Controversies in the Front-Line Treatment of Systemic Peripheral T Cell Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Controversies in the Treatment of Systemic Peripheral T Cell Lymphomas
2.1. Should CNS Prophylaxis Be Administered to Patients with Systemic PTCL?
2.2. Should CHOEP Be Preferred over CHOP?
2.3. What Is the Role of Brentuximab Vedotin in the Front-Line?
2.4. When Should Stem Cell Transplant Be Considered in the Front-Line? Should Autologous or Allogeneic SCT Be Preferred?
2.5. How Should Molecular Subtypes Impact Therapeutic Decisions?
2.6. Is There a Role for Targeted Agents beyond BV?
2.6.1. ALK Inhibitors
2.6.2. Histone Deacetylase (HDAC) Inhibitors
2.6.3. Lenalidomide
2.6.4. Azacytidine
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; Swerdlow, S.H., Ed.; International Agency for Research on Cancer: Lyon, France, 2017. [Google Scholar]
- Brink, M.; Meeuwes, F.O.; van der Poel, M.W.M.; Kersten, M.J.; Wondergem, M.; Mutsaers, P.G.N.J.; Böhmer, L.H.; Woei-A-Jin, F.S.H.; Visser, O.; Oostvogels, R.; et al. Impact of etoposide and ASCT on survival among patients aged <65 years with stage II to IV PTCL: A population-based cohort study. Blood 2022, 140, 1009–1019. [Google Scholar] [PubMed]
- Bachy, E.; Camus, V.; Thieblemont, C.; Sibon, D.; Casasnovas, R.-O.; Ysebaert, L.; Damaj, G.; Guidez, S.; Pica, G.M.; Kim, W.S.; et al. Romidepsin Plus CHOP Versus CHOP in Patients with Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA). J. Clin. Oncol. 2022, 40, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Vose, J.; Armitage, J.; Weisenburger, D. International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: Pathology findings and clinical outcomes. J. Clin. Oncol. 2008, 26, 4124–4130. [Google Scholar] [PubMed]
- Moskowitz, A.J.; Lunning, M.A.; Horwitz, S.M. How I treat the peripheral T-cell lymphomas. Blood 2014, 123, 2636–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelos, M.; Ballard, H.; Barta, S. Advances and Personalized Approaches in the Frontline Treatment of T-Cell Lymphomas. J. Pers. Med. 2022, 12, 267. [Google Scholar] [CrossRef]
- Pileri, S.A.; Tabanelli, V.; Fiori, S.; Calleri, A.; Melle, F.; Motta, G.; Lorenzini, D.; Tarella, C.; Derenzini, E. Peripheral T-Cell Lymphoma, Not Otherwise Specified: Clinical Manifestations, Diagnosis, and Future Treatment. Cancers 2021, 13, 4535. [Google Scholar] [CrossRef]
- Mocikova, H.; Pytlík, R.; Benesova, K.; Janikova, A.; Duras, J.; Sykorova, A.; Steinerova, K.; Prochazka, V.; Campr, V.; Belada, D.; et al. Peripheral T-Cell Lymphomas Involving the Central Nervous System: A Report From the Czech Lymphoma Study Group Registry. Front. Oncol. 2022, 12, 874462. [Google Scholar] [CrossRef]
- Chihara, D.; Fanale, M.A.; Miranda, R.N.; Noorani, M.; Westin, J.R.; Nastoupil, L.J.; Hagemeister, F.B.; Fayad, L.E.; Romaguera, J.E.; Samaniego, F.; et al. The risk of central nervous system relapses in patients with peripheral T-cell lymphoma. PLoS ONE 2018, 13, e0191461. [Google Scholar] [CrossRef] [Green Version]
- Ellin, F.; Landström, J.; Jerkeman, M.; Relander, T. Central nervous system relapse in peripheral T-cell lymphomas: A Swedish Lymphoma Registry study. Blood 2015, 126, 36–41. [Google Scholar] [CrossRef]
- Gurion, R.; Mehta, N.; Migliacci, J.C.; Zelenetz, A.; Moskowitz, A.; Lunning, M.; Moskowitz, C.; Hamlin, P.; Horwitz, S. Central nervous system involvement in T-cell lymphoma: A single center experience. Acta Oncol. 2016, 55, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Mak, V.; Hamm, J.; Chhanabhai, M.; Shenkier, T.; Klasa, R.; Sehn, L.H.; Villa, D.; Gascoyne, R.D.; Connors, J.M.; Savage, K.J. Survival of Patients with Peripheral T-Cell Lymphoma after First Relapse or Progression: Spectrum of Disease and Rare Long-Term Survivors. J. Clin. Oncol. 2013, 31, 1970–1976. [Google Scholar] [CrossRef]
- Yi, J.H.; Kim, J.H.; Baek, K.K.; Lim, T.; Lee, D.J.; Ahn, Y.C.; Kim, K.; Kim, S.J.; Ko, Y.H.; Kim, W.S. Elevated LDH and paranasal sinus involvement are risk factors for central nervous system involvement in patients with peripheral T-cell lymphoma. Ann. Oncol. 2011, 22, 1636–1643. [Google Scholar] [CrossRef]
- Teshima, T.; Akashi, K.; Shibuya, T.; Taniguchi, S.; Okamura, T.; Harada, M.; Sumida, I.; Hanada, M.; Niho, Y. Central nervous system involvement in adult T-cell leukemia/lymphoma. Cancer 1990, 65, 327–332. [Google Scholar] [CrossRef]
- Orellana-Noia, V.M.; Reed, D.R.; McCook, A.A.; Sen, J.M.; Barlow, C.M.; Malecek, M.-K.; Watkins, M.; Kahl, B.S.; Spinner, M.A.; Advani, R.; et al. Single-route CNS prophylaxis for aggressive non-Hodgkin lymphomas: Real-world outcomes from 21 US academic institutions. Blood 2022, 139, 413–423. [Google Scholar] [CrossRef]
- Wilson, M.R.; Eyre, T.A.; Kirkwood, A.A.; Doo, N.W.; Soussain, C.; Choquet, S.; Martinez-Calle, N.; Preston, G.; Ahearne, M.; Schorb, E.; et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: A multicenter international analysis of 1384 patients. Blood 2022, 139, 2499–2511. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, X.; Liu, L.; Zeng, H.; Li, Z.; Xu, B. The role of central nervous system (CNS) prophylaxis in preventing DLBCL patients from CNS relapse: A network meta-analysis. Crit. Rev. Oncol. Hematol. 2022, 176, 103756. [Google Scholar] [CrossRef]
- Schmitz, N.; Trümper, L.; Ziepert, M.; Nickelsen, M.; Ho, A.D.; Metzner, B.; Peter, N.; Loeffler, M.; Rosenwald, A.; Pfreundschuh, M. Treatment and prognosis of mature T-cell and NK-cell lymphoma: An analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood 2010, 116, 3418–3425. [Google Scholar] [CrossRef] [Green Version]
- Janikova, A.; Chloupkova, R.; Campr, V.; Klener, P.; Hamouzova, J.; Belada, D.; Prochazka, V.; Pytlik, R.; Pirnos, J.; Duras, J.; et al. First-line therapy for T cell lymphomas: A retrospective population-based analysis of 906 T cell lymphoma patients. Ann. Hematol. 2019, 98, 1961–1972. [Google Scholar] [CrossRef]
- Shustov, A.; Cabrera, M.E.; Civallero, M.; Bellei, M.; Ko, Y.H.; Manni, M.; Skrypets, T.; Horwitz, S.M.; De Souza, C.A.; Radford, J.A.; et al. ALK-negative anaplastic large cell lymphoma: Features and outcomes of 235 patients from the International T-Cell Project. Blood Adv. 2021, 5, 640–648. [Google Scholar] [CrossRef]
- Ellin, F.; Landström, J.; Jerkeman, M.; Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: A study from the Swedish Lymphoma Registry. Blood 2014, 124, 1570–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederleuf, H.; Pedersen, M.B.; Jerkeman, M.; Relander, T.; D’Amore, F.; Ellin, F. The addition of etoposide to CHOP is associated with improved outcome in ALK+ adult anaplastic large cell lymphoma: A Nordic Lymphoma Group study. Br. J. Haematol. 2017, 178, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibon, D. Peripheral T-Cell Lymphomas: Therapeutic Approaches. Cancers 2022, 14, 2332. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Guss, Z.D.; Courtney, P.T.; Nalawade, V.; Sheridan, P.; Sarkar, R.R.; Banegas, M.P.; Rose, B.S.; Xu, R.; Murphy, J.D. Evaluation of the Use of Cancer Registry Data for Comparative Effectiveness Research. JAMA Netw. Open 2020, 3, e2011985. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Prasad, V. Characteristics of Registered Studies of Chimeric Antigen Receptor Therapies: A Systematic Review. JAMA Netw. Open 2021, 4, e2115668. [Google Scholar] [CrossRef]
- Soni, P.D.; Hartman, H.E.; Dess, R.T.; Abugharib, A.; Allen, S.G.; Feng, F.Y.; Zietman, A.L.; Jagsi, R.; Schipper, M.J.; Spratt, D.E. Comparison of Population-Based Observational Studies with Randomized Trials in Oncology. J. Clin. Oncol. 2019, 37, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- d’Amore, F.; Gaulard, P.; Trümper, L.; Corradini, P.; Kim, W.-S.; Specht, L.; Pedersen, M.B.; Ladetto, M. Peripheral T-cell lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v108–v115. [Google Scholar] [CrossRef] [Green Version]
- Fanale, M.A.; Horwitz, S.M.; Forero-Torres, A.; Bartlett, N.L.; Advani, R.H.; Pro, B.; Chen, R.W.; Davies, A.; Illidge, T.; Uttarwar, M.; et al. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood 2018, 131, 2120–2124. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Advani, R.H.; Bartlett, N.L.; Jacobsen, E.D.; Sharman, J.P.; O’Connor, O.A.; Siddiqi, T.; Kennedy, D.A.; Oki, Y. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 2014, 123, 3095–3100. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet 2019, 393, 229–240. [Google Scholar] [CrossRef]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Trümper, L.; Iyer, S.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann. Oncol. 2022, 33, 288–298. [Google Scholar] [CrossRef] [PubMed]
- d’Amore, F.; Relander, T.; Lauritzsen, G.F.; Jantunen, E.; Hagberg, H.; Anderson, H.; Holte, H.; Österborg, A.; Merup, M.; Brown, P.; et al. Up-Front Autologous Stem-Cell Transplantation in Peripheral T-Cell Lymphoma: NLG-T-01. J. Clin. Oncol. 2012, 30, 3093–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, P.; Rüdiger, T.; Geissinger, E.; Weissinger, F.; Nerl, C.; Schmitz, N.; Engert, A.; Einsele, H.; Müller-Hermelink, H.K.; Wilhelm, M. Autologous Stem-Cell Transplantation As First-Line Therapy in Peripheral T-Cell Lymphomas: Results of a Prospective Multicenter Study. J. Clin. Oncol. 2009, 27, 106–113. [Google Scholar] [CrossRef]
- Abeyakoon, C.; van der Weyden, C.; Harrop, S.; Khot, A.; Dickinson, M.; Yannakou, C.K.; Prince, H.M. Role of Haematopoietic Stem Cell Transplantation in Peripheral T-Cell Lymphoma. Cancers 2020, 12, 3125. [Google Scholar] [CrossRef] [PubMed]
- Savage, K.J.; Horwitz, S.M.; Advani, R.; Christensen, J.H.; Domingo-Domenech, E.; Rossi, G.; Morschhauser, F.; Alpdogan, O.; Suh, C.; Tobinai, K.; et al. Role of stem cell transplant in CD30+ PTCL following frontline brentuximab vedotin plus CHP or CHOP in ECHELON-2. Blood Adv. 2022, 6, 5550–5555. [Google Scholar] [CrossRef]
- García-Sancho, A.M.; Bellei, M.; López-Parra, M.; Gritti, G.; Cortés, M.; Novelli, S.; Panizo, C.; Petrucci, L.; Gutiérrez, A.; Dlouhy, I.; et al. Autologous stem-cell transplantation as consolidation of first-line chemotherapy in patients with peripheral T-cell lymphoma: A multicenter GELTAMO/FIL study. Haematologica 2022, 107, 2675–2684. [Google Scholar] [CrossRef]
- Advani, R.H.; Skrypets, T.; Civallero, M.; Spinner, M.A.; Manni, M.; Kim, W.S.; Shustov, A.R.; Horwitz, S.M.; Hitz, F.; Cabrera, M.E.; et al. Outcomes and prognostic factors in angioimmunoblastic T-cell lymphoma: Final report from the international T-cell Project. Blood 2021, 138, 213–220. [Google Scholar] [CrossRef]
- Park, S.I.; Horwitz, S.M.; Foss, F.M.; Pinter-Brown, L.C.; Carson, K.R.; Rosen, S.T.; Pro, B.; Hsi, E.D.; Federico, M.; Gisselbrecht, C.; et al. The role of autologous stem cell transplantation in patients with nodal peripheral T-cell lymphomas in first complete remission: Report from COMPLETE, a prospective, multicenter cohort study. Cancer 2019, 125, 1507–1517. [Google Scholar] [CrossRef]
- Fossard, G.; Broussais, F.; Coelho, I.; Bailly, S.; Nicolas-Virelizier, E.; Toussaint, E.; Lancesseur, C.; Le Bras, F.; Willems, E.; Tchernonog, E.; et al. Role of up-front autologous stem-cell transplantation in peripheral T-cell lymphoma for patients in response after induction: An analysis of patients from LYSA centers. Ann. Oncol. 2018, 29, 715–723. [Google Scholar] [CrossRef]
- Abramson, J.S.; Feldman, T.; Kroll-Desrosiers, A.R.; Muffly, L.S.; Winer, E.; Flowers, C.R.; Lansigan, F.; Nabhan, C.; Nastoupil, L.J.; Nath, R.; et al. Peripheral T-cell lymphomas in a large US multicenter cohort: Prognostication in the modern era including impact of frontline therapy. Ann. Oncol. 2014, 25, 2211–2217. [Google Scholar] [CrossRef]
- Badwe, R.; Hawaldar, R.; Nair, N.; Kaushik, R.; Parmar, V.; Siddique, S.; Budrukkar, A.; Mittra, I.; Gupta, S. Locoregional treatment versus no treatment of the primary tumour in metastatic breast cancer: An open-label randomised controlled trial. Lancet Oncol. 2015, 16, 1380–1388. [Google Scholar] [CrossRef]
- Khan, S.A.; Zhao, F.; Solin, L.J.; Goldstein, L.J.; Cella, D.; Basik, M.; Golshan, M.; Julian, T.B.; Pockaj, B.A.; Lee, C.A.; et al. A randomized phase III trial of systemic therapy plus early local therapy versus systemic therapy alone in women with de novo stage IV breast cancer: A trial of the ECOG-ACRIN Research Group (E2108). J. Clin. Oncol. 2020, 38, LBA2. [Google Scholar] [CrossRef]
- Gera, R.; Chehade, H.E.L.H.; Wazir, U.; Tayeh, S.; Kasem, A.; Mokbel, K. Locoregional therapy of the primary tumour in de novo stage IV breast cancer in 216 066 patients: A meta-analysis. Sci. Rep. 2020, 10, 2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.B.; Byar, D.P. Using observational data from registries to compare treatments: The fallacy of omnimetrics. Stat. Med. 1984, 3, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant. 2022, 57, 1217–1239. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.M.; Zelenetz, A.D.; Gordon, L.I.; Wierda, W.G.; Abramson, J.S.; Advani, R.H.; Andreadis, C.B.; Bartlett, N.; Byrd, J.C.; Fayad, L.E.; et al. NCCN Guidelines Insights: Non-Hodgkin’s Lymphomas, Version 3.2016. J. Natl. Compr. Cancer Netw. 2016, 14, 1067–1079. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Calle, N.; Kirkwood, A.A.; Lamb, M.; Smith, A.; Khwaja, J.; Manos, K.; Shrubsole, C.; Gray, N.; Lewis, K.; Tivey, A.; et al. Systemic ALCL Treated in Routine Clinical Practice: Outcomes Following First-Line Chemotherapy from a Multicentre Cohort. Adv. Ther. 2021, 38, 3789–3802. [Google Scholar] [CrossRef]
- Noring, K.; Carlsten, M.; Sonnevi, K.; Wahlin, B.E. The value of complete remission according to positron emission tomography prior to autologous stem cell transplantation in lymphoma: A population-based study showing improved outcome. BMC Cancer 2021, 21, 500. [Google Scholar] [CrossRef]
- Kharfan-Dabaja, M.A.; Kumar, A.; Ayala, E.; Hamadani, M.; Reimer, P.; Gisselbrecht, C.; d’Amore, F.; Jantunen, E.; Ishida, T.; Bazarbachi, A.; et al. Clinical Practice Recommendations on Indication and Timing of Hematopoietic Cell Transplantation in Mature T Cell and NK/T Cell Lymphomas: An International Collaborative Effort on Behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1826–1838. [Google Scholar]
- Le Gouill, S.; Milpied, N.; Buzyn, A.; De Latour, R.P.; Vernant, J.-P.; Mohty, M.; Moles, M.P.; Bouabdallah, K.; Bulabois, C.E.; Dupuis, J.; et al. Graft-Versus-Lymphoma Effect for Aggressive T-Cell Lymphomas in Adults: A Study by the Société Française de Greffe de Moëlle et de Thérapie Cellulaire. J. Clin. Oncol. 2008, 26, 2264–2271. [Google Scholar] [CrossRef]
- Kyriakou, C.; Canals, C.; Finke, J.; Kobbe, G.; Harousseau, J.-L.; Kolb, H.-J.; Novitzky, N.; Goldstone, A.H.; Sureda, A.; Schmitz, N. Allogeneic Stem Cell Transplantation Is Able to Induce Long-Term Remissions in Angioimmunoblastic T-Cell Lymphoma: A Retrospective Study From the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 2009, 27, 3951–3958. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kim, S.; Deol, A.; Uberti, J.P.; Modi, D. Allogeneic hematopoietic stem cell transplantation in T-cell lymphoma: A Meta-Analysis. Leuk. Lymphoma 2022, 63, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yu, D.; Han, X.; Zhu, L.; Huang, Z. Comparison of Allogeneic Stem Cell Transplant and Autologous Stem Cell Transplant in Refractory or Relapsed Peripheral T-Cell Lymphoma. JAMA Netw. Open 2021, 4, e219807. [Google Scholar] [CrossRef]
- Schmitz, N.; Truemper, L.; Bouabdallah, K.; Ziepert, M.; Leclerc, M.; Cartron, G.; Jaccard, A.; Reimer, P.; Wagner, E.; Wilhelm, M.; et al. A randomized phase 3 trial of autologous vs allogeneic transplantation as part of first-line therapy in poor-risk peripheral T-NHL. Blood 2021, 137, 2646–2656. [Google Scholar] [PubMed]
- Smith, S.M.; Burns, L.J.; van Besien, K.; LeRademacher, J.; He, W.; Fenske, T.S.; Suzuki, R.; Hsu, J.W.; Schouten, H.C.; Hale, G.A.; et al. Hematopoietic Cell Transplantation for Systemic Mature T-Cell Non-Hodgkin Lymphoma. J. Clin. Oncol. 2013, 31, 3100–3109. [Google Scholar] [CrossRef]
- Hamadani, M.; Ngoya, M.; Sureda, A.; Bashir, Q.; Litovich, C.A.; Finel, H.; Chen, Y.; Boumendil, A.; Zain, J.; Castagna, L.; et al. Outcome of allogeneic transplantation for mature T-cell lymphomas: Impact of donor source and disease characteristics. Blood Adv. 2022, 6, 920–930. [Google Scholar] [CrossRef]
- Mamez, A.-C.; Dupont, A.; Blaise, D.; Chevallier, P.; Forcade, E.; Ceballos, P.; Mohty, M.; Suarez, F.; Beguin, Y.; Peffault De Latour, R.; et al. Allogeneic stem cell transplantation for peripheral T cell lymphomas: A retrospective study in 285 patients from the Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC). J. Hematol. Oncol. 2020, 13, 56. [Google Scholar] [CrossRef]
- Epperla, N.; Ahn, K.W.; Litovich, C.; Ahmed, S.; Battiwalla, M.; Cohen, J.B.; Dahi, P.; Farhadfar, N.; Farooq, U.; Freytes, C.O.; et al. Allogeneic hematopoietic cell transplantation provides effective salvage despite refractory disease or failed prior autologous transplant in angioimmunoblastic T-cell lymphoma: A CIBMTR analysis. J. Hematol. Oncol. 2019, 12, 6. [Google Scholar] [CrossRef]
- Castellar, E.R.P.; Jaffe, E.S.; Said, J.W.; Swerdlow, S.H.; Ketterling, R.P.; Knudson, R.A.; Sidhu, J.S.; Hsi, E.D.; Karikehalli, S.; Jiang, L.; et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014, 124, 1473–1480. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.B.; Hamilton-Dutoit, S.J.; Bendix, K.; Ketterling, R.P.; Bedroske, P.P.; Luoma, I.M.; Sattler, C.A.; Boddicker, R.L.; Bennani, N.N.; Nørgaard, P.; et al. DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: A Danish cohort study. Blood 2017, 130, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Luchtel, R.A.; Dasari, S.; Oishi, N.; Pedersen, M.B.; Hu, G.; Rech, K.L.; Ketterling, R.P.; Sidhu, J.; Wang, X.; Katoh, R.; et al. Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 2018, 132, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Hapgood, G.; Ben-Neriah, S.; Mottok, A.; Lee, D.G.; Robert, K.; Villa, D.; Sehn, L.H.; Connors, J.M.; Gascoyne, R.D.; Feldman, A.L.; et al. Identification of high-risk DUSP 22-rearranged ALK-negative anaplastic large cell lymphoma. Br. J. Haematol. 2019, 186, e28–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klairmont, M.M.; Ward, N. Co-occurring rearrangements of DUSP22 and TP63 define a rare genetic subset of ALK-negative anaplastic large cell lymphoma with inferior survival outcomes. Leuk. Lymphoma 2022, 63, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Wright, G.; Wang, C.; Rosenwald, A.; Gascoyne, R.D.; Weisenburger, D.D.; Greiner, T.C.; Smith, L.; Guo, S.; Wilcox, R.A.; et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 2014, 123, 2915–2923. [Google Scholar] [CrossRef] [Green Version]
- Heavican, T.B.; Bouska, A.; Yu, J.; Lone, W.; Amador, C.; Gong, Q.; Zhang, W.; Li, Y.; Dave, B.J.; Nairismägi, M.L.; et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 2019, 133, 1664–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Feldman, A.L.; Wada, D.A.; Lu, Y.; Polk, A.; Briski, R.; Ristow, K.; Habermann, T.M.; Thomas, D.; Ziesmer, S.C.; et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 2014, 123, 3007–3015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amador, C.; Greiner, T.C.; Heavican, T.B.; Smith, L.M.; Galvis, K.T.; Lone, W.; Bouska, A.; D’Amore, F.; Pedersen, M.B.; Pileri, S.; et al. Reproducing the molecular subclassification of peripheral T-cell lymphoma–NOS by immunohistochemistry. Blood 2019, 134, 2159–2170. [Google Scholar] [CrossRef]
- Herek, T.A.; Bouska, A.; Lone, W.G.; Sharma, S.; Amador, C.; Heavican-Foral, T.B.; Li, Y.; Wei, Q.; Jochum, D.; Greiner, T.C.; et al. DNMT3A mutations define a unique biological and prognostic subgroup associated with cytotoxic T-cells in PTCL-NOS. Blood 2022, 140, 1278–1290. [Google Scholar] [CrossRef]
- Zain, J.M.; Hanona, P. Aggressive T-cell lymphomas: 2021 Updates on diagnosis, risk stratification and management. Am. J. Hematol. 2021, 96, 1027–1046. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, L.; Sun, Y.; Stebbing, J.; Selvaggi, G.; Zhang, Y.; Yu, Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front. Oncol. 2022, 12, 863461. [Google Scholar] [CrossRef]
- Zeng, Y.; Feldman, A.L. Genetics of anaplastic large cell lymphoma. Leuk. Lymphoma 2016, 57, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Passerini, C.G.; Farina, F.; Stasia, A.; Redaelli, S.; Ceccon, M.; Mologni, L.; Messa, C.; Guerra, L.; Giudici, G.; Sala, E.; et al. Crizotinib in Advanced, Chemoresistant Anaplastic Lymphoma Kinase–Positive Lymphoma Patients. J. Natl. Cancer Inst. 2014, 106, djt378. [Google Scholar]
- Gambacorti-Passerini, C.; Orlov, S.; Zhang, L.; Braiteh, F.; Huang, H.; Esaki, T.; Horibe, K.; Ahn, J.S.; Beck, J.T.; Edenfield, W.J.; et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): A phase 1b open-label study. Am. J. Hematol. 2018, 93, 607–614. [Google Scholar] [CrossRef]
- Mossé, Y.P.; Voss, S.D.; Lim, M.S.; Rolland, D.; Minard, C.G.; Fox, E.; Adamson, P.; Wilner, K.; Blaney, S.M.; Weigel, B.J. Targeting ALK with Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children’s Oncology Group Study. J. Clin. Oncol. 2017, 35, 3215–3221. [Google Scholar] [CrossRef]
- Fukano, R.; Mori, T.; Sekimizu, M.; Choi, I.; Kada, A.; Saito, A.M.; Asada, R.; Takeuchi, K.; Terauchi, T.; Tateishi, U.; et al. Alectinib for relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: An open-label phase II trial. Cancer Sci. 2020, 111, 4540–4547. [Google Scholar] [CrossRef] [PubMed]
- Verran, J.; Mathavan, V. Alectinib Monotherapy in Isolated Central Nervous System Relapse of ALK-Positive Anaplastic Large Cell Lymphoma. Case Rep. Hematol. 2022, 2022, 4749452. [Google Scholar] [CrossRef]
- Subbiah, V.; Kuravi, S.; Ganguly, S.; Welch, D.R.; Vivian, C.J.; Mushtaq, M.U.; Hegde, A.; Iyer, S.; Behrang, A.; Ali, S.M.; et al. Precision therapy with anaplastic lymphoma kinase inhibitor ceritinib in ALK-rearranged anaplastic large cell lymphoma. ESMO Open 2021, 6, 100172. [Google Scholar] [CrossRef] [PubMed]
- Mellacheruvu, S.; Sayegh, M.N.; Sica, R.A.; Cheng, H.; Santos-Zabala, M.L.; Gebrael, J.H.; Hermanto, U.; Rosen, N.L. Lymphomatous Meningitis From Anaplastic Lymphoma Kinase+ Anaplastic Large T-Cell Lymphoma Treated with Lorlatinib: A Case Report. JCO Precis. Oncol. 2022, 6, e2100250. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J. Hematol. Oncol. 2014, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; et al. Results From a Pivotal, Open-Label, Phase II Study of Romidepsin in Relapsed or Refractory Peripheral T-Cell Lymphoma after Prior Systemic Therapy. J. Clin. Oncol. 2012, 30, 631–636. [Google Scholar] [CrossRef]
- Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 2011, 117, 5827–5834. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Dong, M.; Hong, X.; Zhang, W.; Feng, J.; Zhu, J.; Yu, L.; Ke, X.; Huang, H.; Shen, Z.; et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann. Oncol. 2015, 26, 1766–1771. [Google Scholar] [CrossRef]
- Gribben, J.G.; Fowler, N.; Morschhauser, F. Mechanisms of Action of Lenalidomide in B-Cell Non-Hodgkin Lymphoma. J. Clin. Oncol. 2015, 33, 2803–2811. [Google Scholar] [CrossRef] [Green Version]
- Morschhauser, F.; Fitoussi, O.; Haioun, C.; Thieblemont, C.; Quach, H.; Delarue, R.; Glaisner, S.; Gabarre, J.; Bosly, A.; Lister, J.; et al. A phase 2, multicentre, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide (Revlimid®) in subjects with relapsed or refractory peripheral T-cell non-Hodgkin lymphoma: The EXPECT trial. Eur. J. Cancer 2013, 49, 2869–2876. [Google Scholar] [CrossRef]
- Toumishey, E.; Prasad, A.; Dueck, G.; Chua, N.; Finch, D.; Johnston, J.; van der Jagt, R.; Stewart, D.; White, D.; Belch, A.; et al. Final report of a phase 2 clinical trial of lenalidomide monotherapy for patients with T-cell lymphoma. Cancer 2015, 121, 716–723. [Google Scholar] [CrossRef]
- Dueck, G.; Chua, N.; Prasad, A.; Finch, D.; Stewart, D.; White, D.; van der Jagt, R.; Johnston, J.; Belch, A.; Reiman, T. Interim report of a phase 2 clinical trial of lenalidomide for T-cell non-Hodgkin lymphoma. Cancer 2010, 116, 4541–4548. [Google Scholar] [CrossRef]
- Mehta-Shah, N.; Lunning, M.A.; Moskowitz, A.J.; Boruchov, A.M.; Ruan, J.; Lynch, P.; Hamlin, P.A.; Leonard, J.; Matasar, M.J.; Myskowski, P.L.; et al. Romidepsin and lenalidomide-based regimens have efficacy in relapsed/refractory lymphoma: Combined analysis of two phase I studies with expansion cohorts. Am. J. Hematol. 2021, 96, 1211–1222. [Google Scholar] [CrossRef]
- Lemonnier, F.; Safar, V.; Beldi-Ferchiou, A.; Cottereau, A.-S.; Bachy, E.; Cartron, G.; Fataccioli, V.; Pelletier, L.; Robe, C.; Letourneau, A.; et al. Integrative analysis of a phase 2 trial combining lenalidomide with CHOP in angioimmunoblastic T-cell lymphoma. Blood Adv. 2021, 5, 539–548. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Falchi, L.; Lue, J.K.; Marchi, E.; Kinahan, C.; Sawas, A.; Deng, C.; Montanari, F.; Amengual, J.E.; Kim, H.A.; et al. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: A multicenter phase 1 study. Blood 2019, 134, 1395–1405. [Google Scholar] [CrossRef]
- Falchi, L.; Ma, H.; Klein, S.; Lue, J.K.; Montanari, F.; Marchi, E.; Deng, C.; Kim, H.A.; Rada, A.; Jacob, A.T.; et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study. Blood 2021, 137, 2161–2170. [Google Scholar] [CrossRef]
- Lemonnier, F.; Dupuis, J.; Sujobert, P.; Tournillhac, O.; Cheminant, M.; Sarkozy, C.; Pelletier, L.; Marçais, A.; Robe, C.; Fataccioli, V.; et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 2018, 132, 2305–2309. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, J.; Tsukasaki, J.; Bachy, E.; Morshhauser, F.; Cartron, G.; Fukuhara, N.; Daguindau, N.; Casasnovas, R.O.; Snauwaert, S.; Gressin, R.; et al. Oral Azacytidine in Patients with Relapsed/Refractory Angioimmunoblastic T-Cell Lymphoma: Final Analysis of the Oracle Phase III Study. Blood 2022, 140, 2310–2312. [Google Scholar] [CrossRef]
Author | Reference | Lymphoma Subtypes | Number of Patients | Induction Regimen | Consolidation Strategies | Survival in Patients in Complete Remission After Induction |
---|---|---|---|---|---|---|
Savage et al., 2022 | 36 | ALCL, AITL, PTCL, NOS (mostly ALK − ALCL) in CR after induction | 211 | BV-CHP (n = 114) CHOP (n = 97) | Autologous SCT vs. no consolidation | BV-CHP + Auto SCT: 3-yr PFS 80.4% BV-CHP + no SCT: 3-yr PFS 54.9% CHOP + Auto SCT: 3-yr PFS 67.2% CHOP + no SCT: 3-yr PFS 54.1% |
Advani et al., 2021 | 38 | AITL | 282 | Anthracycline-based w/o etoposide 65%, anthracycline-based with etoposide 16% Other 19% | Autologous SCT vs. no consolidation | Auto SCT: 5-yr PFS 79% No auto SCT: 5-yr PFS 31% Auto SCT: 5-yr OS 89% No auto SCT: 5-yr OS 52% |
Park et al., 2018 | 39 | All PTCL | 499 | Anthracycline-based w/o etoposide 42%, anthracycline-based with etoposide 21% Other 37% | Autologous SCT vs. no consolidation | Auto SCT: 5-yr OS 87.8% No auto SCT: 5-yr OS 70.2% |
Brink et al., 2022 | 3 | ALK − ALCL, AITL, PTCL, NOS | 213 | CHOP or CHOEP | Autologous SCT vs. no consolidation | Auto SCT: 5-yr OS 82% No auto SCT: 5-yr OS 47% |
Martin et al., 2022 | 37 | ALK − ALCL, AITL, PTCL, NOS | 174 | CHOP (n = 126) CHOEP (n = 16) Other (n = 32) | Autologous SCT vs. no consolidation | Auto SCT: 5-yr PFS 63% No auto SCT: 5-yr PFS 49% Auto SCT: 5-yr OS 74% No auto SCT: 5-yr OS 62% |
Janikova et al., 2019 | 20 | All PTCL | 906 | Heterogeneous protocols | Autologous SCT vs. no consolidation | Auto SCT: 5-yr PFS 41% * No auto SCT: 5-yr PFS 46% * Auto SCT: 5-yr OS 49% * No auto SCT: 5-yr OS 59.5% * |
Ellin et al., 2014 | 22 | All PTCL | 755 | CHOP or CHOEP (n = 499) | Autologous SCT vs. no consolidation | Better for the auto SCT group (estimates not given) * |
Schmitz et al., 2021 | 55 | All PTCL other than ALK ALCL | 104 | CHOEP × 4 + DHAP × 1 | Autologous SCT vs. allogeneic SCT (if donor available) | Auto SCT: 3-yr PFS 39% * Allo SCT: 3-yr PFS 43% * Auto SCT: 3-yr OS 70% * Allo SCT: 3-yr OS 57% * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorigue, M.; Kuittinen, O. Controversies in the Front-Line Treatment of Systemic Peripheral T Cell Lymphomas. Cancers 2023, 15, 220. https://doi.org/10.3390/cancers15010220
Sorigue M, Kuittinen O. Controversies in the Front-Line Treatment of Systemic Peripheral T Cell Lymphomas. Cancers. 2023; 15(1):220. https://doi.org/10.3390/cancers15010220
Chicago/Turabian StyleSorigue, Marc, and Outi Kuittinen. 2023. "Controversies in the Front-Line Treatment of Systemic Peripheral T Cell Lymphomas" Cancers 15, no. 1: 220. https://doi.org/10.3390/cancers15010220
APA StyleSorigue, M., & Kuittinen, O. (2023). Controversies in the Front-Line Treatment of Systemic Peripheral T Cell Lymphomas. Cancers, 15(1), 220. https://doi.org/10.3390/cancers15010220