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Simple Summary: Skin cancer is a life-threatening condition. It is difficult to diagnose in its early
stages; therefore, we proposed an easy-to-use telemedicine device to tackle skin cancer without
expert intervention. The deep learning model automatically detects skin cancer patches on lesions
with a credit-card-sized device named Raspberry Pi and a small camera. This paper also presents a
digital hair removal algorithm to enhance the quality of medical images for better analysis by medical
experts and AI methods. Our method does not need an expert operator; even ordinary people can
use it with the instruction manual. It will be useful for developing countries or remote places when
there is a scarcity of oncologists.

Abstract: Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose
deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm
for digital hair removal during preprocessing and a MobileNet deep learning model with predefined
weights. The Squeeze algorithm extracts important image features from the image, and the black-hat
filter operation removes noise. The MobileNet model (with a dense neural network) was developed
using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The
proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things
device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision
(AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach,
the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of
skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve
was 98.9%.

Keywords: transfer learning; malignant; IoT; MobileNet; squeezed dataset; AUC-ROC; skin cancer
detection; deep learning

1. Introduction

In today’s world, cancer is a deadly disease. It is the 3rd most common cause of death
among humans, with a 78% death rate at later stages. Skin cancer is an abnormal growth of
skin cells that develops in the body due to sunlight and UV rays [1]. It quickly invades nearby
tissues and spreads to other body parts if not seen at earlier stages. Early diagnosis of skin
cancer is a foundation to improve the outcomes and is correlated with 99% overall survival
(OS) [2,3]. This means there are higher chances of survival in the early stage. According to
the Skin Cancer Foundation (SCF), there is an increase in skin cancer incidence globally [4].
More than 3 million cases will be detected worldwide in the year 2021.

The formal diagnosis method to detect cancer is visual inspection and biopsy. The
primary visual examination includes the assistance of polarized light magnification via der-
moscopy. A patient’s history, social habits, skin color, occupation, ethnicity, and exposure
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to the sun are the critical factors considered during examinations. The laboratory biopsies
the suspected lesion of concern. This method is painful, times consuming, and expensive
for doctors and patients. Without insurance, a skin biopsy costs $10 to $1000 [5]. There is
an urgent need for skin cancer detection based on Artificial Intelligence (AI) to overcome
the above problems.

Embedded devices have lower computing power, and there is a need for low memory-
consuming AI models to work with them with better accuracy. Other researchers proposed
great models, but detection time and memory requirements are higher. Therefore, we used
the selected pretrained model to reduce training time. For better feature extraction, images
have been preprocessed with a digital hair removal algorithm. This process reduced the
computational cost of the model considerably.

Computer-aided diagnostic methods will transform healthcare and medicine. In terms
of dermatology, various diagnostic models using medical images have been performed
as well as clinicians [6]. Recently, deep learning has provided end-to-end solutions to
detect COVID-19 infection, lung cancer, skin lesions, brain and breast tumors, stomach
ulcers, and colon cancer; predict blood sugar levels and heart disease; and detect face
masks [7–12]. Machine learning also contributes to enhancing the mathematical prediction
of cancer cell spreading rate [13]. Ali proposes the novel use of sensory data to predict
the patient’s length of stay in the hospital [14]. There are many deep learning models
proposed by researchers, but very few are suitable for IoT devices. Most AI models require
larger memory space and higher computational power for the best accuracy, but our model
has optimal complexity and better accuracy. Imaging techniques have advanced rapidly;
three-dimensional imaging systems, high-resolution digital cameras, and dermoscopes are
used to obtain high-quality data from cancer patients worldwide. The International Skin
Imaging Collaboration (ISIC) [15] created a digital dataset of skin lesions to facilitate the
computer-aided design. The database includes images of melanomas and non-melanomas,
as well as metadata. Some images are deliberately challenging for deep neural networks
(DNNs) to interpret due to the presence of hair, ink marks, and rulers (Figure 1). Adequate
data preprocessing is required.
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Dr. Anuja Padwal (practicing in Solapur, India) has validated our device, stating that: 
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Figure 1. Challenging skin lesions within the dataset: (a) hair artifact, (b) low contrast, (c) ink marker,
(d) ruler marker, (e) dark corner, (f) low illumination.

Dr. Anuja Padwal (practicing in Solapur, India) has validated our device, stating that:
“Patients have a high chance of survival in the early stages. Therefore, there is a need for
affordable medical care. If we can commercialize this device, it will be used for primary
analysis by a general physician or dermatologist”.

The key contributions of this study are as follows:

• We use a black-hat filter to efficiently clean the dataset and thus improve DNN accuracy
efficiently. As our algorithm removes noise while reducing the size of the dataset, we
call it the “Squeeze algorithm”;

• The architecture provides high accuracy (99.36%) and minimum loss of information
with the transfer learning approach;

• The model was implemented and tested on an Internet of Things (IoT) device (Rasp-
berry Pi 4) with a spy camera and NeoPixel 8-bit LED ring. The model is lightweight,
precise, and optimized for IoT devices;



Cancers 2023, 15, 12 3 of 13

• The Squeeze-MNet outperforms the VGG16, MobileNetV2, and Inception V3 architectures.

The remainder of the work discussed in the paper is organized as follows: in Section 2,
a review or some related work; Section 3 introduces some relevant theoretical methodology
and DNN model architecture; Section 4 is an experimental setup with results and discussion;
Section 5 is the conclusion of the proposed and future work.

2. Literature Review and Related Work

Most studies have used OpenCV and deep learning models for skin cancer classifica-
tion. In early work, Friedman et al. proposed the ABCD (asymmetry, border irregularity,
color, and diameter) abbreviation as a helpful mnemonic for nonprofessional and naive
users aiming to identify common types of skin cancer melanomas at an early stage to
allow early treatment [16]. ABCD helps us distinguish thin tumors and moles from benign
pigmentation at an early stage. Later, ABCD was expanded to ABCDE [17], where E stands
for “evolving”; the lesion is new or changing. Jensen et al. further expanded the ABCDE to
ABCDEF [18], where F stands for a “funny-looking” mark. In [19], a genetic algorithm for
extracting unique features from skin images was presented; the features were examined to
determine if a disease was present [20].

Artificial neural networks (ANNs) are important classifiers [21,22]; their architectures
have been modified to allow verification of nevi images and dataset classification. In [23],
Josue presented an ANN with 99.23% accuracy when using Fourier spectral imaging. In
another study, a convolutional neural network (CNN) detected skin cancer with high
accuracy [24]. Meanwhile, Marwan combined a CNN with a novel regularizer to manage
classification complexity; model accuracy exceeded 97%. Akhilesh et al. achieved a classifi-
cation accuracy rate of 98% using a CNN and the color moments and textural features of
a HAM10000 dataset with 7 different classes [25]. Image segmentation for feature extrac-
tion was combined with a generative adversarial network to improve classification [26].
An ANN classifier is used in this study. Lidia et al. [27] used a CNN with encoder and
decoder architecture to remove hair via segmentation. Restored and original images, but
not accuracy, were compared when evaluating performance.

Although deep learning is superior to hand-crafted feature representation, large
annotated datasets are required, which professional oncologists lack the time to create.
Thus, many studies [28–33] used transfer learning for skin disease classification to extract
useful information from a previous dataset and apply it to a “raw target domain”; this
obviates the need for expensive annotation of target data. Kessem et al. [30] used a pre-
trained model and the GoogLeNet architecture to perform transfer learning using an ISIC
2019 dataset and successfully classified 8 classes of skin lesions using the Inception model;
the accuracy was 94.2%. Hosny et al. used an AlexNet pre-trained model and the MED-
NODE dataset for automated skin lesion classification. The model had a dropout layer
and used the SoftMax activation function. An ImageNet dataset has been used to create
pretrained, fine-tuned models, including MobileNet, InceptionV3, Resnet50, EfficientNet,
and MobilenetV2. In [34], the accuracy of these models for skin cancer classification was
84%. Hari et al. [35] enhanced accuracy and precision to 90% and 89%, respectively, using
the ResNet50 architecture. Even though deep learning models give the best results in cancer
detection, less focus has been given to embedded-based systems. We train and test precise
models on the Raspberry Pi platform with limited computation power.

In the 5G/6G internet era, the IoT is attracting considerable attention. During the
COVID-19 pandemic, it became clear that healthcare IoT (HIoT) devices required artificial
intelligence (AI). However, AI requires a large amount of memory and computing power,
and IoT devices have memory constraints; thus, creating AI for HIoT devices is difficult.
Therefore, we built a lightweight and efficient model trained on the ImageNet dataset to
detect skin cancer.
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3. Methodology

This section describes the Squeeze algorithm and model architecture (including a loss
function). The input dataset (ISIC) is a publicly available data repository that undergoes
regular preprocessing to enhance its quality [36]. Figure 2 depicts the data flow, including
preprocessing, test and training datasets derivation, and model training and testing processes.
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Figure 2. Flow diagram of the Squeeze-MNet model.

3.1. Duplicate Removal and Dataset Preprocessing

Duplicate and blurred images were manually removed, followed by dataset cleaning,
application of a hair removal algorithm, and image augmentation; medical images are sus-
ceptible to noise. Then, we divided the dataset into training and test datasets (~80:20 ratio;
Figure 3).
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3.2. Hair Removal Using the Squeeze Algorithm

The removal of hair artifacts, which are common in dermatoscopic images, is essential
and can be achieved using various complex segmentation techniques [27,37,38]. Our
algorithm removes noise but not crucial information. The images are converted into
grayscale and then subjected to thresholding using a black-hat filter. The hair mask contour
yields a threshold image. OpenCV contains an “inpaint” function that restores a selected
region in an image by reference to the neighboring area. We apply this function in the last
stage to obtain uniform images with minimal information loss. Figure 4 shows the outputs
of each process.
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3.3. Augmentation

This augmentation process consists of image processing operations, such as rotation,
flipping, shear, and scaling on the ISIC dataset. This process leads to better accuracy. It is
useful when the dataset size is small; therefore, this process artificially increases the dataset
size with the available images.

• Zoom range = 0.15%,
• Shear range = 0.15◦,
• Horizontal flip = True,
• Fill mode = nearest,
• Width shift range = 0.2◦.

3.4. Model Architecture

We use a pretrained MobileNet model with predefined weights. Transfer learning
saves time; existing (biased) weights are applied without sacrificing previously learned
features. The head model accepts the outputs of the base model, i.e., the flattened and
dense layers, and employs the Leaky Rectifier Linear Unit (ReLU) activation function to
reduce the risk of overfitting. The “flatten” layer converts all two-dimensional arrays into a
single long vector. The neural network uses the sigmoid activation function. The detailed
architecture is shown in Figure 5. The sizes of the dense layers are 64, 32, and 2. There
are two classification classes, such that either the binary cross-entropy or log loss function
is optimal. The model compares the predicted probabilities to the actual class outputs
(0 or 1) and applies penalties according to the difference between the actual and expected
values [39]. Equation (1) is the loss function:

Log loss =
1
N ∑N

1 −(yi ∗ log(pi) + (1 − yi)∗ log(1 − pi)) (1)

Here, pi is the probability of the “Malignant” class, and (1 − pi) is the probability of
the “Benign” class.
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Figure 5. Model architecture.

4. Result and Discussion
4.1. Experimental Setup

The experiment was performed using an Intel Core i5-7500 3.40GHz processor running
Windows 10 (32 GB of RAM, NVIDIA GeForce GTX 10050Ti graphical processor). The
IoT device was a Raspberry Pi 4 microprocessor with a 64-Gb SD card. A spy camera and
NeoPixel ring were attached to the camera port and main board. The ring ensures that
photographs/videos taken at any time (day or night) are clear. The ring GND, 5V, and
D1 pins were connected to pins 1, 6, and 12 of the Raspberry Pi, respectively. The device
dimensions are 9 × 6.3 × 3.5 cm3. Figure 6 provides images of the device.
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4.2. Hair Removal Algorithm

The algorithm significantly improved model accuracy and precision. Learning curves
were plotted with and without hair removal. In the absence of preprocessing, the ISIC
dataset was 162 MB, but this was dramatically reduced to 36 MB after processing. The
peak signal-to-noise ratio (PSNR) and mean square root error (MSE) were 38.95 and 8.26,
respectively; the reconstructed images were of high quality. The algorithm increased
accuracy and reduced the training time by filtering irrelevant features; training focused
only on important image regions. Figure 7 shows the random noise before and after
processing; noise, but not important information, was removed.
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Table 1 compares our model to other pretrained models used for transfer learning. 
For training, there were 50 epochs and a batch size of 16 in all cases. An IoT model must 
be very accurate, but small in size; Table 1 shows Squeeze-MNet was optimal in terms of 
accuracy, training time, and the AUROC. The training time factor affects the speed of the 
detection; when training time and total extracted features are higher, the model is heavy 
(that is, needs huge memory to run the model), e.g., VGG-16 and Xception. When ex-
tracted features or training time is lower, the model gives less accuracy, such as with Mo-
bilenetV3Small mode. The proposed model gives the best tradeoff of size and accuracy. 
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Figure 7 shows that, after hair removal, the image is uniformly dense, but of lower
intensity; black (score of 0) hairs were removed without losing critical information.

4.3. Squeeze-MNet Model Analysis

Standard metrics were calculated in this study, i.e., accuracy (Equation (2)), specificity
(Equation (3)), sensitivity (Equation (4)), precision (Equation (5)), the false alarm rate
(Equation (6)), and the area under the receiver operating characteristic curve (AUC-ROC)
(Equation (7)):

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Speci f icity =
TN

TN + FP
(3)

Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

False Alarm =
FN

TP + FN
(6)

AUC =
∫ 1

0
f (x)dx (7)

Table 1 compares our model to other pretrained models used for transfer learning.
For training, there were 50 epochs and a batch size of 16 in all cases. An IoT model
must be very accurate, but small in size; Table 1 shows Squeeze-MNet was optimal in
terms of accuracy, training time, and the AUROC. The training time factor affects the
speed of the detection; when training time and total extracted features are higher, the
model is heavy (that is, needs huge memory to run the model), e.g., VGG-16 and Xception.
When extracted features or training time is lower, the model gives less accuracy, such
as with MobilenetV3Small mode. The proposed model gives the best tradeoff of size
and accuracy. Figure 8 shows that the true-positive rate increased over time. ROC curve
(Appendix A, Point 1) construction is necessary to evaluate an unbalanced dataset. The red
line in Figure 8a shows the behavior of the untrained model, and the blue line denotes the
accuracy after learning. The AUC-ROC measures model performance and ranges from 0 to
1. An ideal model has an AURC-ROC of 1; that of our model was 0.989. In Figure 8a, the red
line is the performance of the model without knowledge, and the blue line is the intelligence
gained with each epoch. This is about gaining logic; hence, we named it a logistic skill.
AUC is equivalent to the probability that a randomly chosen positive instance is ranked
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higher than a randomly chosen negative instance. The overall error rate (1-accuracy) is
0.64, which is a combination of false positive and false negative. Both values are mentioned
in the confusion matrix in Figure 8b. Our system does not perform well with false positive
values. In the medical field, false positive is stressful, and false negative is fatal to patients.
AI experts and researchers need to fix this issue.

Table 1. Comparative study with other pretrained models.

Model Accuracy
(%)

Average
Precision (AP) Recall Training

Time (s)
Model Size

(KB)
Total

Parameter
ROC-AUC

(%)

MobileNetV2 85 89 87 1637.3 56,139 6,273,202 0.937

VGG-16 85 88 86 17,048.34 76,385 16,321,458 0.94

InceptionV3 80 83 88 5272.85 1,24,095 25,080,722 0.908

InceptionResNetV2 84 84 87 8945.21 2,42,301 56,795,474 0.929

Xception 82.2 84 84 6391.65 157,050 27,285,146 0.51

MobileNet 88 90 88 1885.62 50,439 6,441,266 0.949

MobileNetV3Small 74 82 90 1521.64 7074 1,596,642 0.829

MobilenetV3Large 76 79 86 1854.94 17,859 4,309,490 0.844

Squeeze-MNet(Proposed) 99.36 98 99 2271.60 50,439 6,441,266 0.989
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The confusion matrix in Figure 8b shows the actual and predicted labels; the false-
positive rate was lower when our model was tested using the validation dataset. Our model
showed high accuracy and precision.

The learning curve (Appendix A, Point 2) shows that accuracy increased after each
epoch because the model was fine-tuned (Appendix A, Point 3), and Leaky ReLU
(Appendix A, Point 4) activation after each dense layer prevented overfitting (Appendix A,
Point 5) and underfitting (Appendix A, Point 6). The Leaky version of ReLU allows only a
small gradient to pass. Figure 9 shows the accuracy and loss by epoch. All the optimization
work has been done by the head network mounted on the MobileNet deep learning model,
as shown in Figure 5. Hyperparameter tuning is also responsible for the robust model. It is
explained in Section 4.4.
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4.4. Hyper-Parameters Tuning

We performed hyperparameter tuning; Table 2 provides details of the best-performing
optimizer, decay constant, number of dense layers, and learning rate. We avoided overfit-
ting and underfitting and focused on predictive accuracy. Hyperparameter optimization
significantly improved model accuracy. The optimal hyperparameters were as follows:

• Optimizers: Adam
• Learning Rate: 0.001
• Weight Decay Values: 0.001
• Dense Layers Level: 3

Table 2. Effects of the changing hyperparameters on the Squeeze-MNet performance.

Optimizer Learning
Rate

Weight
Decay Value

Dense Layer
Level

Time/
Epoch (s) Accuracy F1-Score Recall

Adam 0.001 0.001 3 804 99.56 98 99

Adam 0.001 0.01 3 809 98.01 98.05 97.00

Adam 0.01 0.01 3 801 65.42 95.45 96.02

SGD 0.001 0.001 3 802 97.07 92.30 99.01

SGD 0.001 0.01 3 806 95.23 89.11 97.08

SGD 0.01 0.01 3 800 92.48 88.70 96.12

RMSprop 0.001 0.001 3 815 98.96 97.08 96.99

RMSprop 0.001 0.01 3 802 95.40 92.49 93.00

RMSprop 0.01 0.01 3 806 93.23 91.09 91.89

When the model is evaluated to check false alarms from confusion matrix values, it
gives 0.08%, which is great for medical applications. This means the model predicts the
lowest number of false positive cases. The sensitivity and specificity from the confusion ma-
trix are 95.2% and 96%, respectively. Our model is outperforming in accuracy, lightweight
in terms of memory, and fast due to lower computations. Therefore, it is the most suitable
model for skin cancer detection on IoT devices.

The deep learning model gives consistent performance when trained and tested on a
good dataset. If the input image is not high quality, predictions can be wrong. The current
error rate is lower, and it does not depend on the testing dataset size. In real life, the
prevalence of positives is much lower, but the system does not have a memory to store
previous results and gain knowledge from tested images. Therefore, it will not affect the
efficiency of the system.
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4.5. Comparative Study

We compared our model with traditional methods and deep AI-based models in terms
of accuracy, precision, IoT compatibility, AUROCs, and methodologies (Table 3).

Table 3. Comparison of our model with traditional and AI methods.

Author Method Accuracy (%) ROC-AUC Dataset IoT Compatible

Nilkamal et al. [40] ABCD 90 - - yes

Dang et al. [41] ABCD 96.6 - ISIC Yes

Bandic et al. [42] ABCDE 81.82 - 121 skin lesions Yes

Kumar et al. [43] ANN 97.4 - HAM10000 & PH2 Yes

López-Leyva et al. [24] ANN 99.23 97 Edinburgh Dermofit
Library Yes

Adekanmi et al. [44] FCN-Densenet 98 99 HAM10000 No

Pham et al. [45] EfficientNetB4-CLF 89.97 - CIFAR-10 No

Silvana et al. [46] IR camera & segmentation 91.5 - 400 images Yes

Andre et al. [6] CNN-PA 72.1 91 Edinburgh Dermofit
Library Yes

Uzama et al. [1] GLCM-SVM 95 - 20 images Yes

Bogdan et al. [47] Deep uncertainty
Estimation for skin cancer 98 - ISIC

Rehan et al. [48] K-mean-CNN 97.9 & 97.4 - DermIS & DermQuest Yes

Saleh et al. [49] YOLOv4 98.9 - ISIC 2018&2016 No

Parvathaneri et al. [50] MobilenetV2-LSTM 90.72 - HAM10000 Yes

Marwan [24] CNN 97.5 93 ISIC Yes

Proposed Squeeze-MNet 99.56 98.4 ISIC Yes

5. Conclusions

This study presented the novel Squeeze-MNet model for removing hair from dermo-
scopic images and classifying skin cancers using embedded systems, such as Raspberry
Pi 4. Black-hat filtering during masking removes noise. A MobileNet model with a dense
network architecture was extremely accurate when combined with the Squeeze algorithm
(99.36%). A lightweight model is required for low-power devices; accuracy must be ex-
cellent, and the model size and training time should be small/low. Our model is precise
and accurate. We optimized the hyperparameters and varied the optimizers, learning
rates, and weighted decay values. We objectively compared the performance of our model
with other models; Squeeze-MNet outperformed all other models. A digital hair removal
algorithm has to be used before object detection, which can give a microsecond delay in
detection. The major limitation of the system is that specificity and sensitivity are still lower
than accuracy. For practical application, they have to be higher than current values. If the
model is trained with a high-definition image dataset, we will overcome this issue. Another
limitation is that the model only detects skin cancer, but cannot detect the type of cancer for
further treatment. Currently, Squeeze-MNet is compatible with Raspberry Pi-based devices;
in the future, we plan to make it compatible with Jetson Nano and the Google Coral Board.
Fog and cloud computing may allow for AI implementation. We also plan to produce a
deep learning-based cloud computing platform that minimizes computational costs at the
edge. Although our system detects skin cancer, warts, acne, pimples, and eczema are also
of concern. Ultimately, we aim to identify 35 skin diseases with our system, which will use
AI to help dermatologists.
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Appendix A

1. A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a binary classifier system as its discrimination
threshold is varied. The area under the curve is called AUC-ROC.

2. Learning curves are plots that show changes in learning performance over time
in terms of experience. Learning curves of model performance on the train and
validation datasets can be used to diagnose an underfit, overfit, or well-fit model.
Learning curves of model performance can be used to diagnose whether the train or
validation datasets are not relatively representative of the problem domain.

3. The rectified linear activation function, or ReLU for short, is a piecewise linear function
that will output the input directly if it is positive; otherwise, it will output zero. It has
become the default activation function for many types of neural networks because a
model that uses it is easier to train and often achieves better performance.

4. One way to increase performance even further is to train (or “fine-tune”) the weights
of the top layers of the pre-trained model alongside the training of the classifier added.
The training process will force the weights to be tuned from generic feature maps to
features associated specifically with the dataset.

5. Underfitting means that a model makes accurate, but initially incorrect, predictions.
In this case, the training error is large and the validation/test error is large, too.

6. Overfitting means that a model makes inaccurate predictions. In this case, the train
error is very small and the validation/test error is large.

References
1. Ansari, U.B. Skin Cancer Detection Using Image Processing. Int. Res. J. Eng. Technol. 2017, 4, 2875–2881.
2. Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification methods for diagnosis of skin

cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [CrossRef] [PubMed]
3. Leiter, U.; Claus, G. Epidemiology of melanoma and nonmelanoma skin cancer—The role of sunlight. In Sunlight Vitamin D and

Skin Cancer; Springer: New York, NY, USA, 2008; pp. 89–103.
4. The Skin Cancer Foundation. Available online: https://www.skincancer.org/ (accessed on 15 October 2020).
5. How Much Does a Biopsy Cost? CostHelper. Available online: https://health.costhelper.com (accessed on 20 October 2020).
6. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer

with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]
7. Shinde, R.; Alam, M.; Park, S.; Park, S.; Kim, N. Intelligent IoT (IIoT) Device to Identifying Suspected COVID-19 Infections Using

Sensor Fusion Algorithm and Real-Time Mask Detection Based on the Enhanced MobileNetV2 Model. Healthcare 2022, 10, 454.
[CrossRef]

8. Jacobs, C.; Ginneken, B. Google’s lung cancer AI: A promising tool that needs further validation. Nat. Rev. Clin. Oncol. 2019, 16,
532–533. [CrossRef]

9. McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.;
et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [CrossRef]

10. Polap, D. Analysis of Skin Marks Through the Use of Intelligent Things. IEEE Access 2019, 7, 149355–149363. [CrossRef]

http://doi.org/10.1016/j.compbiomed.2020.104065
http://www.ncbi.nlm.nih.gov/pubmed/33246265
https://www.skincancer.org/
https://health.costhelper.com
http://doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/28117445
http://doi.org/10.3390/healthcare10030454
http://doi.org/10.1038/s41571-019-0248-7
http://doi.org/10.1038/s41586-019-1799-6
http://doi.org/10.1109/ACCESS.2019.2947354


Cancers 2023, 15, 12 12 of 13

11. Shirazi, A.Z.; Fornaciari, E.; Bagherian, N.S.; Ebert, L.M.; Koszyca, B.; Gomez, G.A. DeepSurvNet: Deep survival convolutional
network for brain cancer survival rate classification based on histopathological images. Med. Biol. Eng. Comput. 2020, 58,
1031–1045. [CrossRef]

12. Abràmoff, M.; Lavin, P.; Birch, M. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic reti-nopathy
in primary care offices. NPJ Digit. Med. 2018, 1, 39–49. [CrossRef]

13. Ali, S.; El-Sappagh, S.; Ali, F.; Imran, M.; Abuhmed, T. Multitask Deep Learning for Cost-Effective Prediction of Patient’s Length
of Stay and Readmission State Using Multimodal Physical Activity Sensory Data. IEEE J. Biomed. Health Informatics 2022, 26,
5793–5804. [CrossRef]

14. Subhan, F.; Aziz, M.A.; Khan, I.U.; Fayaz, M.; Wozniak, M.; Shafi, J.; Ijaz, M.F. Cancerous Tumor Controlled Treatment Using
Search Heuristic (GA)-Based Sliding Mode and Synergetic Controller. Cancers 2022, 14, 4191. [CrossRef] [PubMed]

15. ISIC Archive. International Skin Imaging Collaboration. Available online: https://www.isic-archive.com/#!/topWithHeader/
wideContentTop/main (accessed on 3 June 2022).

16. Robert, F.; Darrell, R.; Alfred, W. Early Detection of Malignant Melanoma: The Role of Physician Examination and Self-
Examination of the Skin. A Cancer J. Clin. 1985, 35, 130–151.

17. Abbasi, N.R.; Shaw, H.M.; Rigel, D.S.; Friedman, R.; McCarthy, W.H.; Osman; Kopf, A.W.; Polsky, D. Early diagnosis of cutaneous
melanoma: Revisiting the ABCD criteria. J. Am. Med. Assoc. 2004, 292, 2771–2776. [CrossRef] [PubMed]

18. Jensen, J.D.; Elewski, B. The ABCDEF Rule: Combining the “ABCDE Rule” and the “Ugly Duckling Sign” in an Effort to Improve
Patient Self-Screening Examinations. J. Clin. Aesthetic Derm. 2015, 8, 15–25.

19. Ain, Q.U.; Xue, B.; Al-Sahaf, H.; Zhang, M. Genetic Programming for Feature Selection and Feature Construction in Skin Cancer
Image Classification. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Nanjing, China, 28–31
August 2018; pp. 732–745. [CrossRef]

20. Shahi, P.; Yadav, S.; Singh, N.; Singh, N.P. Melanoma skin cancer detection using various classifiers. In Proceedings of the 5th
IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Go-rakhpur,
India, 2–4 November 2018.

21. Dey, N.; Rajinikanth, A.; Shour, S.; Tavares, M.R. Social group optimization supported segmentation and evaluation of skin
melanoma images. Symmetry 2018, 10, 51. [CrossRef]

22. Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Fröhling, S.;
et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical
melanoma image classification task. Eur. J. Cancer 2019, 111, 148–154. [CrossRef]

23. Lopez-Leyva, J.A.; Guerra-Rosas, E.; Alvarez-Borrego, J. Multi-Class Diagnosis of Skin Lesions Using the Fourier Spectral
Information of Images on Additive Color Model by Artificial Neural Network. IEEE Access 2021, 9, 35207–35216. [CrossRef]

24. Albahar, M.A. Skin Lesion Classification Using Convolutional Neural Network With Novel Regularizer. IEEE Access 2019, 7,
38306–38313. [CrossRef]

25. Sharma, A.K.; Tiwari, S.; Aggarwal, G.; Goenka, N.; Kumar, A.; Chakrabarti, P.; Chakrabarti, T.; Gono, R.; Leonowicz, Z.;
Jasinski, M. Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network
and Handcrafted Features Based Deep Neural Network. IEEE Access 2022, 10, 17920–17932. [CrossRef]

26. Rehman, M.U.; Khan, S.H.; Danish, R.; Abbas, Z.; Zafar, A. Classification of Skin Lesion by Interference of Segmentation and
Convolution Neural Network. In Proceedings of the 2nd International Conference on Engineering Innovation (ICEI), Bangkok,
Thailand, 5–7 July 2018.

27. Talavera-Martinez, L.; Bibiloni, P.; Gonzalez-Hidalgo, M. Hair Segmentation and Removal in Dermoscopic Images Using Deep
Learning. IEEE Access 2020, 9, 2694–2704. [CrossRef]

28. Bian, J.; Zhang, S.; Wang, S.; Zhang, J.; Guo, J. Skin Lesion Classification by Multi-View Filtered Transfer Learning. IEEE Access
2021, 9, 66052–66061. [CrossRef]

29. Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Dorffner, G.; Ellinger, I. Investigating and Exploiting Image Resolution for Transfer
Learning-based Skin Lesion Classification. arXiv 2021, 1, 4047–4053. [CrossRef]

30. Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional
Neural Network and Transfer Learning. IEEE Access 2020, 8, 114822–114832. [CrossRef]

31. Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net.
PLoS ONE 2019, 14, e0217293. [CrossRef]

32. Alqudah, A.M.; Alquraan, H.; Abu Qasmieh, I. Segmented and Non-Segmented Skin Lesions Classification Using Transfer
Learning and Adaptive Moment Learning Rate Technique Using Pretrained Convolutional Neural Network. J. Biomim. Biomater.
Biomed. Eng. 2019, 42, 67–78. [CrossRef]

33. Hosny, K.M.; Kassem, M.A.; Fouad, M.M. Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet.
J. Digit. Imaging 2020, 33, 1325–1334. [CrossRef]

34. Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.; Aboudaif, M.; Kamrani, A. Deep Learning-Based Transfer Learning for Classi-fication
of Skin Cancer. Sensors 2021, 23, 8142. [CrossRef]

35. Kondaveeti, H.K.; Edupuganti, P. Skin Cancer Classification using Transfer Learning. In Proceedings of the IEEE International
Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India, 30 December 2020.

http://doi.org/10.1007/s11517-020-02147-3
http://doi.org/10.1038/s41746-018-0040-6
http://doi.org/10.1109/JBHI.2022.3202178
http://doi.org/10.3390/cancers14174191
http://www.ncbi.nlm.nih.gov/pubmed/36077727
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
http://doi.org/10.1001/jama.292.22.2771
http://www.ncbi.nlm.nih.gov/pubmed/15585738
http://doi.org/10.1007/978-3-319-97304-3_56
http://doi.org/10.3390/sym10020051
http://doi.org/10.1016/j.ejca.2019.02.005
http://doi.org/10.1109/ACCESS.2021.3061873
http://doi.org/10.1109/ACCESS.2019.2906241
http://doi.org/10.1109/ACCESS.2022.3149824
http://doi.org/10.1109/ACCESS.2020.3047258
http://doi.org/10.1109/ACCESS.2021.3076533
http://doi.org/10.1109/icpr48806.2021.9412307
http://doi.org/10.1109/ACCESS.2020.3003890
http://doi.org/10.1371/journal.pone.0217293
http://doi.org/10.4028/www.scientific.net/jbbbe.42.67
http://doi.org/10.1007/s10278-020-00371-9
http://doi.org/10.3390/s21238142


Cancers 2023, 15, 12 13 of 13

36. Skin Cancer Malignant vs benign. Available online: https://www.kaggle.com/datasets/abhikray/skin-cancer-malignant-vs-
benign?select=test (accessed on 20 March 2022).

37. Kim, D.; Hong, B.-W. Unsupervised Feature Elimination via Generative Adversarial Networks: Application to Hair Removal in
Melanoma Classification. IEEE Access 2021, 9, 42610–42620. [CrossRef]

38. Jaworek, J.; Ryszard, T. Hair removal from dermoscopic color images. Bio-Algorithms Med-Syst. 2013, 9, pp. 53–58.
39. Soans, R.V.; Fukumizu, Y. Improved Facial Keypoint Regression Using Attention Modules. In Proceedings of the Communi-cations

in Computer and Information Science, Frontiers of Computer Vision, Hiroshima, Japan, 21–22 February 2022.
40. Ramteke, N.; Jain, S. ABCD rule based automatic computer-aided skin cancer. Int. J. Comput. Technol. Appl. 2013, 4, 691–697.
41. Dang, T.; Prasath, B.; Hieu, L.; Nguyen, H. Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature,

Colour Normalisation and Feature Extraction with the ABCD Rule. J. Digit. Imaging 2020, 33, 574–585.
42. Bandic, J.; Kovacevic, S.; Karabeg, R.; Lazarov, A.; Opric, D. Teledermoscopy for Skin Cancer Prevention: A Comparative Study of

Clinical and Teledermoscopic Diagnosis. Acta Inform. Med. 2020, 28, 37–41. [CrossRef] [PubMed]
43. Manoj, K.; Mohammed, A.; Rayed, A.; Purushottam, S.; Vikas, D. A DE-ANN Inspired Skin Cancer Detection Approach Using

Fuzzy C-Means Clustering. Mob. Netw. Appl. 2020, 25, 1319–1329.
44. Adegun, A.; Viriri, S. FCN-Based DenseNet Framework for Automated Detection and Classification of Skin Lesions in Der-

moscopy Images. IEEE Access 2020, 8, 150377–150396. [CrossRef]
45. Pham, T.-C.; Doucet, A.; Luong, C.-M.; Tran, C.-T.; Hoang, V.-D. Improving Skin-Disease Classification Based on Customized Loss

Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation. IEEE Access 2020, 8, 150725–150737.
[CrossRef]

46. Diaz, S.; Krohmer, T.; Moreira, A.; Godoy, S.E.; Figueroa, M. An Instrument for Accurate and Non-Invasive Screening of Skin
Cancer Based on Multimodal Imaging. IEEE Access 2019, 7, 176646–176657. [CrossRef]

47. Mazoure, B.; Mazoure, A.; Bédard, J.; Makarenkov, V. DUNEScan: A web server for uncertainty estimation in skin cancer detection
with deep neural networks. Sci. Rep. 2022, 12, 179. [CrossRef] [PubMed]

48. Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.-Y.; Maqsood, M. Region-of-Interest
Based Transfer Learning Assisted Framework for Skin Cancer Detection. IEEE Access 2020, 8, 147858–147871. [CrossRef]

49. Saleh, A.; Nudrat, N.; Aun, I.; Muhammad, H.Y.; Muhammad, T.M. Melanoma Lesion Detection and Segmentation using
YOLOv4-DarkNet and Active Contour. IEEE Access 2020, 8, 198403–198414.

50. Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural
networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kaggle.com/datasets/abhikray/skin-cancer-malignant-vs-benign?select=test
https://www.kaggle.com/datasets/abhikray/skin-cancer-malignant-vs-benign?select=test
http://doi.org/10.1109/ACCESS.2021.3065701
http://doi.org/10.5455/aim.2020.28.37-41
http://www.ncbi.nlm.nih.gov/pubmed/32210513
http://doi.org/10.1109/ACCESS.2020.3016651
http://doi.org/10.1109/ACCESS.2020.3016653
http://doi.org/10.1109/ACCESS.2019.2956898
http://doi.org/10.1038/s41598-021-03889-2
http://www.ncbi.nlm.nih.gov/pubmed/34996997
http://doi.org/10.1109/ACCESS.2020.3014701
http://doi.org/10.3390/s21082852

	Introduction 
	Literature Review and Related Work 
	Methodology 
	Duplicate Removal and Dataset Preprocessing 
	Hair Removal Using the Squeeze Algorithm 
	Augmentation 
	Model Architecture 

	Result and Discussion 
	Experimental Setup 
	Hair Removal Algorithm 
	Squeeze-MNet Model Analysis 
	Hyper-Parameters Tuning 
	Comparative Study 

	Conclusions 
	Appendix A
	References

