety of Ceritinib Treatment in Patients with ALK-Positive Non-Small Cell Lung Cancer Metastatic to the Brain and/or Leptomeninges. Clin. Cancer Res. 2022, 28, 2506–2516. [Google Scholar] [CrossRef]
- Sun, M.G.; Kim, I.Y.; Kim, Y.J.; Jung, T.Y.; Moon, K.S.; Jung, S.; Oh, I.J.; Kim, Y.C.; Choi, Y.D. Lorlatinib Therapy for Rapid and Dramatic Control of Brain and Spinal Leptomeningeal Metastases From ALK-Positive Lung Adenocarcinoma. Brain Tumor Res. Treat. 2021, 9, 100–105. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
- Bachelot, T.; Romieu, G.; Campone, M.; Diéras, V.; Cropet, C.; Dalenc, F.; Jimenez, M.; Le Rhun, E.; Pierga, J.Y.; Gonçalves, A.; et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): A single-group phase 2 study. Lancet Oncol. 2013, 14, 64–71. [Google Scholar] [CrossRef]
- Freedman, R.A.; Gelman, R.S.; Anders, C.K.; Melisko, M.E.; Parsons, H.A.; Cropp, A.M.; Silvestri, K.; Cotter, C.M.; Componeschi, K.P.; Marte, J.M.; et al. TBCRC 022: A Phase II Trial of Neratinib and Capecitabine for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases. J. Clin. Oncol. 2019, 37, 1081–1089. [Google Scholar] [CrossRef]
- Pellerino, A.; Soffietti, R.; Bruno, F.; Manna, R.; Muscolino, E.; Botta, P.; Palmiero, R.; Rudà, R. Neratinib and Capecitabine for the Treatment of Leptomeningeal Metastases from HER2-Positive Breast Cancer: A Series in the Setting of a Compassionate Program. Cancers 2022, 14, 1192. [Google Scholar] [CrossRef] [PubMed]
- OncLive. Safety and Efficacy of Tucatinib–Trastuzumab-Capecitabine Regimen for Treatment of Leptomeningeal Metastasis in HER2+ Breast Cancer: Results from TBCRC049, A Phase 2 Non-Randomized Study: OncLive; 2022 [updated 11 March 2022]. Available online: https://www.onclive.com/view/safety-efficacy-of-tucatinib-trastuzumab-capecitabine-regimen-for-treatment-of-lm-in-her2-breast-cancer (accessed on 22 October 2022).
- Pérez-García, J.M.; Batista, M.V.; Cortez, P.; Ruiz-Borrego, M.; Cejalvo, J.M.; de la Haba-Rodriguez, J.; Garrigós, L.; Racca, F.; Servitja, S.; Blanch, S.; et al. Trastuzumab Deruxtecan in Patients with Central Nervous System Involvement from HER2-Positive Breast Cancer: The DEBBRAH Trial. Neuro Oncol. 2022, noac144. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.V.; Vidri, R.J.; Deng, M.; Handorf, E.; Olszanski, A.J.; Farma, J.M. Real-world frequency of BRAF testing and utilization of therapies in patients with advanced melanoma. Melanoma Res. 2022, 32, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Rounis, K.; Skribek, M.; Makrakis, D.; De Petris, L.; Agelaki, S.; Ekman, S.; Tsakonas, G. Correlation of Clinical Parameters with Intracranial Outcome in Non-Small Cell Lung Cancer Patients with Brain Metastases Treated with Pd-1/Pd-L1 Inhibitors as Monotherapy. Cancers 2021, 13, 1562. [Google Scholar] [CrossRef]
- Gauvain, C.; Vauléon, E.; Chouaid, C.; Le Rhun, E.; Jabot, L.; Scherpereel, A.; Vinas, F.; Cortot, A.B.; Monnet, I. Intracerebral efficacy and tolerance of nivolumab in non-small-cell lung cancer patients with brain metastases. Lung Cancer 2018, 116, 62–66. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Strickland, M.R.; Lee, E.Q.; Wang, N.; Cohen, J.V.; Chukwueke, U.; Forst, D.A.; Eichler, A.; Overmoyer, B.; Lin, N.U.; et al. Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nat. Commun. 2021, 12, 5954. [Google Scholar] [CrossRef]
- Hendriks, L.E.L.; Bootsma, G.; Mourlanette, J.; Henon, C.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Duchemann, B.; et al. Survival of patients with non-small cell lung cancer having leptomeningeal metastases treated with immune checkpoint inhibitors. Eur. J. Cancer 2019, 116, 182–189. [Google Scholar] [CrossRef]
- Geukes Foppen, M.H.; Brandsma, D.; Blank, C.U.; van Thienen, J.V.; Haanen, J.B.; Boogerd, W. Targeted treatment and immunotherapy in leptomeningeal metastases from melanoma. Ann. Oncol. 2016, 27, 1138–1142. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Sahebjam, S.; Le Rhun, E.; Bachelot, T.; Kabos, P.; Awada, A.; Yardley, D.; Chan, A.; Conte, P.; Diéras, V.; et al. A Phase II Study of Abemaciclib in Patients with Brain Metastases Secondary to Hormone Receptor-Positive Breast Cancer. Clin Cancer Res. 2020, 26, 5310–5319. [Google Scholar] [CrossRef]
- Ferguson, S.D.; Bindal, S.; Bassett, R.L., Jr.; Haydu, L.E.; McCutcheon, I.E.; Heimberger, A.B.; Li, J.; O’Brien, B.J.; Guha-Thakurta, N.; Tetzlaff, M.T.; et al. Predictors of survival in metastatic melanoma patients with leptomeningeal disease (LMD). J. Neurooncol. 2019, 142, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Glitza, I.C.; Rohlfs, M.; Guha-Thakurta, N.; Bassett, R.L., Jr.; Bernatchez, C.; Diab, A.; Woodman, S.E.; Yee, C.; Amaria, R.N.; Patel, S.P.; et al. Retrospective review of metastatic melanoma patients with leptomeningeal disease treated with intrathecal interleukin-2. ESMO Open 2018, 3, e000283. [Google Scholar] [CrossRef] [PubMed]
- John, I.; Foster, A.P.; Haymaker, C.L.; Bassett, R.L.; Lee, J.J.; Rohlfs, M.L.; Richard, J.; Iqbal, M.; McCutcheon, I.E.; Ferguson, S.D.; et al. Intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD). J. Clin. Oncol. 2021, 39 (Suppl. 15), 9519. [Google Scholar] [CrossRef]
- Kumthekar, P.; Tang, S.C.; Brenner, A.J.; Kesari, S.; Piccioni, D.E.; Anders, C.; Carrillo, J.; Chalasani, P.; Kabos, P.; Puhalla, S.; et al. ANG1005, a Brain-Penetrating Peptide-Drug Conjugate, Shows Activity in Patients with Breast Cancer with Leptomeningeal Carcinomatosis and Recurrent Brain Metastases. Clin. Cancer Res. 2020, 26, 2789–2799. [Google Scholar] [CrossRef] [Green Version]
- Kramer, K.; Humm, J.L.; Souweidane, M.M.; Zanzonico, P.B.; Dunkel, I.J.; Gerald, W.L.; Khakoo, Y.; Yeh, S.D.; Yeung, H.W.; Finn, R.D.; et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J. Clin. Oncol. 2007, 25, 5465–5470. [Google Scholar] [CrossRef] [PubMed]
- Hitchins, R.N.; Bell, D.R.; Woods, R.L.; Levi, J.A. A prospective randomized trial of single-agent versus combination chemotherapy in meningeal carcinomatosis. J. Clin. Oncol. 1987, 5, 1655–1662. [Google Scholar] [CrossRef]
- Grossman, S.A.; Finkelstein, D.M.; Ruckdeschel, J.C.; Trump, D.L.; Moynihan, T.; Ettinger, D.S. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J. Clin. Oncol. 1993, 11, 561–569. [Google Scholar] [CrossRef]
- Glantz, M.J.; LaFollette, S.; Jaeckle, K.A.; Shapiro, W.; Swinnen, L.; Rozental, J.R.; Phuphanich, S.; Rogers, L.R.; Gutheil, J.C.; Batchelor, T.; et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J. Clin. Oncol. 1999, 17, 3110–3116. [Google Scholar] [CrossRef]
- Shapiro, W.R.; Schmid, M.; Glantz, M.; Miller, J.J. A randomized phase III/IV study to determine benefit and safety of cytarabine liposome injection for treatment of neoplastic meningitis. J. Clin. Oncol. 2006, 24 (Suppl. 18), 1528. [Google Scholar] [CrossRef]
Type of Nerve Growth | Subgroups | Remarks |
---|---|---|
Mechanical causes | Compression | |
Engulfing | ||
Pushing and stretching of the nerve by mass lesion | ||
Invasion | Direct invasion (local infiltration) | |
Perineural | ||
Endoneurial | ||
Intravascular spread | ||
Metastasis | Isolated intranerval (rare) | |
Perineurial spread | Anterograde | |
Retrograde | ||
Particular patterns: | ||
Spread via nerve scaffolds | ||
Dermatomal spread | ||
Anastomotic spread from one nerve region into another | ||
Tumor invasion—nerve growth | Peripheral nerve sprouting | Observed experimentally |
Growth factors | NGF, NCAM, other local factors promoting nerve growth | |
Angiosoma vs. common anatomical distribution | Concept of metastatic distribution | The angiosoma concept divides the skull into 13 different angiosomas |
Liposomal Cytarabine (n = 31) | Methotrexate (n = 30) | p Value | |
---|---|---|---|
Response (cytology rendered negative and clinical condition stable or improved) | 8 | 6 | 0.76 |
Median duration of response | 39 days | 26 days | 0.31 |
Time before neurological progression | 58 days | 30 days | 0.0068 |
Survival directly linked to the meningitis | 343 days | 98 days | 0.074 |
Median survival | 105 days | 78 days | 0.15 |
Survival > 6 months | 13 | 5 | 0.15 |
Survival > 1 year | 5 | 2 | 0.43 |
Grade 3 toxicity | 24 | 20 | |
Duration of Grade 3 toxicity | 18 days | 11 days | 0.2 |
TWIST | 99 days | 28 days | <0.05 |
Available for Routine Use | Induction | Consolidation | Maintenance | |
---|---|---|---|---|
Methotrexate | Yes | 10–15 mg twice weekly | 10–15 mg once | 10–15 mg once a |
(for 4 weeks) | weekly (for 4 weeks) | month | ||
Thiotepa | Yes | 10 mg twice weekly | 10 mg once weekly | 10 mg once a month |
(for 4 weeks) | (for 4 weeks) | |||
Cytarabine | Yes | 25–100 mg twice | 25–100 mg once | 25–100 mg once a |
weekly (for 4 weeks) | weekly (for 4 weeks) | month | ||
Liposomal | Yes | 50 mg every 2 weeks | 50 mg every 4 weeks | |
cytarabine | (for 8 weeks) | (for 24 weeks) | ||
Topotecan | Yes | 0·4 mg twice weekly | 0·4 mg once per | 0·4 mg twice monthly |
(for 6 weeks) | week (for 6 weeks) | for 4 months, then | ||
monthly thereafter | ||||
Mafosfamide | No | 20 mg once or twice | 20 mg weekly | 20 mg every |
weekly until CSF | 2–6 weeks | |||
remission | ||||
Etoposide | Yes | 0·5 mg/day for 5 days | 0·5 mg/day | 0·5 mg/day for 5 days |
every other week | for 5 days every | once a month | ||
(for 8 weeks) | other week | |||
(for 4 weeks) | ||||
Floxuridine | No | 1 mg/day continued | ||
for as long as possible | ||||
Diaziquone | No | 1–2 mg twice weekly | ||
for few weeks | ||||
Mercaptopurine | No | 10 mg twice weekly for | ||
4 weeks | ||||
Busulfan | No | 5–17 mg twice weekly | ||
for 2 weeks |
Study | Targeted Therapy | Primary Site | Estimated Completion | N | Primary Endpoint (s) | Secondary Endpoint (s) |
---|---|---|---|---|---|---|
NCT04833205 | EGFR-TKI + Nimotuzumab | Lung | April 2023 | 30 | PFS | OS, A/E |
NCT04425681 | Osimertinib + Bevacizumab | Lung | June 2021 | 20 | PFS, ORR | OS, A/E |
NCT04944069 | Almonertinib + Bevacizumab | Lung | March 2025 | 69 | OS | PFS, ORR, DCR, DOR |
NCT04778800 | Almonertinib | Lung | February 2024 | 60 | iPFS | DCR, PFS, OS |
NCT02616393 | Tesevatinib | Lung | April 2018 | 36 | ORR | PFS, OS, TTP, QoL |
NCT05146219 | TY-9591 | Lung | December 2014 | 60 | ORR | DCR, OS, DOR, PFS |
NCT04233021 | Osimertinib | Lung | July 2022 | 113 | ORR | OS, PFS, A/E, QoL |
NCT03257124 | AZD-9291 | Lung | December 2021 | 80 | ORR, OS | DCR, OS, DOR, PFS, A/E |
NCT03711422 | Afatinib | Lung | September 2021 | 25 | PFS, OS, ORR | A/E |
Study | Type of Immunotherapy | Type of Study | Primary Site | N | Therapy | Outcome |
---|---|---|---|---|---|---|
NCT02886525 | Immune checkpoint inhibitor | Phase II | Multiple | 102 | Pembrolizumab | ORR, OS, Extracranial ORR |
NCT04729348 | Immune checkpoint inhibitor | Phase II | Multiple | 19 | Pembrolizumab + lenvatinib | % alive at 6 mth |
NCT03719768 | Immune checkpoint inhibitor | Phase I | Multiple | 16 | Avelumab | Safety, DLT |
NCT04356222 | Immune checkpoint inhibitor | Phase I | NSCLC | 30 | Durvalumab | OS, PFS, AEs |
NCT03696030 | CAR T cells | Phase I | Breast | 39 | HER-2 CAR-T cells | DLT, AEs |
NCT03661424 | Immunomodulator | Phase I | Breast | 16 | Bi-specific antibody (HER2Bi) | AEs: frequency/type/severity/duration |
NCT02308020 [81] | Immunomodulator | Phase II | Breast | 7 * | Abemaciclib | PFS: 5.9 mth OS: 8.4 mth |
Hendriks et al. [79] | Immune checkpoint inhibitor | Retrospective cohort | Lung | 19 | Pembrolizumab or nivolumab | PFS: 2.0 mth OS: 3.7 mth |
Ferguson et al. [82] | Immunomodulator | Retrospective cohort | Melanoma | 178 | IT IL-2, other combinations with chemo | OS: 7.9 mth |
Glitza et al. [83] | Immunomodulator | Retrospective cohort | Melanoma | 43 | chemoradiotherapy | OS: 7.8 mth |
Geukes Foppen et al. [80] | Immune checkpoint inhibitor | Retrospective cohort | Melanoma | 10 ** | Ipilimumab | OS: 15.8 wks |
Study | Treatment Arms | Primary Site | N | Outcome |
---|---|---|---|---|
Hitchins [87] | IT methotrexate | SCLC (29%), Breast (25%), 1o brain (9%), NSCLC (7%), lymphoma (7%) | 44 | ORR: 61% |
IT methotrexate+ IT cytosine arabinoside | ORR: 45% | |||
Grossman [88] | IT methotrexate | Breast (48%), lung (23%), lymphoma (19%) | 52 | OS: 15.9 weeks |
IT thiotepa | OS: 14.1 weeks | |||
Glantz [49] | IT methotrexate | Breast (36%), NSCLC (10%), 1o brain (23%), melanoma (8%), SCLC (7%) | 61 | RR: 20%,OS: 78 days |
IT liposomal cytarabine | RR: 26%, OS: 105 days | |||
Glantz [89] | IT cytosine arabinoside | Lymphoma (100%) | 28 | RR: 15%, OS: 63 days |
IT liposomal cytarabine | RR: 71%, OS: 99 days | |||
Shapiro [90] | IT liposomal cytarabine | Solid tumors (80%), lymphoma (20%) | 128 | PFS: 34 days |
IT cytosine arabinoside | PFS: 50 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosla, A.A.; Saxena, S.; Ozair, A.; Venur, V.A.; Peereboom, D.M.; Ahluwalia, M.S. Novel Therapeutic Approaches in Neoplastic Meningitis. Cancers 2023, 15, 119. https://doi.org/10.3390/cancers15010119
Khosla AA, Saxena S, Ozair A, Venur VA, Peereboom DM, Ahluwalia MS. Novel Therapeutic Approaches in Neoplastic Meningitis. Cancers. 2023; 15(1):119. https://doi.org/10.3390/cancers15010119
Chicago/Turabian StyleKhosla, Atulya Aman, Shreya Saxena, Ahmad Ozair, Vyshak Alva Venur, David M. Peereboom, and Manmeet S. Ahluwalia. 2023. "Novel Therapeutic Approaches in Neoplastic Meningitis" Cancers 15, no. 1: 119. https://doi.org/10.3390/cancers15010119
APA StyleKhosla, A. A., Saxena, S., Ozair, A., Venur, V. A., Peereboom, D. M., & Ahluwalia, M. S. (2023). Novel Therapeutic Approaches in Neoplastic Meningitis. Cancers, 15(1), 119. https://doi.org/10.3390/cancers15010119